USGS/SLU Moment Tensor Solution ENS 2021/08/13 11:57:35:0 35.88 -84.90 0.0 3.0 Tennessee Stations used: CO.CASEE CO.HODGE CO.PAULI ET.CPCT IM.TKL IU.WCI IU.WVT N4.R49A N4.R50A N4.S51A N4.T47A N4.T50A N4.U49A N4.V48A N4.V53A N4.V55A N4.W50A N4.W52A N4.X48A N4.X51A N4.Y52A NM.BLO NM.USIN US.GOGA US.LRAL US.TZTN Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.02e+22 dyne-cm Mw = 3.94 Z = 1 km Plane Strike Dip Rake NP1 265 75 -90 NP2 85 15 -90 Principal Axes: Axis Value Plunge Azimuth T 1.02e+22 30 355 N 0.00e+00 -0 85 P -1.02e+22 60 175 Moment Tensor: (dyne-cm) Component Value Mxx 5.08e+21 Mxy -4.44e+20 Mxz 8.83e+21 Myy 3.89e+19 Myz -7.72e+20 Mzz -5.12e+21 ############## ###################### ########### ############## ############ T ############### ############## ################# #################################### ###################################### ######################################## ######################################## #############--------------------------### ######------------------------------------ ##---------------------------------------# #----------------------------------------# ---------------------------------------# #------------------ ----------------## #----------------- P ---------------## #---------------- --------------## ##-----------------------------### ##-------------------------### ####-------------------##### #######-------######## ############## Global CMT Convention Moment Tensor: R T P -5.12e+21 8.83e+21 7.72e+20 8.83e+21 5.08e+21 4.44e+20 7.72e+20 4.44e+20 3.89e+19 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210813115735/index.html |
STK = 265 DIP = 75 RAKE = -90 MW = 3.94 HS = 1.0
The NDK file is 20210813115735.ndk The waveform inversion is preferred.
The following compares this source inversion to others
USGS/SLU Moment Tensor Solution ENS 2021/08/13 11:57:35:0 35.88 -84.90 0.0 3.0 Tennessee Stations used: CO.CASEE CO.HODGE CO.PAULI ET.CPCT IM.TKL IU.WCI IU.WVT N4.R49A N4.R50A N4.S51A N4.T47A N4.T50A N4.U49A N4.V48A N4.V53A N4.V55A N4.W50A N4.W52A N4.X48A N4.X51A N4.Y52A NM.BLO NM.USIN US.GOGA US.LRAL US.TZTN Filtering commands used: cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3 Best Fitting Double Couple Mo = 1.02e+22 dyne-cm Mw = 3.94 Z = 1 km Plane Strike Dip Rake NP1 265 75 -90 NP2 85 15 -90 Principal Axes: Axis Value Plunge Azimuth T 1.02e+22 30 355 N 0.00e+00 -0 85 P -1.02e+22 60 175 Moment Tensor: (dyne-cm) Component Value Mxx 5.08e+21 Mxy -4.44e+20 Mxz 8.83e+21 Myy 3.89e+19 Myz -7.72e+20 Mzz -5.12e+21 ############## ###################### ########### ############## ############ T ############### ############## ################# #################################### ###################################### ######################################## ######################################## #############--------------------------### ######------------------------------------ ##---------------------------------------# #----------------------------------------# ---------------------------------------# #------------------ ----------------## #----------------- P ---------------## #---------------- --------------## ##-----------------------------### ##-------------------------### ####-------------------##### #######-------######## ############## Global CMT Convention Moment Tensor: R T P -5.12e+21 8.83e+21 7.72e+20 8.83e+21 5.08e+21 4.44e+20 7.72e+20 4.44e+20 3.89e+19 Details of the solution is found at http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210813115735/index.html |
