USGS/SLU Moment Tensor Solution ENS 2021/08/13 11:57:35:0 35.88 -84.90 0.0 3.0 Tennessee Stations used: CO.CASEE CO.HODGE CO.PAULI ET.CPCT IM.TKL IU.WCI IU.WVT N4.R49A N4.R50A N4.S51A N4.T47A N4.T50A N4.U49A N4.V48A N4.V53A N4.V55A N4.W50A N4.W52A N4.X48A N4.X51A N4.Y52A NM.BLO NM.USIN US.GOGA US.LRAL US.TZTN Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.26e+22 dyne-cm Mw = 4.00 Z = 1 km Plane Strike Dip Rake NP1 65 80 93 NP2 230 10 75 Principal Axes: Axis Value Plunge Azimuth T 1.26e+22 55 338 N 0.00e+00 3 245 P -1.26e+22 35 153 Moment Tensor: (dyne-cm) Component Value Mxx -3.00e+21 Mxy 1.95e+21 Mxz 1.08e+22 Myy -1.16e+21 Myz -4.89e+21 Mzz 4.16e+21 -------------- ----#################- ----#######################- --############################ --################################ --########### #################### --############ T ####################- --############# ##################---- -#################################------ --##############################---------- --##########################-------------- -########################----------------- -####################--------------------- -###############------------------------ -#########------------------------------ -##----------------------------------- ----------------------- ---------- ---------------------- P --------- -------------------- ------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 4.16e+21 1.08e+22 4.89e+21 1.08e+22 -3.00e+21 -1.95e+21 4.89e+21 -1.95e+21 -1.16e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210813115735/index.html |
STK = 230 DIP = 10 RAKE = 75 MW = 4.00 HS = 1.0
The NDK file is 20210813115735.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/08/13 11:57:35:0 35.88 -84.90 0.0 3.0 Tennessee Stations used: CO.CASEE CO.HODGE CO.PAULI ET.CPCT IM.TKL IU.WCI IU.WVT N4.R49A N4.R50A N4.S51A N4.T47A N4.T50A N4.U49A N4.V48A N4.V53A N4.V55A N4.W50A N4.W52A N4.X48A N4.X51A N4.Y52A NM.BLO NM.USIN US.GOGA US.LRAL US.TZTN Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.26e+22 dyne-cm Mw = 4.00 Z = 1 km Plane Strike Dip Rake NP1 65 80 93 NP2 230 10 75 Principal Axes: Axis Value Plunge Azimuth T 1.26e+22 55 338 N 0.00e+00 3 245 P -1.26e+22 35 153 Moment Tensor: (dyne-cm) Component Value Mxx -3.00e+21 Mxy 1.95e+21 Mxz 1.08e+22 Myy -1.16e+21 Myz -4.89e+21 Mzz 4.16e+21 -------------- ----#################- ----#######################- --############################ --################################ --########### #################### --############ T ####################- --############# ##################---- -#################################------ --##############################---------- --##########################-------------- -########################----------------- -####################--------------------- -###############------------------------ -#########------------------------------ -##----------------------------------- ----------------------- ---------- ---------------------- P --------- -------------------- ------- ---------------------------- ---------------------- -------------- Global CMT Convention Moment Tensor: R T P 4.16e+21 1.08e+22 4.89e+21 1.08e+22 -3.00e+21 -1.95e+21 4.89e+21 -1.95e+21 -1.16e+21 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210813115735/index.html |
