
SURFACE WAVE THEORY
This sectiondiscusses the surface-wav epartial derivatives required for the inversion.

1. Eigenvalue Problem
Love Waves

Following Keilis-Borok et al. (1989), the equation for the SH-wav eeigenfunction,
V (3 ), in a cylindrical coordinate system is

d

dz





V (3 )

pφ z





=




0

µk2 − ρω 2

1 / µ
0









V (3 )

pφ z





(1)

wherek is the wav enumber,ω is the angular frequency, µ is the rigidity andρ is density.
The boundary conditions for surface wav es are that pφ z(z = 0)= 0, andV (3 )(z)→ 0, as
z → ∞.

A discrete solution to the boundary conditions satisfies the equation
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whereL is the Lagrangian. The group velocity is determined from the relation
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If the medium is split into constant velocity-density layers, of thicknessdm, density
ρ m, and shear-wav evelocity β m, and the layer is bounded byz = zm − dm andz = zm, then
the partials of the phase velocity with shear velocity for fixed frequency and density, and
with density for fixed frequency and shear-wav evelocity are
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If a layer boundary depth is perturbed by an amounth, while keeping the material proper-
ties and the frequencies constant, the variation in phase velocity is determined from
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where the symbol[ ]± indicates the computation of the jump in the parameter across the
interface, e.g.,

[ χ ]± = χ(h + 0)− χ(h − 0). (7)

Rayleigh Waves

In a cylindrical coordinate system, the equation of motion governing the eigenfunc-
tions is

d

dz







V (1 )

V (2 )

pzz

prz







=







0

−k

−ρω 2

0

kλ / (λ + 2µ)

0

0

−ρω 2 + 4k2µ(λ + µ) / (λ + 2µ)

1 /(λ + 2µ)

0

0

−kλ / (λ + 2µ)

0

1 / µ
k

0













V (1 )

V (2 )

pzz

prz







(8)

where the vertical component eigenfunction isV (1 ), and the radial component eigenfunc-
tion is V (2 ). The ellipticity at the free surface isε = V (2 )(0) / V (1 )(0). Theboundary condi-
tions for surface wav es are that prz(z = 0)= 0, pzz(z = 0)= 0, V (1 )(z)→ 0, asz → ∞. and
V (2 )(z)→ 0, asz → ∞.

A discrete solution to the boundary conditions satisfies the equation

L = ω 2I0 − k2I1 − 2kI2 − I3 = 0 (9)

whereL is the Lagrangian, and
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The group velocity is determined from the relation

U =
dω
dk

= ( kI1 + I2 ) / ω I0 (14)

If the medium is split into constant velocity-density layers, of thicknessdm, density
ρ m, compressional-wav e velocity α m, and shear-wav e velocity β m, and the layer is
bounded byz = zm − dm and z = zm, then the partials of the phase velocity with shear
velocity for fixed frequency, compressional velocity and density, with compresisonal
velocity for fixed frequency, shear velocity and density, and with density for fixed fre-
quency and compresional and shear velocity are
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If a layer boundary depth is perturbed by an amounth, while keeping the material proper-
ties and the frequencies constant, the variation in phase velocity is determined from
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where the symbol[ ]± indicates the computation of the jump in the parameter across the
interface, e.g.,

[ χ ]± = χ(h + 0)− χ(h − 0). (19)
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Equation (18) differs slightly from that in Keilis-Borok (1989) in the grouping of the
square brackets, in order to implement the correct partials for a water-solid layer bound-
ary, for which the radial eigenfunction is not continuous.

2. Numerical Partial Derivative Computation and Causality
The subroutines used in the programssurf96 and joint96 are essentially the same as
those in PROGRAMS.330/VOLIII/src of Computer Programs in Seismology. Since the
inversion programs requires partial derivatives with respect to layer parameters, a detailed
discussion of the relations used is presented.

The programsrfdis96 computes the phase velocity values for a given mode, wav etype
and frequency. When group velocities are computed, the phase velocities are also com-
puted at thetwo periods (1 ± h)T rather than at the single periodT . The parameterh, tpi-
cally 0.005, is that given on LINE 1 of the control filesobs.d. or jobs.d. Denote the phase
velocity output ofsrfdis96 co.

The programssrfdrr96 and srfdrl96 are essentially the same assregn96 and slegn96
except that the front end of the program rearranges the output for use by the inversion
program. Note that theprogramssregn96 andslegn96 provide the phase velocity partial
derivatives but not the group velocity partial derivatives. In addition, although these two
programs do provide the causal phase velocity and anelastic attenuation coefficient when
the medium is described by a causal Q, the partial derivatives are only for infinite Q.