Moment (dyne-cm) 1.14E+22 dyne-cm Magnitude (Mw) 3.97 Principal Axes: Axis Value Plunge Azimuth T 9.26E+21 29. 19. N 3.47E+21 1. 288. P -1.27E+22 61. 197. Moment Tensor: (dyne-cm) Aki-Richards Component Value Mxx 4.10E+21 Mxy 3.00E+20 Mxz 8.80E+21 Myy 3.60E+21 Myz 2.80E+21 Mzz -7.70E+21 Global CMT Convention Moment Tensor: (dyne-cm) R T F R -7.70E+21 8.80E+21 -2.80E+21 T 8.80E+21 4.10E+21 -3.00E+20 F -2.80E+21 -3.00E+20 3.60E+21 Moment (dyne-cm) 1.14E+22 dyne-cm Magnitude (Mw) 3.97 Principal Axes: Axis Value Plunge Azimuth T 9.26E+21 29. 19. N 3.47E+21 1. 288. P -1.27E+22 61. 197. Moment Tensor: (dyne-cm) Aki-Richards Lune parameters Component Value Mxx 4.10E+21 beta: 90.00 Mxy 3.00E+20 gamma: 15.29 Mxy 3.00E+20 Mxz 8.80E+21 Myy 3.60E+21 Myz 2.80E+21 Mzz -7.70E+21 ############## : ###################### :---: ################# ######## ::. ..:: ################## T ######### :--------: #################### ########### :: . . . : #################################### : . . . : ###################################### :------------:: ######################################## :: . . . : ########---------------################# : . . . : ######----------------------############## :---------------: #####-------------------------############ : . . . : ####----------------------------########## :===========#===: ####------------------------------######## : . . . : ###------------- --------------####### : . . . : ###------------- P ---------------###### :---------------: ###------------ ---------------##### : . . . : ###----------------------------##### :: . . . : ###--------------------------##### :------------:: ###-----------------------#### : . . . : ####-------------------##### :: . . . : #####-----------###### :--------: ############## ::. ..:: :---: : |
Moment (dyne-cm) 1.01E+22 dyne-cm Magnitude (Mw) 3.94 Principal Axes: Axis Value Plunge Azimuth T 1.01E+22 30. 355. N 7.74E+15 -0. 265. P -1.01E+22 60. 175. Moment Tensor: (dyne-cm) Aki-Richards Component Value Mxx 5.01E+21 Mxy -4.38E+20 Mxz 8.71E+21 Myy 3.83E+19 Myz -7.62E+20 Mzz -5.05E+21 Global CMT Convention Moment Tensor: (dyne-cm) R T F R -5.05E+21 8.71E+21 7.62E+20 T 8.71E+21 5.01E+21 4.38E+20 F 7.62E+20 4.38E+20 3.83E+19 Moment (dyne-cm) 1.01E+22 dyne-cm Magnitude (Mw) 3.94 Principal Axes: Axis Value Plunge Azimuth T 1.01E+22 30. 355. N 7.74E+15 -0. 265. P -1.01E+22 60. 175. Moment Tensor: (dyne-cm) Aki-Richards Lune parameters Component Value Mxx 5.01E+21 beta: 90.00 Mxy -4.38E+20 gamma: 0.00 Mxy -4.38E+20 Mxz 8.71E+21 Myy 3.83E+19 Myz -7.62E+20 Mzz -5.05E+21 ############## : ###################### :---: ########### ############## ::. ..:: ############ T ############### :--------: ############## ################# :: . . . : #################################### : . . . : ###################################### :------------:: ######################################## :: . . . : ######################################## : . . . : #############--------------------------### :---------------: ######------------------------------------ : . . . : ##---------------------------------------# :===============: #----------------------------------------# : . # . : ---------------------------------------# : . . . : #------------------ ----------------## :---------------: #----------------- P ---------------## : . . . : #---------------- --------------## :: . . . : ##-----------------------------### :------------:: ##-------------------------### : . . . : ####-------------------##### :: . . . : #######-------######## :--------: ############## ::. ..:: :---: : |
