SURFACE WAVE THEORY
This sectiordiscusses the surfaceavwepartial denvatives required for the iversion.
1. Eigenvalue Problem
Love Waves

Fadlowing Keilis-Borok et al. (1989), the equation for the SHaweeigenfunction,
V® in a g/lindrical coordinate system is
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wherek is the vavenumber,w is the angular frequegcy is the rigidity ando is density
The boundary conditions for surfaceawes ae that p,(z=0)=0, andV®(2) - 0, as
Z— 00.

A discrete solution to the boundary conditions satisfies the equation

L=c?lg—K3ly -1, (2)

wherelL is the Lagrangian. The group velocity is determined from the relation
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If the medium is split into constanebocity-density layers, of thicknesls,, density
Pm, and sheafwvavevelocity 3,,, and the layer is bounded la~ z,, - d,, andz= z,, then
the partials of the phaselocity with shear velocity for fixed frequgnand densityand
with density for fixed frequerycand shear-wvevelocity are
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If a layer boundary depth is perturbed by an ambynthile keeping the material proper
ties and the frequencies constant, the variation in phase velocity is determined from
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where the symbdl]. indicates the computation of the jump in the parameter across the
interface, e.g.,

[ x1:=x(h+0)= x(h-0). (7)

Rayleigh Waves

In a cylindrical coordinate system, the equation of motiorerging the eigenfunc-
tions is
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where the ertical component eigenfunction\8", and the radial component eigenfunc-
tion isV®@. The ellipticity at the free surface is=V@(0)/VY(0). Theboundary condi-
tions for surice vaves ae thatp,,(z=0)=0, p4(z=0)=0, V&(z) - 0, asz — c0. and
V®@(2) - 0, asz - oo.

A discrete solution to the boundary conditions satisfies the equation
L=a?ly—Kk?l;—2kl,—13=0 9)

wherel is the Lagrangian, and

o= pHVOY + (VO iz (10)

I, = J FVE + (1 + 20 (VP tiz (11)
bl (@) Q0
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1) (2)
0= JmA+2 A P kA (19

O

The group velocity is determined from the relation

U—d——(kl +15)/ wlg (14)

If the medium is split into constanebocity-density layers, of thicknesls,, density
Pm, compressional-ave velocity a,,, ahd sheamwave velocity g, and the layer is
bounded byz=2z,-d,, and z=z,, then the partials of the phase velocity with shear
velocity for fixed frequeng, compressional velocity and densitywith compresisonal
velocity for fixed frequeny, shear velocity and densjtgnd with density for fixed fre-
gueny and compresional and shear velocity are

HC0 _Wmonl ¢ D(Z)_ldv()gdz (15)
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If a layer boundary depth is perturbed by an ambynthile keeping the material proper
ties and the frequencies constant, the variation in phase velocity is determined from
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where the symbdl]. indicates the computation of the jump in the parameter across the
interface, e.qg.,

[ x1:=x(h+0)= x(h-0). (19)
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Equation (18) diers slightly from that in Keilis-Borok (1989) in the grouping of the
square brackets, in order to implement the correct partials fatexsolid layer bound-
ary, for which the radial eigenfunction is not continuous.

2. Numerical Partial Derivative Computation and Causality

The subroutines used in the prograsasf96 and joint96 are essentially the same as
those in PRGRAMS.330/\OLIII/src of Computer Programsin Seismology. Since the
inversion programs requires partial detives with respect to layer parameters, a detailed
discussion of the relations used is presented.

The progranmsrfdis96 computes the phase velocity values for emgimode, vwavetype

and frequeng When group velocities are computed, the phase velocities are also com-
puted at thetwo periods { + h)T rather than at the single peridd The parametel, tpi-

cally 0.005, is that gen on LINE 1 of the control filesobs.d. or jobs.d. Denote the phase
velocity output ofsrfdis96 c,,.

The programssrfdrr96 and srfdrl96 are essentially the same st€gn96 and slegn96
except that the front end of the program rearranges the output for use byediseom
program. Note that th@rogramssregn96 andslegn96 provide the phase velocity partial
derivatives but not the group velocity partial destives. In addition, although these daw
programs do provide the causal phaseity and anelastic attenuation coefficient when
the medium is described by a causal Q, the partialatieas ae only for infinite Q.

Given the partial dexiatives of phase velocity with respect to layer shealoeity, ai[;’

0
compressional elocity, %, and group elocity, U,, the expressions for groughocity
are dewed by following Rodiet al (1975).

