Location

Location ANSS

2021/08/13 11:57:35 35.877 -84.898 0.0 3.0 Tennessee

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2021/08/13 11:57:35:0  35.88  -84.90   0.0 3.0 Tennessee
 
 Stations used:
   CO.CASEE CO.HODGE CO.PAULI ET.CPCT IM.TKL IU.WCI IU.WVT 
   N4.R49A N4.R50A N4.S51A N4.T47A N4.T50A N4.U49A N4.V48A 
   N4.V53A N4.V55A N4.W50A N4.W52A N4.X48A N4.X51A N4.Y52A 
   NM.BLO NM.USIN US.GOGA US.LRAL US.TZTN 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.22e+22 dyne-cm
  Mw = 3.99 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      289    65   -95
   NP2      120    25   -80
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.22e+22     20      22
    N   0.00e+00      4     291
    P  -1.22e+22     69     190

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     7.65e+21
       Mxy     3.53e+21
       Mxz     7.62e+21
       Myy     1.52e+21
       Myz     2.19e+21
       Mzz    -9.17e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ################   ###              
              ################### T ######           
             ####################   #######          
           ##################################        
          ####################################       
         -#####################################      
        #-------------------####################     
        #------------------------###############     
       ##----------------------------############    
       ###------------------------------#########    
       ###---------------------------------######    
       ####---------------   ----------------####    
        ###--------------- P -----------------##     
        #####-------------   ------------------#     
         #####---------------------------------      
          ######------------------------------       
           #######--------------------------#        
             #######----------------------#          
              ###########------------#####           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -9.17e+21   7.62e+21  -2.19e+21 
  7.62e+21   7.65e+21  -3.53e+21 
 -2.19e+21  -3.53e+21   1.52e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210813115735/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 120
      DIP = 25
     RAKE = -80
       MW = 3.99
       HS = 8.0

The NDK file is 20210813115735.ndk The waveform inversion is preferred.

Sections

Moment tensor comparison
Local magnitudes
Spatial context
Double couple grid search (wvfgrd96)
Deviatoric moment tensor linear inversion (wvfmtd96)
Full moment tensor linear inversion (wvfmt96)
Grid search for full moment tensor (wvfmtgrd96)
Grid search for double couple (wvfmtgrd96 -DC)
Grid search for deviatoric moment tensor (wvfmtgrd96 -DEV)

Moment Tensor Comparison

The following compares this source inversion to others
SLU
TRUE
MTGRDDC
MTGRDDEV
MTGRD
WVFMTD
WVFMT
 USGS/SLU Moment Tensor Solution
 ENS  2021/08/13 11:57:35:0  35.88  -84.90   0.0 3.0 Tennessee
 
 Stations used:
   CO.CASEE CO.HODGE CO.PAULI ET.CPCT IM.TKL IU.WCI IU.WVT 
   N4.R49A N4.R50A N4.S51A N4.T47A N4.T50A N4.U49A N4.V48A 
   N4.V53A N4.V55A N4.W50A N4.W52A N4.X48A N4.X51A N4.Y52A 
   NM.BLO NM.USIN US.GOGA US.LRAL US.TZTN 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.22e+22 dyne-cm
  Mw = 3.99 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      289    65   -95
   NP2      120    25   -80
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.22e+22     20      22
    N   0.00e+00      4     291
    P  -1.22e+22     69     190

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     7.65e+21
       Mxy     3.53e+21
       Mxz     7.62e+21
       Myy     1.52e+21
       Myz     2.19e+21
       Mzz    -9.17e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ################   ###              
              ################### T ######           
             ####################   #######          
           ##################################        
          ####################################       
         -#####################################      
        #-------------------####################     
        #------------------------###############     
       ##----------------------------############    
       ###------------------------------#########    
       ###---------------------------------######    
       ####---------------   ----------------####    
        ###--------------- P -----------------##     
        #####-------------   ------------------#     
         #####---------------------------------      
          ######------------------------------       
           #######--------------------------#        
             #######----------------------#          
              ###########------------#####           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -9.17e+21   7.62e+21  -2.19e+21 
  7.62e+21   7.65e+21  -3.53e+21 
 -2.19e+21  -3.53e+21   1.52e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210813115735/index.html
	