Moment (dyne-cm) 2.08E+22 dyne-cm Magnitude (Mw) 4.15 Principal Axes: Axis Value Plunge Azimuth T -4.94E+21 29. 19. N -1.07E+22 1. 288. P -2.69E+22 61. 197. Moment Tensor: (dyne-cm) Aki-Richards Component Value Mxx -1.01E+22 Mxy 3.00E+20 Mxz 8.80E+21 Myy -1.06E+22 Myz 2.80E+21 Mzz -2.19E+22 Global CMT Convention Moment Tensor: (dyne-cm) R T F R -2.19E+22 8.80E+21 -2.80E+21 T 8.80E+21 -1.01E+22 -3.00E+20 F -2.80E+21 -3.00E+20 -1.06E+22 Moment (dyne-cm) 2.08E+22 dyne-cm Magnitude (Mw) 4.15 Principal Axes: Axis Value Plunge Azimuth T -4.94E+21 29. 19. N -1.07E+22 1. 288. P -2.69E+22 61. 197. Moment Tensor: (dyne-cm) Aki-Richards Lune parameters Component Value Mxx -1.01E+22 beta: 146.76 Mxy 3.00E+20 gamma: 15.29 Mxy 3.00E+20 Mxz 8.80E+21 Myy -1.06E+22 Myz 2.80E+21 Mzz -2.19E+22 -------------- : ---------------------- :---: ----------------- -------- ::. ..:: ------------------ T --------- :--------: -------------------- ----------- :: . . . : ------------------------------------ : . . . : -------------------------------------- :------------:: ---------------------------------------- :: . . . : ---------------------------------------- : . . . : ------------------------------------------ :---------------: ------------------------------------------ : . . . : ------------------------------------------ :===============: ------------------------------------------ : . . . : ---------------- --------------------- : . . . : ---------------- P --------------------- :---------------: --------------- -------------------- : . . . : ------------------------------------ :: . . . : ---------------------------------- :------------:: ------------------------------ : . . . : ---------------------------- :: . . # : ---------------------- :--------: -------------- ::. ..:: :---: : |
Moment (dyne-cm) 1.26E+22 dyne-cm Magnitude (Mw) 4.00 Principal Axes: Axis Value Plunge Azimuth T 1.26E+22 55. 338. N 7.07E+17 3. 245. P -1.26E+22 35. 153. Moment Tensor: (dyne-cm) Aki-Richards Component Value Mxx -3.01E+21 Mxy 1.95E+21 Mxz 1.08E+22 Myy -1.16E+21 Myz -4.90E+21 Mzz 4.17E+21 Global CMT Convention Moment Tensor: (dyne-cm) R T F R 4.17E+21 1.08E+22 4.90E+21 T 1.08E+22 -3.01E+21 -1.95E+21 F 4.90E+21 -1.95E+21 -1.16E+21 Moment (dyne-cm) 1.26E+22 dyne-cm Magnitude (Mw) 4.00 Principal Axes: Axis Value Plunge Azimuth T 1.26E+22 55. 338. N 7.07E+17 3. 245. P -1.26E+22 35. 