By definition
o
U= B f(c, dc/dT, w, m)
1+— —
c dT

wherem is a model parameteBy applying the chain rule of differentiation,

U_Uuode, U 9pden Ui, 9 dc
om oc om  ,0dcOOm T O oc om  rdc 04T 9m
ot U Lot O
where the interchange of the order of partial differentiation is permitted sincéudira)

is a continuous function. After some simple algebra, one obtains the followipngse
sion:

-t W (20)
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The required partial with respect to period of the phadecity partial isnumerically
computed using the relation

oc
0 GCO T 0)T+hT (
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O
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In these expressions, the parametecan talke on the \aluesa, g, layer thickness or
inverse Q. and the subscriptrepresents the value in the parameter in the purely elastic
model.

If a causal Q is introduced, with a Futterman causality tied to a reference angular fre-
guencyw,, the elastic parameters will equal the anelastic values only when the angular
frequencyw equalsw,. This Q operator causes the medium velocity to be complex, e.g.,

y VS+ 1 Da)m 1 D
st VB0, M0 20,

The causal phaseshocity ¢ is given by gplying the first terms of a Taylor seriegpan-
sion:

- 0C, 00 caysal 1, a‘30 0Bcausal
Ccomplex—Co % aQ Qa 6,3 aQ_l

from which we obtain, assuming that the perturbation is small,

Qs

ot i (5 % 57 + 92 a0 (21)

and the value of the spatial anelastic attenuation factor

Eﬁco _1D
= i) 22
= 36 Ziop PO+ 55 90 (22)
In both (21) and (22) the summation extender @l all layers and the halfspace of the
model. B obtain this we expanded the propagation tef{/cemie to form e/ g7

These values are typically output by the progranegn96 and slegn96 if causality is
required. Havever, those programs do not output the causal partiaVatesms or goup
velocities since these are not required for synthetic seismogram construction. The correct
causal relations for these parameters wall& c or U without the subscripb repre-

sents the causablue. Notethat a partial with respect t@;l may involve a mrtial of c,

with respect tar. To first order,
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. d . . ,
forv=a orv=p. An expression for% cannot be obtained by simple first orper pertur

. : . c .
bation theorysince the change ip# depends on changes gﬁf/ which are second order
effects.

To adbtain the expression for the causal group velpeityexpress
oU
U=Uy,+AU=U,+ @AQH Q‘l

and use (20). From this we obtain

[(C—Co I 2yUo O
+ +
U= U Fl (2 _)D co 0 0 (26)

AQy

L. . —C ..
where it is assumed that the higher order tern%sp—m—" gare negligible.

Co

The partial detwiatives of the causal group velocity
U _dUoU _UoF=Col, 2yUo0

bl e bl 27
ov ov WU, ¢, 0 c D mw U (27)
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An iterative linear irversion is performed because of the non-linear nature of the problem.
At any stage there is a current model which is used to predict the observations and also a
lack of fit. For simplicity the compresional-ave velocity o is not directly iwverted,

rather it is tied to the sheaavevelocity after determining the chane in the sheave
velocity by one of theassumptions made when runningurf96 or joint96. In addition,

the ratio& is fixed and the expression use in thesigion programs would look like

a

oc [ﬁco aco Q,,D
@ 7T ( ) Qa

rather than the smgle termin (24).

We may thus express the thfence between observed and predicted values in a linear
model of changes in sheaglgcity model and changes in theérse Q model. Since the
effect of compressional-awve Q may not be negligible, the compresionawe Q is
related to the sheavaveQ by a atio Q,/Q for the layers.Given these assumptions, the
inversion can ta& on wwo characters, non-causal and causalkdep the notation general,
the partial dexiatives with respect to layer velocity can either be causal or non-causal.

The differences in observed and predicted phase velocities are modeled as

oc oc
Cobs ~ Cpred = a_ﬁlAﬁl""'"" WAIBn (29)
n
oc — AQ — AQ
aQ Q

The difference between observed and predicted group velocitiesnsbyi

ou ou
Uobs_Upredza_ﬁlAlgl"'"""WAﬁn (30)
n
ou ou
A —— AQ}
aQ—l Q aQ,_BJ,; Q.En

The difference between observed and gamma values predicted by the current model is

Yobs = Vpred = (31)

aQ—l AQ Q—l AQ
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The inversion programs ge the user the choice of an (1) non-causakision, (2) a
causal uncoupled solution or (3) a causal-coupled solufibe. meaning of this is easily
given in the following table:

TERM Non-Causal Causal Causal
Uncoupled Coupled

Phase Vel Cy ) 2)
Group Vel U, 27) 27)
= ge 23) 23)
iy s (28) (28)
a‘;‘; 0 0 (24)
6‘2;1 0 0 (28)
= @ Mm@

Zero entries in the table, indicate that the respegrtials are set to zero. Otherwise,
the partials are gen by the function or indicated equation.

3. Sphericity Corrections

Sphericity corrections are based on the work of Schwab and Kr(d8GR2). The
concept is to caorert the spherical earth model into a flat earth model, compute the dis-
persion, and then adjust the dispersion from the flat earth model ® theakpherical
earth dispersion.The sphericity correction for Me waves is eact, but that for the
Rayleigh vaves ae approximate, both because of the nature of the problem and also
because the effects of gravitation are ignored.