 Moment (dyne-cm)   2.08E+22   dyne-cm
 Magnitude (Mw)    4.15
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T  -4.94E+21     29.     19.
    N  -1.07E+22      1.    288.
    P  -2.69E+22     61.    197.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx   -1.01E+22
       Mxy    3.00E+20
       Mxz    8.80E+21
       Myy   -1.06E+22
       Myz    2.80E+21
       Mzz   -2.19E+22
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -2.19E+22  8.80E+21 -2.80E+21
  T  8.80E+21 -1.01E+22 -3.00E+20
  F -2.80E+21 -3.00E+20 -1.06E+22
 Moment (dyne-cm)   2.08E+22   dyne-cm
 Magnitude (Mw)    4.15
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T  -4.94E+21     29.     19.
    N  -1.07E+22      1.    288.
    P  -2.69E+22     61.    197.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx   -1.01E+22                                beta:  146.76
       Mxy    3.00E+20                                gamma:  15.29
       Mxy    3.00E+20
       Mxz    8.80E+21
       Myy   -1.06E+22
       Myz    2.80E+21
       Mzz   -2.19E+22
 
 
 
                    --------------                         :
                ----------------------                   :---:
             -----------------   --------              ::. ..::
            ------------------ T ---------            :--------:
          --------------------   -----------         :: .  . .  :
         ------------------------------------        :  .  .  .  :
        --------------------------------------      :------------::
       ----------------------------------------    ::  .   .  .   :
       ----------------------------------------    :   .   .   .  :
      ------------------------------------------   :---------------:
      ------------------------------------------   :   .   .   .   :
      ------------------------------------------   :===============:
      ------------------------------------------   :   .   .   .   :
       ----------------   ---------------------    :   .   .   .   :
       ---------------- P ---------------------    :---------------:
        ---------------   --------------------     :   .   .   .  :
         ------------------------------------      ::  .   .  .   :
          ----------------------------------        :------------::
            ------------------------------           :  .  .  .  :
             ----------------------------            :: .  . #  :
                ----------------------                :--------:
                    --------------                     ::. ..::
                                                         :---:
                                                           :
 
 
        
 Moment (dyne-cm)   1.23E+22   dyne-cm
 Magnitude (Mw)    3.99
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.23E+22     20.     22.
    N  -2.60E+18      4.    291.
    P  -1.23E+22     69.    190.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx    7.77E+21
       Mxy    3.58E+21
       Mxz    7.74E+21
       Myy    1.54E+21
       Myz    2.22E+21
       Mzz   -9.31E+21
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -9.31E+21  7.74E+21 -2.22E+21
  T  7.74E+21  7.77E+21 -3.58E+21
  F -2.22E+21 -3.58E+21  1.54E+21
 Moment (dyne-cm)   1.23E+22   dyne-cm
 Magnitude (Mw)    3.99
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.23E+22     20.     22.
    N  -2.60E+18      4.    291.
    P  -1.23E+22     69.    190.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx    7.77E+21                                beta:   90.00
       Mxy    3.58E+21                                gamma:  -0.01
       Mxy    3.58E+21
       Mxz    7.74E+21
       Myy    1.54E+21
       Myz    2.22E+21
       Mzz   -9.31E+21
 
 
 
                    ##############                         :
                ################   ###                   :---:
             ################### T ######              ::. ..::
            ####################   #######            :--------:
          ##################################         :: .  . .  :
         ####################################        :  .  .  .  :
        -#####################################      :------------::
       #-------------------####################    ::  .   .  .   :
       #------------------------###############    :   .   .   .  :
      ##----------------------------############   :---------------:
      ###------------------------------#########   :   .   .   .   :
      ###---------------------------------######   :=======#=======:
      ####---------------   ----------------####   :   .   .   .   :
       ###--------------- P -----------------##    :   .   .   .   :
       #####-------------   -------------------    :---------------:
        #####---------------------------------     :   .   .   .  :
         ######------------------------------      ::  .   .  .   :
          #######--------------------------#        :------------::
            #######----------------------#           :  .  .  .  :
             ###########------------#####            :: .  . .  :
                ######################                :--------:
                    ##############                     ::. ..::
                                                         :---:
                                                           :
 