Given the partial derivatives of phase velocity with respect to layer shear velocity,
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,
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, and group velocity, Uo, the expressions for group velocity

are derived by following Rodiet al (1975).
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where the interchange of the order of partial differentiation is permitted since thec(ω, m)
is a continuous function. After some simple algebra, one obtains the followiong expres-
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∂U

∂m
=

U

c


2 −

U

c



∂c

∂m
+

U2

c2
ω

∂
∂ω

∂c

∂m
(20)

=
U

c


2 −

U

c



∂c

∂m
−

U2

c2
T

∂
∂T

∂c

∂m



-5-

The required partial with respect to period of the phase velocity partial isnumerically
computed using the relation
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In these expressions, the parameterm can take on the valuesα , β , layer thickness or
inverse Q. and the subscripto represents the value in the parameter in the purely elastic
model.

If a causal Q is introduced, with a Futterman causality tied to a reference angular fre-
quencyω r, the elastic parameters will equal the anelastic values only when the angular
frequencyω equalsω r. This Q operator causes the medium velocity to be complex, e.g.,
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The causal phase velocity c is given by applying the first terms of a Taylor series expan-
sion:

ccomplex = co +
∂co

∂α
∂α causal

∂Q−1
α

Q−1
α +

∂co

∂β
∂β causal

∂Q−1
β

Q−1
β

from which we obtain, assuming that the perturbation is small,

c = co +
1

π
ln(

ω
ω r

) Σ 

∂co

∂β
β Q−1

β +
∂co

∂α
α Q−1

α



(21)

and the value of the spatial anelastic attenuation factor
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In both (21) and (22) the summation extends over all all layers and the halfspace of the
model. To obtain this we expanded the propagation terme−iω r/ccomplex to forme−iω r/co e−γ r

These values are typically output by the programssregn96 and slegn96 if causality is
required. However, those programs do not output the causal partial derivatives or group
velocities since these are not required for synthetic seismogram construction. The correct
causal relations for these parameters follow. A c or U without the subscripto repre-
sents the causal value. Notethat a partial with respect toQ−1

β may involve a partial of co

with respect toα. To first order,
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for v = α or v = β . An expression for
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An iterative linear inversion is performed because of the non-linear nature of the problem.
At any stage there is a current model which is used to predict the observations and also a
lack of fit. For simplicity, the compresional-wav e velocity α is not directly inverted,
rather it is tied to the shear-wav evelocity after determining the chane in the shear-wav e
velocity by one of theassumptions made when runningsurf96 or joint96. In addition,

the ratio
Qβ

Qα
is fixed and the expression use in the inversion programs would look like
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rather than the single term in (24).

We may thus express the difference between observed and predicted values in a linear
model of changes in shear velocity model and changes in the inverse Q model. Since the
effect of compressional-wav e Q may not be negligible, the compresional-wav e Q is
related to the shear-wav eQ by a ratio Qα /Qβ for the layers.Given these assumptions, the
inversion can take on two characters, non-causal and causal. To keep the notation general,
the partial derivatives with respect to layer velocity can either be causal or non-causal.

The differences in observed and predicted phase velocities are modeled as
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The difference between observed and gamma values predicted by the current model is
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The inversion programs give the user the choice of an (1) non-causal inversion, (2) a
causal uncoupled solution or (3) a causal-coupled solution.The meaning of this is easily
given in the following table:

TERM Non-Causal Causal Causal
Uncoupled Coupled

Phase Vel co (2) (2)

Group Vel Uo (27) (27)

∂c

∂β
∂co

∂β
(23) (23)

∂U

∂β
∂Uo

∂β
(28) (28)

∂c

∂Q−1
v

0 0 (24)

∂U

∂Q−1
v

0 0 (28)

∂γ
∂Q−1

v
(7) (7) (25)

Zero entries in the table, indicate that the respective partials are set to zero. Otherwise,
the partials are given by the function or indicated equation.

3. Sphericity Corrections
Sphericity corrections are based on the work of Schwab and Knopoff (1972). The

concept is to convert the spherical earth model into a flat earth model, compute the dis-
persion, and then adjust the dispersion from the flat earth model to make the spherical
earth dispersion.The sphericity correction for Love wav es is exact, but that for the
Rayleigh wav es are approximate, both because of the nature of the problem and also
because the effects of gravitation are ignored.