153. Moment Tensor: (dyne-cm) Aki-Richards Lune parameters Component Value Mxx -3.01E+21 beta: 90.00 Mxy 1.95E+21 gamma: 0.00 Mxy 1.95E+21 Mxz 1.08E+22 Myy -1.16E+21 Myz -4.90E+21 Mzz 4.17E+21 -------------- : ----#################- :---: ----#######################- ::. ..:: --############################ :--------: --################################ :: . . . : --########### #################### : . . . : --############ T ####################- :------------:: --############# ##################---- :: . . . : -#################################------ : . . . : --##############################---------- :---------------: --##########################-------------- : . . . : -########################----------------- :=======#=======: -####################--------------------- : . . . : -###############------------------------ : . . . : -##########----------------------------- :---------------: -##----------------------------------- : . . . : ----------------------- ---------- :: . . . : ---------------------- P --------- :------------:: -------------------- ------- : . . . : ---------------------------- :: . . . : ---------------------- :--------: -------------- ::. ..:: :---: : |
Moment (dyne-cm) 1.40E+22 dyne-cm Magnitude (Mw) 4.03 Principal Axes: Axis Value Plunge Azimuth T 1.55E+22 55. 7. N -3.86E+21 2. 275. P -1.16E+22 35. 184. Moment Tensor: (dyne-cm) Aki-Richards Component Value Mxx -2.71E+21 Mxy 4.82E+20 Mxz 1.27E+22 Myy -3.78E+21 Myz 1.39E+21 Mzz 6.49E+21 Global CMT Convention Moment Tensor: (dyne-cm) R T F R 6.49E+21 1.27E+22 -1.39E+21 T 1.27E+22 -2.71E+21 -4.82E+20 F -1.39E+21 -4.82E+20 -3.78E+21 Moment (dyne-cm) 1.40E+22 dyne-cm Magnitude (Mw) 4.03 Principal Axes: Axis Value Plunge Azimuth T 1.55E+22 55. 7. N -3.86E+21 2. 275. P -1.16E+22 35. 184. Moment Tensor: (dyne-cm) Aki-Richards Lune parameters Component Value Mxx -2.71E+21 beta: 90.00 Mxy 4.82E+20 gamma: -13.85 Mxy 4.82E+20 Mxz 1.27E+22 Myy -3.78E+21 Myz 1.39E+21 Mzz 6.49E+21 -----#####---- : ---#################-- :---: ---#######################-- ::. ..:: ---##########################- :--------: ---#############################-- :: . . . : ---############### #############-- : . . . : ----############### T ##############-- :------------:: -----############### ##############--- :: . . . : -----################################--- : . . . : -------##############################----- :---------------: ---------###########################------ : . . . : -----------########################------- :===#===========: ----------------###############----------- : . . . : ---------------------------------------- : . . . : ---------------------------------------- :---------------: -------------------------------------- : . . . : ------------------------------------ :: . . . : --------------- ---------------- :------------:: ------------- P -------------- : . . . : ------------ ------------- :: . . . : ---------------------- :--------: -------------- ::. ..:: :---: : |
Moment (dyne-cm) 2.14E+22 dyne-cm Magnitude (Mw) 4.15 Principal Axes: Axis Value Plunge Azimuth T -6.57E+21 25. 20. N -1.13E+22 0. 110. P -2.73E+22 65. 200. Moment Tensor: (dyne-cm) Aki-Richards Component Value Mxx -1.04E+22 Mxy 3.27E+20 Mxz 7.47E+21 Myy -1.12E+22 Myz 2.72E+21 Mzz -2.36E+22 Global CMT Convention Moment Tensor: (dyne-cm) R T F R -2.36E+22 7.47E+21 -2.72E+21 T 7.47E+21 -1.04E+22 -3.27E+20 F -2.72E+21 -3.27E+20 -1.12E+22 Moment (dyne-cm) 2.14E+22 dyne-cm Magnitude (Mw) 4.15 Principal Axes: Axis Value Plunge Azimuth T -6.57E+21 25. 