 
        
 Moment (dyne-cm)   1.38E+22   dyne-cm
 Magnitude (Mw)    4.03
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.99E+21     15.     33.
    N   5.73E+21      5.    301.
    P  -1.58E+22     74.    194.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx    6.97E+21
       Mxy    1.42E+21
       Mxz    6.48E+21
       Myy    6.79E+21
       Myz    1.95E+21
       Mzz   -1.38E+22
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -1.38E+22  6.48E+21 -1.95E+21
  T  6.48E+21  6.97E+21 -1.42E+21
  F -1.95E+21 -1.42E+21  6.79E+21
 Moment (dyne-cm)   1.38E+22   dyne-cm
 Magnitude (Mw)    4.03
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.99E+21     15.     33.
    N   5.73E+21      5.    301.
    P  -1.58E+22     74.    194.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx    6.97E+21                                beta:   90.07
       Mxy    1.42E+21                                gamma:  21.11
       Mxy    1.42E+21
       Mxz    6.48E+21
       Myy    6.79E+21
       Myz    1.95E+21
       Mzz   -1.38E+22
 
 
 
                    ##############                         :
                ###################                      :---:
             ###################### T ###              ::. ..::
            #######################   ####            :--------:
          ##################################         :: .  . .  :
         ####################################        :  .  .  .  :
        ##########------------################      :------------::
       #########------------------#############    ::  .   .  .   :
       #######----------------------###########    :   .   .   .  :
      #######-------------------------##########   :---------------:
      ######---------------------------#########   :   .   .   .   :
      ######----------------------------########   :===============:
      ######------------   -------------########   :   .   .   . # :
       #####------------ P -------------#######    :   .   .   .   :
       ######-----------   -------------#######    :---------------:
        ######--------------------------######     :   .   .   .  :
         ######------------------------######      ::  .   .  .   :
          #######---------------------######        :------------::
            #######-----------------######           :  .  .  .  :
             #########-----------########            :: .  . .  :
                ######################                :--------:
                    ##############                     ::. ..::
                                                         :---:
                                                           :
 
 
        
 Moment (dyne-cm)   2.08E+22   dyne-cm
 Magnitude (Mw)    4.14
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T  -4.13E+21     25.     21.
    N  -9.44E+21      2.    290.
    P  -2.75E+22     65.    197.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx   -8.62E+21
       Mxy    5.72E+20
       Mxz    8.54E+21
       Myy   -9.14E+21
       Myz    2.72E+21
       Mzz   -2.33E+22
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -2.33E+22  8.54E+21 -2.72E+21
  T  8.54E+21 -8.62E+21 -5.72E+20
  F -2.72E+21 -5.72E+20 -9.14E+21
 Moment (dyne-cm)   2.08E+22   dyne-cm
 Magnitude (Mw)    4.14
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T  -4.13E+21     25.     21.
    N  -9.44E+21      2.    290.
    P  -2.75E+22     65.    197.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx   -8.62E+21                                beta:  143.84
       Mxy    5.72E+20                                gamma:  17.48
       Mxy    5.72E+20
       Mxz    8.54E+21
       Myy   -9.14E+21
       Myz    2.72E+21
       Mzz   -2.33E+22
 
 
 
                    --------------                         :
                ----------------------                   :---:
             ------------------   -------              ::. ..::
            ------------------- T --------            :--------:
          ---------------------   ----------         :: .  . .  :
         ------------------------------------        :  .  .  .  :
        --------------------------------------      :------------::
       ----------------------------------------    ::  .   .  .   :
       ----------------------------------------    :   .   .   .  :
      ------------------------------------------   :---------------:
      ------------------------------------------   :   .   .   .   :
      ------------------------------------------   :===============:
      ------------------------------------------   :   .   .   .   :
       -----------------   --------------------    :   .   .   .   :
       ----------------- P --------------------    :---------------:
        ----------------   -------------------     :   .   .   .  :
         ------------------------------------      ::  .   .  .   :
          ----------------------------------        :------------::
            ------------------------------           :  .  .  .  :
             ----------------------------            :: .  . .# :
                ----------------------                :--------:
                    --------------                     ::. ..::
                                                         :---:
                                                           :
 