Moment (dyne-cm) 1.19E+22 dyne-cm Magnitude (Mw) 3.98 Principal Axes: Axis Value Plunge Azimuth T 9.75E+21 30. 20. N 3.58E+21 -0. 110. P -1.33E+22 60. 200. Moment Tensor: (dyne-cm) Aki-Richards Component Value Mxx 3.93E+21 Mxy 1.25E+20 Mxz 9.39E+21 Myy 3.63E+21 Myz 3.42E+21 Mzz -7.56E+21 Global CMT Convention Moment Tensor: (dyne-cm) R T F R -7.56E+21 9.39E+21 -3.42E+21 T 9.39E+21 3.93E+21 -1.25E+20 F -3.42E+21 -1.25E+20 3.63E+21 Moment (dyne-cm) 1.19E+22 dyne-cm Magnitude (Mw) 3.98 Principal Axes: Axis Value Plunge Azimuth T 9.75E+21 30. 20. N 3.58E+21 -0. 110. P -1.33E+22 60. 200. Moment Tensor: (dyne-cm) Aki-Richards Lune parameters Component Value Mxx 3.93E+21 beta: 90.00 Mxy 1.25E+20 gamma: 15.06 Mxy 1.25E+20 Mxz 9.39E+21 Myy 3.63E+21 Myz 3.42E+21 Mzz -7.56E+21 ############## : ###################### :---: ################# ######## ::. ..:: ################## T ######### :--------: #################### ########### :: . . . : #################################### : . . . : ###################################### :------------:: ######################################## :: . . . : #######---------------################## : . . . : ######---------------------############### :---------------: #####------------------------############# : . . . : ####---------------------------########### :===========#===: ####-----------------------------######### : . . . : ###------------- --------------####### : . . . : ###------------- P --------------####### :---------------: ###------------ --------------###### : . . . : ###----------------------------##### :: . . . : ###--------------------------##### :------------:: ###-----------------------#### : . . . : ####-------------------##### :: . . . : ####-------------##### :--------: ############## ::. ..:: :---: : |
Moment (dyne-cm) 1.14E+22 dyne-cm Magnitude (Mw) 3.97 Principal Axes: Axis Value Plunge Azimuth T 9.69E+21 30. 20. N 3.82E+21 0. 110. P -1.23E+22 60. 200. Moment Tensor: (dyne-cm) Aki-Richards Component Value Mxx 4.15E+21 Mxy 1.19E+20 Mxz 8.95E+21 Myy 3.86E+21 Myz 3.26E+21 Mzz -6.80E+21 Global CMT Convention Moment Tensor: (dyne-cm) R T F R -6.80E+21 8.95E+21 -3.26E+21 T 8.95E+21 4.15E+21 -1.19E+20 F -3.26E+21 -1.19E+20 3.86E+21 Moment (dyne-cm) 1.14E+22 dyne-cm Magnitude (Mw) 3.97 Principal Axes: Axis Value Plunge Azimuth T 9.69E+21 30. 20. N 3.82E+21 0. 110. P -1.23E+22 60. 200. Moment Tensor: (dyne-cm) Aki-Richards Lune parameters Component Value Mxx 4.15E+21 beta: 87.52 Mxy 1.19E+20 gamma: 15.05 Mxy 1.19E+20 Mxz 8.95E+21 Myy 3.86E+21 Myz 3.26E+21 Mzz -6.80E+21 ############## : ###################### :---: ################# ######## ::. ..:: ################## T ######### :--------: #################### ########### :: . . . : #################################### : . . . : ###################################### :------------:: ######################################## :: . . . : ########-------------################### : . . . : ######--------------------################ :---------------: #####------------------------############# : . . . : ####---------------------------########### :===========#===: ####----------------------------########## : . . . : ###------------- -------------######## : . . . : ###------------- P --------------####### :---------------: ###------------ --------------###### : . . . : ###----------------------------##### :: . . . : ###--------------------------##### :------------:: ###----------------------##### : . . . : ####------------------###### :: . . . : #####-----------###### :--------: ############## ::. ..:: :---: : |