20. N -1.13E+22 0. 110. P -2.73E+22 65. 200. Moment Tensor: (dyne-cm) Aki-Richards Lune parameters Component Value Mxx -1.04E+22 beta: 149.51 Mxy 3.27E+20 gamma: 17.39 Mxy 3.27E+20 Mxz 7.47E+21 Myy -1.12E+22 Myz 2.72E+21 Mzz -2.36E+22 -------------- : --------------- ---- :---: ------------------ T ------- ::. ..:: ------------------- -------- :--------: ---------------------------------- :: . . . : ------------------------------------ : . . . : -------------------------------------- :------------:: ---------------------------------------- :: . . . : ---------------------------------------- : . . . : ------------------------------------------ :---------------: ------------------------------------------ : . . . : ------------------------------------------ :===============: ------------------------------------------ : . . . : ---------------- --------------------- : . . . : ---------------- P --------------------- :---------------: --------------- -------------------- : . . . : ------------------------------------ :: . . . : ---------------------------------- :------------:: ------------------------------ : . . . : ---------------------------- :: . . .# : ---------------------- :--------: -------------- ::. ..:: :---: : |
Moment (dyne-cm) 1.22E+22 dyne-cm Magnitude (Mw) 3.99 Principal Axes: Axis Value Plunge Azimuth T 1.35E+22 55. 19. N -3.35E+21 1. 288. P -1.02E+22 35. 198. Moment Tensor: (dyne-cm) Aki-Richards Component Value Mxx -2.69E+21 Mxy 3.20E+20 Mxz 1.05E+22 Myy -3.21E+21 Myz 3.55E+21 Mzz 5.90E+21 Global CMT Convention Moment Tensor: (dyne-cm) R T F R 5.90E+21 1.05E+22 -3.55E+21 T 1.05E+22 -2.69E+21 -3.20E+20 F -3.55E+21 -3.20E+20 -3.21E+21 Moment (dyne-cm) 1.22E+22 dyne-cm Magnitude (Mw) 3.99 Principal Axes: Axis Value Plunge Azimuth T 1.35E+22 55. 19. N -3.35E+21 1. 288. P -1.02E+22 35. 198. Moment Tensor: (dyne-cm) Aki-Richards Lune parameters Component Value Mxx -2.69E+21 beta: 90.00 Mxy 3.20E+20 gamma: -13.74 Mxy 3.20E+20 Mxz 1.05E+22 Myy -3.21E+21 Myz 3.55E+21 Mzz 5.90E+21 -------##----- : ----################-- :---: ----######################-- ::. ..:: ---##########################- :--------: ----############################-- :: . . . : -----############## ############-- : . . . : -----############### T #############-- :------------:: -------############## ##############-- :: . . . : -------###############################-- : . . . : ----------#############################--- :---------------: ------------##########################---- : . . . : --------------########################---- :===#===========: ------------------##################------ : . . . : -----------------------########--------- : . . . : ---------------------------------------- :---------------: -------------------------------------- : . . . : ------------------------------------ :: . . . : ----------- -------------------- :------------:: --------- P ------------------ : . . . : -------- ----------------- :: . . . : ---------------------- :--------: -------------- ::. ..:: :---: : |