In the discussion that follows, the subscripts represents the spherical earth parame-
ter, and the subscriptf represents the value used in the flat earth computations. Ifobs.d
file indicates the use of a spherical earth model, then the programsrfdis performs an
earth flattening approximation, and computes the dispersion for the equivalent flat earth
model.

Love Waves

Let r be the radial distance from the center of the sphere, and let the surface be
given by r = a. Also let z be the depth from the free surface in the equivalent flat earth
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model. Thetransformation used is

z = a ln(a / r) (32)

Given a spherical layer bounded byri andri−1 , with ri−1 > ri, The thickness of the spheri-
cal i’th layer is is

(hi)s = ri−1 − ri (33)

and the thickness of the transformed flat layer model is

(hi) f = a ln(a / ri) − a ln(a / ri−1) (34)

The transformedshear-wav e velocity and density in the equivalent flat layer model are
given by

(β i) f = (β i)s
2a

ri + ri−1
(35)

(ρ i) f = (ρ i)s
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

−5
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The Love wav e equation is from Schwab and Knopoff (1972). Given this flat earth
model, flat earth phase,c f , and group,U f , are computed, as well as the partial derivatives
with respect to velocity, density, and layer thickness. The programsrfdrl96 computes the
corresponding spherical model values through the relations:
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
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
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To obtain the partials, the chain rule of differentiation is used:
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
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Rayleigh Waves

Let r be the radial distance from the center of the sphere, and let the surface be
given by r = a. Also let z be the depth from the free surface in the equivalent flat earth
model. Thetransformation used is

z = a ln(a / r) (43)

The thickness of the spherical layer bounded byri−1 > ri, is is

(hi)s = ri−1 − ri (44)

and the thickness of the transformed flat layer model is

(di) f = a ln(a / ri) − a ln(a / ri−1) (45)

The mean compressional- and shear-wav evelocities anddensity in the transformed flat
layer model are given by

(α i) f = (α i)s
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(β i) f = (β i)s
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(ρ i) f = (ρ i)s
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(48)

The exponent for the Rayleigh wav e was determined empirically, e.g.,
http://www.eas.slu.edu/eqc/eqc_cps/TUTORIAL/SPHERICITY/index.html. Giv en this flat
earth model, flat earth phase,c f , and group,U f , are computed, as well as the partial
derivatives with respect to velocity, density, and layer thickness. The programsrfdrl
computes the corresponding spherical model values through the relations:

cs(ω) = c f

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
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To obtain the partials, the chain rule of differentiation is used:
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wherep is β or ρ.
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

−3 /2



∂c f

∂β f




i

2a

ri + ri−1
(51)



∂Us

∂β s


i

=






1+ (c f / 2aω)2



1 /2


∂U f

∂β f




i

(52)

+ U f c f



∂c f

∂β f




i

(1 /2aω)2

1+ (c f / 2aω)2



−1 /2



2a

ri + ri−1




∂cs

∂hs


i

= 

1+ (c f / 2aω)2



−3 /2



∂c f

∂h f




i

a

ri
(53)



∂Us

∂hs


i

=






1+ (c f / 2aω)2



1 /2


∂U f

∂h f




i

(54)

+ U f c f



∂c f

∂h f




i

(1 /2aω)2

1+ (c f / 2aω)2



−1 /2



a

ri
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DEFINITIONS
Gamma Values - a measure of the non-geometrical attenuation of a signal due to anelas-
tic processes which is of the form exp(−γ r). If a two-station technique is used, and if sur-
face-wav epropagation is assumed, then the interstationγ is defined by the relation:

γ = ln 


A1r1 /2
1 / A2r1 /2

2


/ (r2 − r1)
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where A j is the instrument corrected surface-wav e spectral amplitude observed at dis-
tancer j . Both spectral amplitude observations are measured at the same frequency. To
obtain clean estimates of the spectral amplitude estimates, multiple filter analysis or
phase match filter techniques can be used.

The units are km−1, m−1 or ft−1. These must be in the same units as the velocities input.

Group Velocity - velocity of energy propagation. This can be estimated graphically or by
using multiple filter techniques, which bandpass filter the surface wav e, and compute the
envelope of the resulting function. The group velocity is the obtained by dividing the epi-
central distance by the time of arrival of the envelope maximum.

The units are km/sec or m/sec or sec.

Phase Velocity - velocity of a given phase. Usually measured from phase spectrum at a
given frequency. If source and instrument phase is known, a single station technique can
be used. For data acquired along the same azimuth, two station interstation phase is easily
obtained if the instrument phase is known. If more than two stations are available, a
stacking technique can be used to reduce the problems of spatial aliasing.

The units are km/sec or m/sec or sec.