 
        
 Moment (dyne-cm)   1.34E+22   dyne-cm
 Magnitude (Mw)    4.02
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.45E+21     19.     24.
    N   5.91E+21      2.    293.
    P  -1.54E+22     71.    196.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx    6.50E+21
       Mxy    5.74E+20
       Mxz    7.24E+21
       Myy    6.26E+21
       Myz    2.28E+21
       Mzz   -1.28E+22
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -1.28E+22  7.24E+21 -2.28E+21
  T  7.24E+21  6.50E+21 -5.74E+20
  F -2.28E+21 -5.74E+20  6.26E+21
 Moment (dyne-cm)   1.34E+22   dyne-cm
 Magnitude (Mw)    4.02
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   9.45E+21     19.     24.
    N   5.91E+21      2.    293.
    P  -1.54E+22     71.    196.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx    6.50E+21                                beta:   90.00
       Mxy    5.74E+20                                gamma:  22.43
       Mxy    5.74E+20
       Mxz    7.24E+21
       Myy    6.26E+21
       Myz    2.28E+21
       Mzz   -1.28E+22
 
 
 
                    ##############                         :
                ################   ###                   :---:
             ################### T ######              ::. ..::
            ####################   #######            :--------:
          ##################################         :: .  . .  :
         ####################################        :  .  .  .  :
        ############--------##################      :------------::
       #########-----------------##############    ::  .   .  .   :
       #######---------------------############    :   .   .   .  :
      #######------------------------###########   :---------------:
      ######--------------------------##########   :   .   .   .   :
      ######---------------------------#########   :===============:
      ######------------   -------------########   :   .   .   . # :
       #####------------ P -------------#######    :   .   .   .   :
       #####------------   -------------#######    :---------------:
        #####---------------------------######     :   .   .   .  :
         #####-------------------------######      ::  .   .  .   :
          #####-----------------------######        :------------::
            #####-------------------######           :  .  .  .  :
             ########------------########            :: .  . .  :
                ######################                :--------:
                    ##############                     ::. ..::
                                                         :---:
                                                           :
 
 
        
 Moment (dyne-cm)   2.07E+22   dyne-cm
 Magnitude (Mw)    4.14
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T  -4.71E+21     28.     20.
    N  -1.03E+22      1.    289.
    P  -2.71E+22     62.    197.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx   -9.76E+21
       Mxy    3.56E+20
       Mxz    8.79E+21
       Myy   -1.01E+22
       Myz    2.80E+21
       Mzz   -2.22E+22
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -2.22E+22  8.79E+21 -2.80E+21
  T  8.79E+21 -9.76E+21 -3.56E+20
  F -2.80E+21 -3.56E+20 -1.01E+22
 Moment (dyne-cm)   2.07E+22   dyne-cm
 Magnitude (Mw)    4.14
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T  -4.71E+21     28.     20.
    N  -1.03E+22      1.    289.
    P  -2.71E+22     62.    197.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx   -9.76E+21                                beta:  145.88
       Mxy    3.56E+20                                gamma:  16.14
       Mxy    3.56E+20
       Mxz    8.79E+21
       Myy   -1.01E+22
       Myz    2.80E+21
       Mzz   -2.22E+22
 
 
 
                    --------------                         :
                ----------------------                   :---:
             ------------------   -------              ::. ..::
            ------------------- T --------            :--------:
          ---------------------   ----------         :: .  . .  :
         ------------------------------------        :  .  .  .  :
        --------------------------------------      :------------::
       ----------------------------------------    ::  .   .  .   :
       ----------------------------------------    :   .   .   .  :
      ------------------------------------------   :---------------:
      ------------------------------------------   :   .   .   .   :
      ------------------------------------------   :===============:
      ------------------------------------------   :   .   .   .   :
       ----------------   ---------------------    :   .   .   .   :
       ---------------- P ---------------------    :---------------:
        ---------------   --------------------     :   .   .   .  :
         ------------------------------------      ::  .   .  .   :
          ----------------------------------        :------------::
            ------------------------------           :  .  .  .  :
             ----------------------------            :: .  . .# :
                ----------------------                :--------:
                    --------------                     ::. ..::
                                                         :---:
                                                           :
 