Moment (dyne-cm) 2.08E+22 dyne-cm Magnitude (Mw) 4.15 Principal Axes: Axis Value Plunge Azimuth T -4.94E+21 29. 19. N -1.07E+22 1. 288. P -2.69E+22 61. 197. Moment Tensor: (dyne-cm) Aki-Richards Component Value Mxx -1.01E+22 Mxy 3.00E+20 Mxz 8.80E+21 Myy -1.06E+22 Myz 2.80E+21 Mzz -2.19E+22 Global CMT Convention Moment Tensor: (dyne-cm) R T F R -2.19E+22 8.80E+21 -2.80E+21 T 8.80E+21 -1.01E+22 -3.00E+20 F -2.80E+21 -3.00E+20 -1.06E+22 Moment (dyne-cm) 2.08E+22 dyne-cm Magnitude (Mw) 4.15 Principal Axes: Axis Value Plunge Azimuth T -4.94E+21 29. 19. N -1.07E+22 1. 288. P -2.69E+22 61. 197. Moment Tensor: (dyne-cm) Aki-Richards Lune parameters Component Value Mxx -1.01E+22 beta: 146.76 Mxy 3.00E+20 gamma: 15.29 Mxy 3.00E+20 Mxz 8.80E+21 Myy -1.06E+22 Myz 2.80E+21 Mzz -2.19E+22 -------------- : ---------------------- :---: ----------------- -------- ::. ..:: ------------------ T --------- :--------: -------------------- ----------- :: . . . : ------------------------------------ : . . . : -------------------------------------- :------------:: ---------------------------------------- :: . . . : ---------------------------------------- : . . . : ------------------------------------------ :---------------: ------------------------------------------ : . . . : ------------------------------------------ :===============: ------------------------------------------ : . . . : ---------------- --------------------- : . . . : ---------------- P --------------------- :---------------: --------------- -------------------- : . . . : ------------------------------------ :: . . . : ---------------------------------- :------------:: ------------------------------ : . . . : ---------------------------- :: . . # : ---------------------- :--------: -------------- ::. ..:: :---: : |
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 230 10 75 4.00 0.7758 WVFGRD96 2.0 230 15 75 3.89 0.7161 WVFGRD96 3.0 230 15 75 3.83 0.6461 WVFGRD96 4.0 220 15 65 3.78 0.5995 WVFGRD96 5.0 200 15 45 3.75 0.5743 WVFGRD96 6.0 180 10 20 3.73 0.5636 WVFGRD96 7.0 115 45 -95 3.86 0.5925 WVFGRD96 8.0 300 45 -85 3.86 0.6240 WVFGRD96 9.0 110 45 -95 3.86 0.6339 WVFGRD96 10.0 300 45 -85 3.88 0.5978 WVFGRD96 11.0 300 45 -85 3.88 0.5976 WVFGRD96 12.0 220 45 -80 3.85 0.5904 WVFGRD96 13.0 220 45 -80 3.85 0.5810 WVFGRD96 14.0 220 50 -80 3.85 0.5673 WVFGRD96 15.0 220 50 -80 3.85 0.5520 WVFGRD96 16.0 220 50 -80 3.86 0.5347 WVFGRD96 17.0 220 50 -80 3.86 0.5165 WVFGRD96 18.0 220 50 -80 3.86 0.4980 WVFGRD96 19.0 220 50 -80 3.87 0.4775 WVFGRD96 20.0 220 50 -80 3.89 0.4437 WVFGRD96 21.0 220 50 -80 3.89 0.4268 WVFGRD96 22.0 220 50 -80 3.90 0.4091 WVFGRD96 23.0 25 60 -95 3.91 0.3944 WVFGRD96 24.0 215 30 -85 3.91 0.3807 WVFGRD96 25.0 215 30 -85 3.91 0.3666 WVFGRD96 26.0 215 35 -85 3.92 0.3517 WVFGRD96 27.0 215 35 -85 3.92 0.3377 WVFGRD96 28.0 215 35 -85 3.93 0.3229 WVFGRD96 29.0 215 35 -85 3.93 0.3069
The best solution is
WVFGRD96 1.0 230 10 75 4.00 0.7758