In the discussion that follows, the subscepépresents the spherical earth parame-
ter, and the subscript represents the value used in the flat earth computatiooiss.tf
file indicates the use of a spherical earth model, then the pragfdms performs an
earth flattening approximation, and computes the dispersion for thedlequiflat earth
model.

Love Waves

Let r be the radial distance from the center of the sphere, and let the surface be
given by r =a. Also letz be the depth from the free surface in the egent flat earth



model. Thdaransformation used is

z=aln(alr) (32)

Given a pherical layer bounded by andr;_; , with r;_; >r;, The thickness of the spheri-
cal i'th layerisis

(hi)s =Ti1—T; (33)
and the thickness of the transformed flat layer model is
(h)s =aln(al/r;) —aln(a/r,y) (34)

The transformedshear-vave velocity and density in the equalent flat layer model are
given by

(lgl)f _(,Bl)s r+r (35)
~——_ .02 0@
(o)1 = (P)sr 51 (36)

The Love wave equation is from Schwab and Knopdfi972). Gven this flat earth
model, flat earth phasey, and groupU ¢, are computed, as well as the partial dairves
with respect to elocity, density and layer thickness. The prograrfdr|96 computes the
corresponding spherical model values through the relations:

co(w) = C; g+(3cf /2aw)2g1’2 (37)

Ugw) =U; %+(3cf /2&1&))29/2 (38)

To adbtain the partials, the chain rule of differentiation is used:
dcs _ 0cg OCt 0pg
aps aC'f apf aps

wherepis B or p. The resulting expressions are
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@USD 2|ﬁ/2 E@Uf O
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Rayleigh Waves

Let r be the radial distance from the center of the sphere, and let theesbd
given by r =a. Also let z be the depth from the free sace in the equalent flat earth
model. Theransformation used is

z=aln(alr) (43)
The thickness of the spherical layer bounded,Qy> r;, is is

(hi)s =riza =T, (44)
and the thickness of the transformed flat layer model is

(d)¢ =aln(al/r;) —aln(alri4) (45)

The mean compressional- and sheavevelocities anddensity in the transformed flat
layer model are gen by

2a

@) =@ (46)
S— 2

Br = (s - j_l (47)
o 2 =2.275

(o)1 =(Peri v (48)

The exponent for the Rayleigh awe was determined empirically eg.,
http://www.eas.slu.edu/eqc/eqc_cps/TUTORIAL/SPHERICITY/index.html. Given this flat
earth model, flat earth phass,, and group,U;, are computed, as well as the partial
derivatives with respect to ®locity, density and layer thickness. The prograsfdr|
computes the corresponding spherical model values through the relations:

@) = cr d+(cy /2@1@)251/2 (49)

Ug(w) = U %+(cf /2aw)2g/2 (50)

To abtain the partials, the chain rule of differentiation is used:
dcs _ dcs Oct 0pg
0ps 0ct 0ps Ops

wherepis B or p.
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ES_ZSSS = 1+(cy /2616«))253/2 g%a ri f?i_l &1
Egiﬂ:q = %Hq /2aa))25/2 EgUTIS (52)
Eg_fng =Hu(c, /2&@)253/2 Eg%g - (53)
gihzg - H+(c /2aw)zgl2 S;JT:S (54)
+U¢Cy Eg%a(l /2aw)2§+(cf /Zaw)zgllzég
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DEFINITIONS

Gamma Values - a measure of the non-geometrical attenuation of a signal due to anelas-
tic processes which is of the formpé-yr). If a two-station technique is used, and if-sur
face-wavepropagation is assumed, then the interstgtiedefined by the relation:

O
y=In Ard’2/ Aprk2d (r,=ry)



-12-

where A; is the instrument corrected sace-wave spectral amplitude obsesd at dis-
tancer;. Both spectral amplitude observations are measured at the same fyeqienc
obtain clean estimates of the spectral amplitude estimates, multiple filter analysis or
phase match filter techniques can be used.

The units are ki, m™ or ft*. These must be in the same units as the velocities input.

Group Velocity - velocity of energy propadion. This can be estimated graphically or by
using multiple filter techniques, which bandpass filter the surfave wnd compute the
ervelope of the resulting function. The group velocity is the obtained\bglidg the epi-
central distance by the time of aaliof the ewelope maximum.

The units are km/sec or m/sec or sec.

Phase Velocity - velocity of a gven phase. Usually measured from phase spectrum at a
given frequeng. If source and instrument phase is Wwmg a single station technique can
be used. For data acquired along the same azimuilgation interstation phase is easily
obtained if the instrument phase is Wwmo If more than tw dations are ailable, a
stacking technique can be used to reduce the problems of spatial aliasing.

The units are km/sec or m/sec or sec.