Moment (dyne-cm) 1.14E+22 dyne-cm Magnitude (Mw) 3.97 Principal Axes: Axis Value Plunge Azimuth T 9.26E+21 29. 19. N 3.47E+21 1. 288. P -1.27E+22 61. 197. Moment Tensor: (dyne-cm) Aki-Richards Component Value Mxx 4.10E+21 Mxy 3.00E+20 Mxz 8.80E+21 Myy 3.60E+21 Myz 2.80E+21 Mzz -7.70E+21 Global CMT Convention Moment Tensor: (dyne-cm) R T F R -7.70E+21 8.80E+21 -2.80E+21 T 8.80E+21 4.10E+21 -3.00E+20 F -2.80E+21 -3.00E+20 3.60E+21 Moment (dyne-cm) 1.14E+22 dyne-cm Magnitude (Mw) 3.97 Principal Axes: Axis Value Plunge Azimuth T 9.26E+21 29. 19. N 3.47E+21 1. 288. P -1.27E+22 61. 197. Moment Tensor: (dyne-cm) Aki-Richards Lune parameters Component Value Mxx 4.10E+21 beta: 90.00 Mxy 3.00E+20 gamma: 15.29 Mxy 3.00E+20 Mxz 8.80E+21 Myy 3.60E+21 Myz 2.80E+21 Mzz -7.70E+21 ############## : ###################### :---: ################# ######## ::. ..:: ################## T ######### :--------: #################### ########### :: . . . : #################################### : . . . : ###################################### :------------:: ######################################## :: . . . : ########---------------################# : . . . : ######----------------------############## :---------------: #####-------------------------############ : . . . : ####----------------------------########## :===========#===: ####------------------------------######## : . . . : ###------------- --------------####### : . . . : ###------------- P ---------------###### :---------------: ###------------ ---------------##### : . . . : ###----------------------------##### :: . . . : ###--------------------------##### :------------:: ###-----------------------#### : . . . : ####-------------------##### :: . . . : #####-----------###### :--------: ############## ::. ..:: :---: : |
Moment (dyne-cm) 1.14E+22 dyne-cm Magnitude (Mw) 3.97 Principal Axes: Axis Value Plunge Azimuth T 9.26E+21 29. 19. N 3.47E+21 1. 288. P -1.27E+22 61. 197. Moment Tensor: (dyne-cm) Aki-Richards Component Value Mxx 4.10E+21 Mxy 3.00E+20 Mxz 8.80E+21 Myy 3.60E+21 Myz 2.80E+21 Mzz -7.70E+21 Global CMT Convention Moment Tensor: (dyne-cm) R T F R -7.70E+21 8.80E+21 -2.80E+21 T 8.80E+21 4.10E+21 -3.00E+20 F -2.80E+21 -3.00E+20 3.60E+21 Moment (dyne-cm) 1.14E+22 dyne-cm Magnitude (Mw) 3.97 Principal Axes: Axis Value Plunge Azimuth T 9.26E+21 29. 19. N 3.47E+21 1. 288. P -1.27E+22 61. 197. Moment Tensor: (dyne-cm) Aki-Richards Lune parameters Component Value Mxx 4.10E+21 beta: 90.00 Mxy 3.00E+20 gamma: 15.29 Mxy 3.00E+20 Mxz 8.80E+21 Myy 3.60E+21 Myz 2.80E+21 Mzz -7.70E+21 ############## : ###################### :---: ################# ######## ::. ..:: ################## T ######### :--------: #################### ########### :: . . . : #################################### : . . . : ###################################### :------------:: ######################################## :: . . . : ########---------------################# : . . . : ######----------------------############## :---------------: #####-------------------------############ : . . . : ####----------------------------########## :===============: ####------------------------------######## : . . # : ###------------- --------------####### : . . . : ###------------- P ---------------###### :---------------: ###------------ ---------------##### : . . . : ###----------------------------##### :: . . . : ###--------------------------##### :------------:: ###-----------------------#### : . . . : ####-------------------##### :: . . . : #####-----------###### :--------: ############## ::. ..:: :---: : |