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfmtd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search over depth are as follow:
MT Program H(km) STK DIP RAKE Mw Rvar StdErr Fit WtRvar WtStdErr Pclvd Mxx(dyne-cm) Myy Mxy Mxz Myz Mzz WVFMTD961 0.5 108. 80. 91. 3.99 0.941 0.329E-07 0.939 0.970 0.264E-07 49.5 -0.2689927E+22 -0.3208766E+22 0.3197639E+21 0.1049965E+23 0.3545648E+22 0.5898693E+22 WVFMTD961 1.0 103. 80. 91. 4.04 0.932 0.353E-07 0.930 0.966 0.282E-07 48.0 -0.2862020E+22 -0.3640687E+22 0.4384678E+21 0.1274480E+23 0.3170210E+22 0.6502706E+22 WVFMTD961 2.0 104. 73. 93. 3.95 0.796 0.615E-07 0.784 0.892 0.497E-07 74.9 -0.3560945E+22 -0.4278541E+22 0.5913409E+21 0.7735225E+22 0.2404829E+22 0.7839486E+22 WVFMTD961 3.0 100. 73. 98. 3.89 0.637 0.822E-07 0.622 0.798 0.660E-07 78.5 -0.2765782E+22 -0.3398703E+22 0.1026795E+22 0.6217390E+22 0.2236413E+22 0.6164484E+22 WVFMTD961 4.0 299. 60. -97. 3.82 0.360 0.109E-06 0.360 0.600 0.855E-07 49.0 0.3649521E+22 0.2972923E+22 0.1541735E+22 0.3276802E+22 0.1024544E+22 -0.6622444E+22 WVFMTD961 5.0 302. 53. -93. 3.89 0.556 0.905E-07 0.548 0.746 0.718E-07 74.8 0.5026590E+22 0.4393268E+22 0.1059662E+22 0.2050770E+22 0.6674361E+21 -0.9419858E+22 WVFMTD961 6.0 300. 52. -93. 3.89 0.679 0.769E-07 0.669 0.825 0.615E-07 79.9 0.5128597E+22 0.4421867E+22 0.8200806E+21 0.1759489E+22 0.5107116E+21 -0.9550464E+22 WVFMTD961 7.0 298. 51. -92. 3.88 0.735 0.698E-07 0.724 0.858 0.561E-07 82.5 0.4976696E+22 0.4295358E+22 0.6567260E+21 0.1656588E+22 0.4730266E+21 -0.9272054E+22 WVFMTD961 8.0 297. 51. -91. 3.87 0.758 0.667E-07 0.748 0.871 0.536E-07 84.7 0.4910138E+22 0.4219238E+22 0.5348184E+21 0.1427456E+22 0.4852177E+21 -0.9129376E+22 WVFMTD961 9.0 295. 51. -91. 3.87 0.762 0.662E-07 0.752 0.873 0.532E-07 85.7 0.4872791E+22 0.4186397E+22 0.4752878E+21 0.1370700E+22 0.4624821E+21 -0.9059189E+22 WVFMTD961 10.0 296. 51. -91. 3.89 0.741 0.691E-07 0.731 0.861 0.554E-07 87.4 0.5231072E+22 0.4604836E+22 0.4514328E+21 0.1513891E+22 0.5082063E+21 -0.9835908E+22
The best solution is
WVFMTD961 0.5 108. 80. 91. 3.99 0.941 0.329E-07 0.939 0.970 0.264E-07 49.5 -0.2689927E+22 -0.3208766E+22 0.3197639E+21 0.1049965E+23 0.3545648E+22 0.5898693E+22
The complete moment tensor decomposition using the program mtdinfo is given in the text file MTDinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.
The P-wave first motion mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfmt96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search over depth are as follow:
MT Program H(km) STK DIP RAKE Mw Rvar StdErr Fit WtRvar WtStdErr Pclvd Mxx(dyne-cm) Myy Mxy Mxz Myz Mzz WVFMT961 0.5 288. 78. -90. 4.12 0.999 0.394E-08 0.999 1.000 0.319E-08 41.3 -0.8901112E+22 -0.9355692E+22 0.2663975E+21 0.9891748E+22 0.3189465E+22 -0.1799683E+23 WVFMT961 1.0 288. 74. -91. 4.15 1.000 0.186E-12 1.000 1.000 0.154E-12 54.5 -0.1010000E+23 -0.1060000E+23 0.3000003E+21 0.8799998E+22 0.2799999E+22 -0.2190001E+23 WVFMT961 2.0 290. 65. -91. 