 
        

Local Magnitudes

(Return to selection section)

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).
(Return to selection section)

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    85    85    90   4.24 0.6834
WVFGRD96    2.0   260    10    80   4.08 0.7290
WVFGRD96    3.0   255    10    75   4.02 0.7408
WVFGRD96    4.0   250    10    70   3.98 0.7354
WVFGRD96    5.0   230     5    50   3.95 0.7305
WVFGRD96    6.0   135     5   -45   3.94 0.7294
WVFGRD96    7.0   120    20   -75   3.98 0.7397
WVFGRD96    8.0   120    25   -80   3.99 0.7442
WVFGRD96    9.0   120    25   -80   3.99 0.7428
WVFGRD96   10.0   120    25   -80   4.02 0.7176
WVFGRD96   11.0   120    25   -80   4.02 0.7078
WVFGRD96   12.0   120    25   -80   4.02 0.6924
WVFGRD96   13.0   120    25   -80   4.03 0.6729
WVFGRD96   14.0   110    25   -85   4.03 0.6506
WVFGRD96   15.0   115    25   -80   4.03 0.6264
WVFGRD96   16.0   115    25   -80   4.03 0.6016
WVFGRD96   17.0   115    25   -80   4.04 0.5767
WVFGRD96   18.0   115    25   -80   4.04 0.5513
WVFGRD96   19.0   115    25   -80   4.04 0.5256
WVFGRD96   20.0   120    25   -80   4.08 0.4915
WVFGRD96   21.0   120    25   -80   4.08 0.4678
WVFGRD96   22.0   120    25   -80   4.08 0.4450
WVFGRD96   23.0   125    30   -80   4.09 0.4224
WVFGRD96   24.0   125    30   -80   4.09 0.4011
WVFGRD96   25.0   125    30   -80   4.10 0.3804
WVFGRD96   26.0   125    30   -80   4.10 0.3602
WVFGRD96   27.0   125    30   -80   4.10 0.3402
WVFGRD96   28.0   285    20   -95   4.11 0.3216
WVFGRD96   29.0   285    20   -95   4.12 0.3129

The best solution is

WVFGRD96    8.0   120    25   -80   3.99 0.7442

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

(Return to selection section)


Deviatoric Moment Tensor Inversion using wvfmtd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmtd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) STK    DIP  RAKE    Mw      Rvar  StdErr        Fit      WtRvar WtStdErr  Pclvd    Mxx(dyne-cm)   Myy            Mxy            Mxz             Myz           Mzz
WVFMTD961    0.5  107.   84.   90.   4.24     0.806 0.103E-06     0.813     0.898 0.757E-07  26.4 -0.4080503E+22 -0.3989086E+22  0.9084994E+20  0.2675239E+23  0.8220483E+22  0.8069588E+22
WVFMTD961    1.0  107.   82.   90.   4.23     0.793 0.107E-06     0.807     0.890 0.769E-07  32.3 -0.4778298E+22 -0.4726434E+22  0.9693365E+20  0.2517399E+23  0.7544495E+22  0.9504732E+22
WVFMTD961    2.0  107.   78.   91.   4.11     0.793 0.107E-06     0.798     0.890 0.787E-07  52.7 -0.4580255E+22 -0.5196362E+22  0.5883630E+21  0.1583757E+23  0.4939792E+22  0.9776616E+22
WVFMTD961    3.0  108.   79.   93.   4.06     0.764 0.115E-06     0.772     0.874 0.837E-07  50.6 -0.3925290E+22 -0.3863236E+22  0.7018353E+21  0.1289406E+23  0.4615572E+22  0.7788526E+22
WVFMTD961    4.0  290.   80.  -95.   3.98     0.632 0.143E-06     0.647     0.795 0.104E-06  28.5  0.2503245E+22  0.2557045E+22  0.1179898E+22  0.1049855E+23  0.3370075E+22 -0.5060290E+22
WVFMTD961    5.0  293.   67.  -94.   4.02     0.692 0.130E-06     0.705     0.832 0.951E-07  67.9  0.5960417E+22  0.5911276E+22  0.1002476E+22  0.8483797E+22  0.2574537E+22 -0.1187169E+23
WVFMTD961    6.0  294.   64.  -94.   4.03     0.771 0.112E-06     0.783     0.878 0.815E-07  74.7  0.6678124E+22  0.6502763E+22  0.8207327E+21  0.7629317E+22  0.2439491E+22 -0.1318089E+23
WVFMTD961    7.0  293.   64.  -93.   4.02     0.809 0.103E-06     0.821     0.900 0.740E-07  75.8  0.6585239E+22  0.6363875E+22  0.7016567E+21  0.7401517E+22  0.2345220E+22 -0.1294911E+23
WVFMTD961    8.0  292.   64.  -93.   4.02     0.822 0.990E-07     0.834     0.907 0.714E-07  77.0  0.6498382E+22  0.6259495E+22  0.5737815E+21  0.7243184E+22  0.2282840E+22 -0.1275788E+23
WVFMTD961    9.0  292.   64.  -92.   4.02     0.821 0.995E-07     0.832     0.906 0.718E-07  77.6  0.6500787E+22  0.6230074E+22  0.5267410E+21  0.7134153E+22  0.2241335E+22 -0.1273086E+23
WVFMTD961   10.0  291.   64.  -92.   4.05     0.804 0.104E-06     0.815     0.897 0.754E-07  78.1  0.7034699E+22  0.6885882E+22  0.5013210E+21  0.8033250E+22  0.2519438E+22 -0.1392058E+23