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT WVFGRD96 1.0 265 75 -90 3.94 0.7685 WVFGRD96 2.0 75 20 -90 3.87 0.6566 WVFGRD96 3.0 80 20 -85 3.82 0.5712 WVFGRD96 4.0 75 75 -90 3.78 0.5579 WVFGRD96 5.0 75 80 -90 3.75 0.5581 WVFGRD96 6.0 265 10 -80 3.74 0.5644 WVFGRD96 7.0 280 5 -65 3.73 0.5727 WVFGRD96 8.0 45 0 60 3.73 0.5798 WVFGRD96 9.0 90 10 105 3.74 0.5874 WVFGRD96 10.0 255 80 90 3.78 0.5901 WVFGRD96 11.0 75 15 90 3.80 0.5975 WVFGRD96 12.0 110 55 85 3.88 0.6125 WVFGRD96 13.0 110 55 85 3.89 0.6231 WVFGRD96 14.0 115 50 85 3.90 0.6271 WVFGRD96 15.0 115 50 85 3.90 0.6263 WVFGRD96 16.0 115 50 85 3.91 0.6213 WVFGRD96 17.0 115 50 85 3.92 0.6128 WVFGRD96 18.0 25 40 75 3.89 0.6020 WVFGRD96 19.0 25 40 75 3.90 0.5903 WVFGRD96 20.0 25 40 75 3.92 0.5582 WVFGRD96 21.0 25 40 75 3.93 0.5477 WVFGRD96 22.0 210 30 90 3.94 0.5377 WVFGRD96 23.0 30 60 90 3.95 0.5272 WVFGRD96 24.0 30 55 90 3.95 0.5167 WVFGRD96 25.0 210 35 90 3.96 0.5044 WVFGRD96 26.0 215 35 95 3.97 0.4906 WVFGRD96 27.0 215 35 95 3.97 0.4754 WVFGRD96 28.0 25 55 85 3.98 0.4577 WVFGRD96 29.0 25 55 85 3.98 0.4391
The best solution is
WVFGRD96 1.0 265 75 -90 3.94 0.7685
The mechanism correspond to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
![]() |
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfmtd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search over depth are as follow:
MT Program H(km) STK DIP RAKE Mw Rvar StdErr Fit WtRvar WtStdErr Pclvd Mxx(dyne-cm) Myy Mxy Mxz Myz Mzz WVFMTD961 0.5 288. 77. -90. 3.98 0.987 0.155E-07 0.986 0.993 0.124E-07 43.4 0.3366395E+22 0.2915501E+22 0.2725992E+21 0.9913778E+22 0.3192873E+22 -0.6281897E+22 WVFMTD961 1.0 288. 74. -91. 3.97 1.000 0.173E-12 1.000 1.000 0.146E-12 54.5 0.4100001E+22 0.3600000E+22 0.3000008E+21 0.8799999E+22 0.2799999E+22 -0.7700002E+22 WVFMTD961 2.0 288. 63. -90. 3.96 0.884 0.463E-07 0.880 0.940 0.370E-07 80.9 0.5639946E+22 0.5203468E+22 0.1842292E+21 0.5585565E+22 0.1762214E+22 -0.1084341E+23 WVFMTD961 3.0 283. 65. -86. 3.92 0.659 0.800E-07 0.652 0.812 0.635E-07 77.2 0.4894961E+22 0.4069089E+22 -0.2535172E+21 0.5340987E+22 0.1981064E+22 -0.8964050E+22 WVFMTD961 4.0 279. 83. -81. 3.73 0.396 0.106E-06 0.400 0.629 0.817E-07 11.0 0.1243021E+22 0.4752962E+20 -0.6001595E+21 0.4734525E+22 0.9413735E+21 -0.1290551E+22 WVFMTD961 5.0 131. 61. 79. 3.79 0.338 0.111E-06 0.329 0.582 0.877E-07 74.2 -0.2456432E+22 -0.3433017E+22 -0.6003495E+21 0.2946089E+22 0.1055230E+22 0.5889448E+22 WVFMTD961 6.0 136. 57. 80. 3.82 0.470 0.992E-07 0.458 0.686 0.787E-07 81.3 -0.3139790E+22 -0.4053506E+22 -0.5197323E+21 0.2613475E+22 0.9204947E+21 0.7193296E+22 WVFMTD961 7.0 136. 55. 82. 3.84 0.569 0.894E-07 0.555 0.755 0.714E-07 86.6 -0.3520165E+22 -0.4201397E+22 -0.3853156E+21 0.2381280E+22 0.8088616E+21 0.7721562E+22 WVFMTD961 8.0 138. 54. 82. 3.84 0.636 0.822E-07 0.621 0.798 0.658E-07 89.7 -0.3660407E+22 -0.4298092E+22 -0.2749816E+21 0.2309971E+22 0.7964175E+21 0.7958498E+22 WVFMTD961 9.0 136. 53. 84. 3.85 0.684 0.766E-07 0.668 0.827 0.616E-07 90.8 -0.3967039E+22 -0.4399983E+22 -0.2838405E+21 0.2027647E+22 0.7198336E+21 0.8367022E+22 WVFMTD961 10.0 135. 54. 84. 3.88 0.696 0.751E-07 0.680 0.835 0.605E-07 92.3 -0.4416997E+22 -0.4865297E+22 -0.2371319E+21 0.2350397E+22 0.8364793E+21 0.9282293E+22
The best solution is
WVFMTD961 1.0 288. 74. -91. 3.97 1.000 0.173E-12 1.000 1.000 0.146E-12 54.5 0.4100001E+22 0.3600000E+22 0.3000008E+21 0.8799999E+22 0.2799999E+22 -0.7700002E+22
The complete moment tensor decomposition using the program mtdinfo is given in the text file MTDinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.