4.08 0.988 0.149E-07 0.987 0.994 0.120E-07 69.1 -0.8461649E+22 -0.9116087E+22 0.3813456E+21 0.4118208E+22 0.1345163E+22 -0.1879297E+23 WVFMT961 3.0 290. 61. -91. 4.05 0.969 0.238E-07 0.968 0.984 0.192E-07 71.6 -0.7424057E+22 -0.8251078E+22 0.4427004E+21 0.2983727E+22 0.9603591E+21 -0.1750320E+23 WVFMT961 4.0 291. 59. -92. 4.03 0.946 0.315E-07 0.943 0.973 0.254E-07 73.4 -0.6627734E+22 -0.7431309E+22 0.4709593E+21 0.2479265E+22 0.7898071E+21 -0.1654932E+23 WVFMT961 5.0 291. 57. -91. 4.01 0.921 0.382E-07 0.917 0.960 0.307E-07 76.2 -0.5917554E+22 -0.6679671E+22 0.4129757E+21 0.2198877E+22 0.6908255E+21 -0.1574917E+23 WVFMT961 6.0 289. 56. -91. 3.99 0.895 0.440E-07 0.891 0.946 0.353E-07 78.3 -0.5224996E+22 -0.6002134E+22 0.3365751E+21 0.2019443E+22 0.6268842E+21 -0.1505737E+23 WVFMT961 7.0 289. 56. -90. 3.97 0.869 0.491E-07 0.864 0.932 0.393E-07 80.3 -0.4560706E+22 -0.5290894E+22 0.3030265E+21 0.1894788E+22 0.5838216E+21 -0.1444749E+23 WVFMT961 8.0 288. 55. -90. 3.96 0.844 0.536E-07 0.839 0.919 0.429E-07 82.0 -0.3917417E+22 -0.4611368E+22 0.2684247E+21 0.1803168E+22 0.5539181E+21 -0.1392609E+23 WVFMT961 9.0 288. 55. -90. 3.94 0.818 0.578E-07 0.813 0.905 0.461E-07 83.8 -0.3341498E+22 -0.3995231E+22 0.2350802E+21 0.1735330E+22 0.5319618E+21 -0.1352296E+23 WVFMT961 10.0 289. 54. -90. 3.98 0.791 0.620E-07 0.786 0.889 0.494E-07 86.6 -0.3527460E+22 -0.4097743E+22 0.2306952E+21 0.1865243E+22 0.6609777E+21 -0.1515978E+23
The best solution is
WVFMT961 1.0 288. 74. -91. 4.15 1.000 0.186E-12 1.000 1.000 0.154E-12 54.5 -0.1010000E+23 -0.1060000E+23 0.3000003E+21 0.8799998E+22 0.2799999E+22 -0.2190001E+23
The complete moment tensor decomposition using the program mtinfo is given in the text file MTinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.
The P-wave first motion mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfmtgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search over depth are as follow:
MT Program H(km) Mxx(dyne-cm) Myy Mxy Mxz Myz Mzz Mw Fit WVFMTGRD96 1.0 -0.104E+23 -0.112E+23 0.327E+21 0.747E+22 0.272E+22 -0.236E+23 4.1542 0.9958 WVFMTGRD96 2.0 -0.863E+22 -0.935E+22 0.207E+21 0.368E+22 0.985E+21 -0.176E+23 4.0666 0.9832 WVFMTGRD96 3.0 -0.774E+22 -0.858E+22 0.533E+21 0.274E+22 0.647E+21 -0.171E+23 4.0480 0.9650 WVFMTGRD96 4.0 -0.729E+22 -0.808E+22 0.331E+21 0.245E+22 0.890E+21 -0.162E+23 4.0317 0.9410 WVFMTGRD96 5.0 -0.496E+22 -0.619E+22 0.731E+21 0.949E+21 0.443E+21 -0.165E+23 4.0095 0.9161 WVFMTGRD96 6.0 -0.470E+22 -0.586E+22 0.692E+21 0.899E+21 0.419E+21 -0.156E+23 3.9936 0.8915 WVFMTGRD96 7.0 -0.457E+22 -0.520E+22 0.542E+21 0.822E+21 0.475E+21 -0.150E+23 3.9801 0.8655 WVFMTGRD96 8.0 -0.303E+22 -0.388E+22 0.504E+21 0.905E+21 0.422E+21 -0.141E+23 3.9513 0.8407 WVFMTGRD96 9.0 -0.259E+22 -0.360E+22 0.422E+21 0.937E+21 0.341E+21 -0.137E+23 3.9411 0.8151 WVFMTGRD96 10.0 -0.292E+22 -0.405E+22 0.475E+21 0.105E+22 0.384E+21 -0.155E+23 3.9752 0.7865
The best solution is
WVFMTGRD96 1.0 -0.104E+23 -0.112E+23 0.327E+21 0.747E+22 0.272E+22 -0.236E+23 4.1542 0.9958
The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.