The best solution is

WVFMTD961    8.0  292.   64.  -93.   4.02     0.822 0.990E-07     0.834     0.907 0.714E-07  77.0  0.6498382E+22  0.6259495E+22  0.5737815E+21  0.7243184E+22  0.2282840E+22 -0.1275788E+23

The complete moment tensor decomposition using the program mtdinfo is given in the text file MTDinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

(Return to selection section)


Full Moment Tensor Inversion using wvfmt96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmt96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) STK    DIP  RAKE    Mw      Rvar  StdErr        Fit      WtRvar WtStdErr  Pclvd    Mxx(dyne-cm)   Myy            Mxy            Mxz             Myz           Mzz
WVFMT961    0.5  287.   89.  -90.   4.26     0.818 0.100E-06     0.827     0.905 0.729E-07   5.7 -0.9113324E+22 -0.9015971E+22  0.8319997E+20  0.2665206E+23  0.8171314E+22 -0.1151258E+23
WVFMT961    1.0  287.   86.  -90.   4.27     0.832 0.963E-07     0.848     0.912 0.681E-07  19.4 -0.1181179E+23 -0.1176794E+23  0.9049147E+20  0.2483781E+23  0.7694956E+22 -0.1995383E+23
WVFMT961    2.0  288.   79.  -91.   4.18     0.899 0.748E-07     0.910     0.948 0.526E-07  40.4 -0.1166335E+23 -0.1184661E+23  0.2264525E+21  0.1279435E+23  0.4091709E+22 -0.2211512E+23
WVFMT961    3.0  288.   75.  -91.   4.16     0.921 0.659E-07     0.934     0.960 0.450E-07  51.4 -0.1084575E+23 -0.1111740E+23  0.3051012E+21  0.1000104E+23  0.3192342E+22 -0.2252330E+23
WVFMT961    4.0  289.   73.  -91.   4.14     0.927 0.632E-07     0.941     0.963 0.426E-07  57.3 -0.9762453E+22 -0.1010708E+23  0.3561588E+21  0.8792246E+22  0.2797030E+22 -0.2219517E+23
WVFMT961    5.0  289.   71.  -91.   4.13     0.923 0.650E-07     0.937     0.961 0.440E-07  61.0 -0.8595562E+22 -0.8959870E+22  0.3739920E+21  0.8153582E+22  0.2581135E+22 -0.2153475E+23
WVFMT961    6.0  289.   70.  -91.   4.11     0.912 0.697E-07     0.925     0.955 0.479E-07  63.6 -0.7398382E+22 -0.7764984E+22  0.3890190E+21  0.7779517E+22  0.2450384E+22 -0.2074907E+23
WVFMT961    7.0  289.   69.  -91.   4.09     0.896 0.758E-07     0.909     0.947 0.529E-07  65.6 -0.6158004E+22 -0.6535874E+22  0.3939135E+21  0.7534986E+22  0.2373791E+22 -0.1993785E+23
WVFMT961    8.0  289.   68.  -91.   4.08     0.876 0.825E-07     0.889     0.936 0.584E-07  67.6 -0.4932368E+22 -0.5285586E+22  0.3908383E+21  0.7374751E+22  0.2316553E+22 -0.1914648E+23
WVFMT961    9.0  290.   68.  -91.   4.06     0.855 0.894E-07     0.867     0.925 0.638E-07  69.9 -0.3762338E+22 -0.4129900E+22  0.3402411E+21  0.7205364E+22  0.2341851E+22 -0.1854830E+23
WVFMT961   10.0  290.   67.  -91.   4.09     0.832 0.962E-07     0.844     0.912 0.692E-07  72.2 -0.3588663E+22 -0.3821543E+22  0.3313135E+21  0.8117800E+22  0.2632620E+22 -0.2058471E+23