The P-wave first motion mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfmt96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search over depth are as follow:
MT Program H(km) STK DIP RAKE Mw Rvar StdErr Fit WtRvar WtStdErr Pclvd Mxx(dyne-cm) Myy Mxy Mxz Myz Mzz WVFMT961 0.5 288. 70. -90. 4.06 0.998 0.600E-08 0.998 0.999 0.484E-08 66.0 0.7324695E+21 0.2835474E+21 0.2656864E+21 0.9883001E+22 0.3168276E+22 -0.1654800E+23 WVFMT961 1.0 288. 74. -91. 3.97 1.000 0.173E-12 1.000 1.000 0.146E-12 54.5 0.4100001E+22 0.3599999E+22 0.3000008E+21 0.8799999E+22 0.2799999E+22 -0.7700005E+22 WVFMT961 2.0 289. 79. -91. 3.95 0.989 0.140E-07 0.989 0.995 0.112E-07 19.5 0.8936645E+22 0.8263894E+22 0.3782745E+21 0.4166405E+22 0.1376194E+22 0.5660179E+22 WVFMT961 3.0 288. 88. -91. 4.01 0.977 0.206E-07 0.976 0.989 0.164E-07 36.4 0.1069824E+23 0.9831723E+22 0.4147607E+21 0.3071145E+22 0.1014419E+22 0.1043045E+23 WVFMT961 4.0 107. 83. 91. 4.04 0.965 0.255E-07 0.963 0.982 0.204E-07 71.1 0.1147810E+23 0.1060697E+23 0.3784192E+21 0.2608445E+22 0.8651802E+21 0.1299852E+23 WVFMT961 5.0 106. 76. 92. 4.06 0.952 0.297E-07 0.950 0.976 0.238E-07 87.8 0.1180049E+23 0.1098375E+23 0.3412693E+21 0.2362599E+22 0.7869647E+21 0.1455626E+23 WVFMT961 6.0 109. 72. 90. 4.07 0.939 0.335E-07 0.937 0.969 0.268E-07 93.1 0.1193547E+23 0.1116359E+23 0.3111062E+21 0.2294915E+22 0.7976218E+21 0.1547252E+23 WVFMT961 7.0 114. 69. 87. 4.08 0.927 0.368E-07 0.924 0.963 0.294E-07 95.3 0.1185737E+23 0.1116166E+23 0.2485534E+21 0.2205147E+22 0.7715888E+21 0.1612819E+23 WVFMT961 8.0 114. 67. 88. 4.08 0.914 0.399E-07 0.911 0.956 0.319E-07 94.5 0.1165829E+23 0.1110460E+23 0.1885990E+21 0.2144411E+22 0.7549463E+21 0.1655557E+23 WVFMT961 9.0 112. 65. 88. 4.08 0.902 0.426E-07 0.898 0.950 0.340E-07 94.1 0.1148621E+23 0.1099362E+23 0.1551798E+21 0.2159581E+22 0.7232897E+21 0.1680958E+23 WVFMT961 10.0 115. 62. 87. 4.11 0.891 0.449E-07 0.887 0.944 0.359E-07 95.2 0.1215690E+23 0.1167027E+23 0.1301020E+21 0.2415870E+22 0.8132514E+21 0.1941016E+23
The best solution is
WVFMT961 1.0 288. 74. -91. 3.97 1.000 0.173E-12 1.000 1.000 0.146E-12 54.5 0.4100001E+22 0.3599999E+22 0.3000008E+21 0.8799999E+22 0.2799999E+22 -0.7700005E+22
The complete moment tensor decomposition using the program mtinfo is given in the text file MTinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.