The P-wave first motion mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfmtgrd96 -DC was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search over depth are as follow:
MT Program H(km) Mxx(dyne-cm) Myy Mxy Mxz Myz Mzz Mw Fit WVFMTGRD96 1.0 -0.301E+22 -0.116E+22 0.195E+22 0.108E+23 -0.490E+22 0.417E+22 4.0007 0.7758 WVFMTGRD96 2.0 -0.298E+22 -0.114E+22 0.193E+22 0.685E+22 -0.296E+22 0.412E+22 3.8876 0.7161 WVFMTGRD96 3.0 -0.243E+22 -0.927E+21 0.157E+22 0.556E+22 -0.240E+22 0.335E+22 3.8277 0.6461 WVFMTGRD96 4.0 -0.208E+22 -0.927E+21 0.148E+22 0.478E+22 -0.208E+22 0.301E+22 3.7873 0.5987 WVFMTGRD96 5.0 -0.778E+21 -0.102E+22 0.128E+22 0.455E+22 -0.194E+22 0.180E+22 3.7516 0.5744 WVFMTGRD96 6.0 0.000E+00 -0.584E+21 0.815E+21 0.462E+22 -0.161E+22 0.584E+21 3.7324 0.5636 WVFMTGRD96 7.0 0.602E+22 0.176E+22 0.329E+22 -0.203E+21 0.436E+21 -0.777E+22 3.8615 0.5925 WVFMTGRD96 8.0 0.653E+22 0.121E+22 0.286E+22 -0.164E+21 0.450E+21 -0.775E+22 3.8606 0.6238 WVFMTGRD96 9.0 0.659E+22 0.122E+22 0.288E+22 -0.165E+21 0.454E+21 -0.781E+22 3.8629 0.6339 WVFMTGRD96 10.0 0.696E+22 0.129E+22 0.305E+22 -0.175E+21 0.480E+21 -0.826E+22 3.8790 0.5980
The best solution is
WVFMTGRD96 1.0 -0.301E+22 -0.116E+22 0.195E+22 0.108E+23 -0.490E+22 0.417E+22 4.0007 0.7758
The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDDCinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.
The P-wave first motion mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfmtgrd96 -DEV was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search over depth are as follow:
MT Program H(km) Mxx(dyne-cm) Myy Mxy Mxz Myz Mzz Mw Fit WVFMTGRD96 1.0 -0.271E+22 -0.378E+22 0.482E+21 0.127E+23 0.139E+22 0.649E+22 4.0298 0.9366 WVFMTGRD96 2.0 -0.385E+22 -0.434E+22 0.380E+21 0.730E+22 -0.196E+22 0.819E+22 3.9439 0.8458 WVFMTGRD96 3.0 -0.323E+22 -0.365E+22 0.319E+21 0.613E+22 -0.165E+22 0.688E+22 3.8935 0.7199 WVFMTGRD96 4.0 -0.252E+22 -0.288E+22 0.529E+21 0.503E+22 -0.166E+22 0.540E+22 3.8337 0.6308 WVFMTGRD96 5.0 -0.118E+22 -0.185E+22 0.620E+21 0.471E+22 -0.165E+22 0.303E+22 3.7697 0.5853 WVFMTGRD96 6.0 0.540E+22 0.454E+22 0.842E+21 0.750E+21 0.145E+22 -0.994E+22 3.8967 0.6722 WVFMTGRD96 7.0 0.546E+22 0.438E+22 0.831E+21 -0.381E+21 0.764E+21 -0.984E+22 3.8904 0.7313 WVFMTGRD96 8.0 0.531E+22 0.437E+22 0.817E+21 0.602E+14 -0.308E+15 -0.968E+22 3.8842 0.7546 WVFMTGRD96 9.0 0.538E+22 0.408E+22 0.697E+21 -0.301E+21 0.764E+21 -0.947E+22 3.8792 0.7575 WVFMTGRD96 10.0 0.589E+22 0.438E+22 0.705E+21 -0.355E+21 0.817E+21 -0.103E+23 3.9026 0.7346
The best solution is
WVFMTGRD96 1.0 -0.271E+22 -0.378E+22 0.482E+21 0.127E+23 0.139E+22 0.649E+22 4.0298 0.9366
The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDDEVinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.
The P-wave first motion mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00