Location

2013/05/22 17:19:39 35.299 -92.715 2.0 3.38

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/05/22 17:19:39:0  35.30  -92.71   2.0 3.4  
 
 Stations used:
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.53e+21 dyne-cm
  Mw = 3.39 
  Z  = 2 km
  Plane   Strike  Dip  Rake
   NP1      182    71   -159
   NP2       85    70   -20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.53e+21      1     313
    N   0.00e+00     62     222
    P  -1.53e+21     28      44

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     9.93e+19
       Mxy    -1.36e+21
       Mxz    -4.43e+20
       Myy     2.37e+20
       Myz    -4.55e+20
       Mzz    -3.37e+20
                                                     
                                                     
                                                     
                                                     
                     #######-------                  
                 ##########------------              
               ###########----------------           
             T ##########------------------          
           #   ##########------------   -----        
          ##############------------- P ------       
         ###############-------------   -------      
        ################------------------------     
        ################------------------------     
       ################--------------------------    
       ################-------------------------#    
       ################----------------------####    
       --##############-----------------#########    
        -------########---------################     
        ---------------#########################     
         ---------------#######################      
          --------------######################       
           -------------#####################        
             -----------###################          
              -----------#################           
                 ---------#############              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.37e+20  -4.43e+20   4.55e+20 
 -4.43e+20   9.93e+19   1.36e+21 
  4.55e+20   1.36e+21   2.37e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130522171939/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 85
      DIP = 70
     RAKE = -20
       MW = 3.39
       HS = 2.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2013/05/22 17:19:39:0  35.30  -92.71   2.0 3.4  
 
 Stations used:
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.53e+21 dyne-cm
  Mw = 3.39 
  Z  = 2 km
  Plane   Strike  Dip  Rake
   NP1      182    71   -159
   NP2       85    70   -20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.53e+21      1     313
    N   0.00e+00     62     222
    P  -1.53e+21     28      44

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     9.93e+19
       Mxy    -1.36e+21
       Mxz    -4.43e+20
       Myy     2.37e+20
       Myz    -4.55e+20
       Mzz    -3.37e+20
                                                     
                                                     
                                                     
                                                     
                     #######-------                  
                 ##########------------              
               ###########----------------           
             T ##########------------------          
           #   ##########------------   -----        
          ##############------------- P ------       
         ###############-------------   -------      
        ################------------------------     
        ################------------------------     
       ################--------------------------    
       ################-------------------------#    
       ################----------------------####    
       --##############-----------------#########    
        -------########---------################     
        ---------------#########################     
         ---------------#######################      
          --------------######################       
           -------------#####################        
             -----------###################          
              -----------#################           
                 ---------#############              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.37e+20  -4.43e+20   4.55e+20 
 -4.43e+20   9.93e+19   1.36e+21 
  4.55e+20   1.36e+21   2.37e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130522171939/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    90    65     0   3.32 0.3627
WVFGRD96    1.0    90    65     0   3.35 0.3732
WVFGRD96    2.0    85    70   -20   3.39 0.3885
WVFGRD96    3.0    85    75   -15   3.39 0.3786
WVFGRD96    4.0    85    75   -15   3.40 0.3616
WVFGRD96    5.0   270    75    10   3.40 0.3456
WVFGRD96    6.0   270    75    10   3.40 0.3396
WVFGRD96    7.0   270    75    10   3.41 0.3330
WVFGRD96    8.0   270    75    10   3.41 0.3264
WVFGRD96    9.0   270    75    10   3.42 0.3197
WVFGRD96   10.0   270    70    10   3.43 0.3136
WVFGRD96   11.0   270    70    10   3.44 0.3080
WVFGRD96   12.0   270    70    10   3.45 0.3027
WVFGRD96   13.0   270    70    10   3.45 0.2979
WVFGRD96   14.0   270    70    10   3.46 0.2936
WVFGRD96   15.0   270    70    10   3.46 0.2902
WVFGRD96   16.0   270    70    10   3.47 0.2874
WVFGRD96   17.0   270    70    10   3.48 0.2848
WVFGRD96   18.0   270    70    10   3.49 0.2824
WVFGRD96   19.0   270    70    10   3.49 0.2802
WVFGRD96   20.0   270    65    10   3.51 0.2782
WVFGRD96   21.0   270    65    10   3.52 0.2769
WVFGRD96   22.0   270    65    10   3.52 0.2760
WVFGRD96   23.0   270    60    10   3.53 0.2758
WVFGRD96   24.0   270    60    10   3.54 0.2761
WVFGRD96   25.0   270    60    10   3.55 0.2772
WVFGRD96   26.0   270    60    10   3.55 0.2783
WVFGRD96   27.0   270    60     5   3.56 0.2791
WVFGRD96   28.0   265    60   -10   3.56 0.2814
WVFGRD96   29.0   265    60   -10   3.56 0.2829
WVFGRD96   30.0   265    60   -10   3.57 0.2848
WVFGRD96   31.0   265    65   -10   3.57 0.2859
WVFGRD96   32.0   265    65   -10   3.58 0.2867
WVFGRD96   33.0   265    65   -10   3.58 0.2866
WVFGRD96   34.0   265    65   -10   3.59 0.2858
WVFGRD96   35.0   265    70   -10   3.59 0.2846
WVFGRD96   36.0   265    70   -10   3.60 0.2826
WVFGRD96   37.0   265    70   -10   3.61 0.2804
WVFGRD96   38.0   265    70    -5   3.62 0.2783
WVFGRD96   39.0   265    70    -5   3.64 0.2774
WVFGRD96   40.0   265    60    -5   3.69 0.2771
WVFGRD96   41.0   265    60   -10   3.69 0.2739
WVFGRD96   42.0   265    60   -10   3.70 0.2711
WVFGRD96   43.0   265    65   -10   3.70 0.2680
WVFGRD96   44.0   260    60   -20   3.72 0.2645
WVFGRD96   45.0   260    60   -20   3.73 0.2617
WVFGRD96   46.0   260    60   -20   3.73 0.2583
WVFGRD96   47.0   260    60   -20   3.74 0.2558
WVFGRD96   48.0    90    80   -15   3.73 0.2550
WVFGRD96   49.0    90    80   -15   3.74 0.2534

The best solution is

WVFGRD96    2.0    85    70   -20   3.39 0.3885

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Velocity Model

The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Fri Mar 14 19:14:26 CDT 2014