The best solution is

WVFMT961    4.0  289.   73.  -91.   4.14     0.927 0.632E-07     0.941     0.963 0.426E-07  57.3 -0.9762453E+22 -0.1010708E+23  0.3561588E+21  0.8792246E+22  0.2797030E+22 -0.2219517E+23

The complete moment tensor decomposition using the program mtinfo is given in the text file MTinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

(Return to selection section)


Grid Search Full Moment Tensor Inversion using wvfmtgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmtgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) Mxx(dyne-cm)   Myy        Mxy        Mxz        Myz        Mzz       Mw      Fit
WVFMTGRD96    1.0 -0.152E+23 -0.140E+23  0.261E+21  0.186E+23  0.824E+22 -0.293E+23  4.2748  0.8435
WVFMTGRD96    2.0 -0.123E+23 -0.116E+23  0.231E+21  0.124E+23  0.425E+22 -0.215E+23  4.1790  0.9083
WVFMTGRD96    3.0 -0.102E+23 -0.106E+23  0.473E+21  0.103E+23  0.350E+22 -0.224E+23  4.1598  0.9328
WVFMTGRD96    4.0 -0.862E+22 -0.914E+22  0.572E+21  0.854E+22  0.272E+22 -0.233E+23  4.1446  0.9383
WVFMTGRD96    5.0 -0.809E+22 -0.857E+22  0.537E+21  0.802E+22  0.255E+22 -0.218E+23  4.1261  0.9368
WVFMTGRD96    6.0 -0.777E+22 -0.824E+22  0.516E+21  0.770E+22  0.245E+22 -0.210E+23  4.1145  0.9257
WVFMTGRD96    7.0 -0.782E+22 -0.764E+22  0.228E+21  0.741E+22  0.233E+22 -0.206E+23  4.1071  0.9085
WVFMTGRD96    8.0 -0.562E+22 -0.511E+22  0.917E+20  0.762E+22  0.239E+22 -0.188E+23  4.0769  0.8887
WVFMTGRD96    9.0 -0.583E+22 -0.465E+22 -0.199E+21  0.742E+22  0.230E+22 -0.188E+23  4.0739  0.8665
WVFMTGRD96   10.0 -0.566E+22 -0.466E+22 -0.423E+21  0.838E+22  0.305E+22 -0.208E+23  4.1028  0.8428

The best solution is

WVFMTGRD96    4.0 -0.862E+22 -0.914E+22  0.572E+21  0.854E+22  0.272E+22 -0.233E+23  4.1446  0.9383

The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

(Return to selection section)


Grid Search Double Couple Inversion using wvfmtgrd96 -DC

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmtgrd96 -DC was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) Mxx(dyne-cm)   Myy        Mxy        Mxz        Myz        Mzz       Mw      Fit
WVFMTGRD96    1.0 -0.489E+22 -0.374E+20  0.427E+21  0.278E+23 -0.243E+22  0.492E+22  4.2350  0.6834
WVFMTGRD96    2.0 -0.551E+22  0.256E+19  0.479E+21  0.154E+23  0.126E+21  0.551E+22  4.0758  0.7290
WVFMTGRD96    3.0 -0.441E+22  0.455E+19  0.582E+21  0.126E+23  0.150E+21  0.440E+22  4.0164  0.7408
WVFMTGRD96    4.0 -0.379E+22  0.683E+19  0.680E+21  0.111E+23  0.171E+21  0.378E+22  3.9806  0.7354
WVFMTGRD96    5.0 -0.142E+22  0.224E+19  0.596E+21  0.106E+23  0.599E+20  0.142E+22  3.9525  0.7305
WVFMTGRD96    6.0  0.126E+22 -0.240E+19  0.629E+21  0.101E+23 -0.583E+20 -0.126E+22  3.9404  0.7294
WVFMTGRD96    7.0  0.632E+22  0.915E+21  0.262E+22  0.888E+22  0.186E+22 -0.723E+22  3.9775  0.7397
WVFMTGRD96    8.0  0.777E+22  0.154E+22  0.358E+22  0.774E+22  0.222E+22 -0.931E+22  3.9943  0.7442
WVFMTGRD96    9.0  0.777E+22  0.154E+22  0.358E+22  0.774E+22  0.222E+22 -0.931E+22  3.9942  0.7428
WVFMTGRD96   10.0  0.853E+22  0.170E+22  0.393E+22  0.850E+22  0.244E+22 -0.102E+23  4.0215  0.7176

The best solution is

WVFMTGRD96    8.0  0.777E+22  0.154E+22  0.358E+22  0.774E+22  0.222E+22 -0.931E+22  3.9943  0.7442

The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDDCinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

(Return to selection section)


Grid Search Deviatoric Moment Tensor Inversion using wvfmtgrd96 -DEV

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmtgrd96 -DEV was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) Mxx(dyne-cm)   Myy        Mxy        Mxz        Myz        Mzz       Mw      Fit
WVFMTGRD96    1.0 -0.326E+22 -0.414E+22  0.403E+21  0.295E+23  0.529E+22  0.740E+22  4.2581  0.7888
WVFMTGRD96    2.0 -0.352E+22 -0.491E+22  0.626E+21  0.165E+23  0.180E+22  0.843E+22  4.1054  0.8039
WVFMTGRD96    3.0 -0.473E+22 -0.488E+22  0.569E+21  0.127E+23  0.579E+21  0.961E+22  4.0541  0.7816
WVFMTGRD96    4.0 -0.414E+22 -0.427E+22  0.497E+21  0.111E+23  0.507E+21  0.841E+22  4.0153  0.7600
WVFMTGRD96    5.0 -0.228E+22 -0.261E+22  0.625E+21  0.105E+23  0.396E+21  0.489E+22  3.9709  0.7448
WVFMTGRD96    6.0  0.664E+22  0.598E+22  0.900E+21  0.785E+22  0.300E+22 -0.126E+23  4.0270  0.7800
WVFMTGRD96    7.0  0.573E+22  0.671E+22  0.339E+21  0.762E+22  0.296E+22 -0.124E+23  4.0210  0.8168
WVFMTGRD96    8.0  0.697E+22  0.679E+22  0.142E+22  0.648E+22  0.195E+22 -0.138E+23  4.0261  0.8309
WVFMTGRD96    9.0  0.723E+22  0.678E+22  0.720E+21  0.608E+22  0.194E+22 -0.140E+23  4.0252  0.8307
WVFMTGRD96   10.0  0.797E+22  0.747E+22  0.794E+21  0.670E+22  0.214E+22 -0.154E+23  4.0533  0.8129

The best solution is

WVFMTGRD96    8.0  0.697E+22  0.679E+22  0.142E+22  0.648E+22  0.195E+22 -0.138E+23  4.0261  0.8309

The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDDEVinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

(Return to selection section)

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.

Velocity Model

The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 
Last Changed Mon 20 Sep 2021 07:55:58 AM CDT