The P-wave first motion mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfmtgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search over depth are as follow:
MT Program H(km) Mxx(dyne-cm) Myy Mxy Mxz Myz Mzz Mw Fit WVFMTGRD96 1.0 0.415E+22 0.386E+22 0.119E+21 0.895E+22 0.326E+22 -0.680E+22 3.9712 0.9983 WVFMTGRD96 2.0 0.894E+22 0.831E+22 0.354E+21 0.412E+22 0.147E+22 0.592E+22 3.9489 0.9889 WVFMTGRD96 3.0 0.106E+23 0.974E+22 0.372E+21 0.308E+22 0.112E+22 0.108E+23 4.0125 0.9761 WVFMTGRD96 4.0 0.115E+23 0.108E+23 0.441E+21 0.350E+22 0.667E+21 0.112E+23 4.0347 0.9641 WVFMTGRD96 5.0 0.122E+23 0.111E+23 0.432E+21 0.321E+22 0.945E+21 0.134E+23 4.0580 0.9529 WVFMTGRD96 6.0 0.122E+23 0.113E+23 0.362E+21 0.305E+22 0.111E+22 0.147E+23 4.0698 0.9400 WVFMTGRD96 7.0 0.124E+23 0.112E+23 0.318E+21 0.286E+22 0.933E+21 0.156E+23 4.0767 0.9267 WVFMTGRD96 8.0 0.126E+23 0.114E+23 0.348E+21 0.288E+22 0.838E+21 0.161E+23 4.0835 0.9129 WVFMTGRD96 9.0 0.115E+23 0.106E+23 0.307E+21 0.250E+22 0.744E+21 0.166E+23 4.0750 0.8998 WVFMTGRD96 10.0 0.126E+23 0.117E+23 0.968E+20 0.282E+22 0.965E+21 0.193E+23 4.1116 0.8882
The best solution is
WVFMTGRD96 1.0 0.415E+22 0.386E+22 0.119E+21 0.895E+22 0.326E+22 -0.680E+22 3.9712 0.9983
The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.
The P-wave first motion mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfmtgrd96 -DC was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search over depth are as follow:
MT Program H(km) Mxx(dyne-cm) Myy Mxy Mxz Myz Mzz Mw Fit WVFMTGRD96 1.0 0.501E+22 0.383E+20 -0.438E+21 0.871E+22 -0.762E+21 -0.505E+22 3.9360 0.7685 WVFMTGRD96 2.0 0.475E+22 0.341E+21 -0.127E+22 0.586E+22 -0.157E+22 -0.509E+22 3.8658 0.6566 WVFMTGRD96 3.0 0.414E+22 0.200E+21 -0.931E+21 0.499E+22 -0.144E+22 -0.434E+22 3.8206 0.5712 WVFMTGRD96 4.0 0.277E+22 0.199E+21 -0.743E+21 -0.497E+22 0.133E+22 -0.297E+22 3.7825 0.5579 WVFMTGRD96 5.0 0.170E+22 0.122E+21 -0.457E+21 -0.485E+22 0.130E+22 -0.183E+22 3.7518 0.5581 WVFMTGRD96 6.0 0.171E+22 0.405E+20 -0.306E+21 -0.471E+22 0.130E+22 -0.175E+22 3.7435 0.5644 WVFMTGRD96 7.0 0.831E+21 -0.395E+20 -0.387E+20 -0.479E+22 0.131E+22 -0.791E+21 3.7342 0.5727 WVFMTGRD96 8.0 0.000E+00 0.000E+00 0.000E+00 -0.483E+22 0.129E+22 0.000E+00 3.7328 0.5798 WVFMTGRD96 9.0 -0.167E+22 0.809E+20 0.819E+20 -0.468E+22 0.135E+22 0.159E+22 3.7404 0.5876 WVFMTGRD96 10.0 -0.189E+22 -0.135E+21 0.505E+21 -0.536E+22 0.144E+22 0.202E+22 3.7810 0.5901
The best solution is
WVFMTGRD96 1.0 0.501E+22 0.383E+20 -0.438E+21 0.871E+22 -0.762E+21 -0.505E+22 3.9360 0.7685
The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDDCinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.
The P-wave first motion mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
![]() |
|
The program wvfmtgrd96 -DEV was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search over depth are as follow:
MT Program H(km) Mxx(dyne-cm) Myy Mxy Mxz Myz Mzz Mw Fit WVFMTGRD96 1.0 0.393E+22 0.363E+22 0.125E+21 0.939E+22 0.342E+22 -0.756E+22 3.9848 0.9977 WVFMTGRD96 2.0 0.527E+22 0.519E+22 0.334E+20 0.620E+22 0.226E+22 -0.105E+23 3.9663 0.8883 WVFMTGRD96 3.0 0.461E+22 0.370E+22 0.547E+20 0.529E+22 -0.134E+22 -0.831E+22 3.9042 0.6681 WVFMTGRD96 4.0 0.325E+22 0.197E+22 0.103E+21 -0.497E+22 0.126E+22 -0.522E+22 3.8246 0.5784 WVFMTGRD96 5.0 0.224E+22 0.110E+22 0.155E+21 -0.483E+22 0.112E+22 -0.333E+22 3.7742 0.5638 WVFMTGRD96 6.0 0.145E+22 0.625E+21 -0.152E+21 -0.473E+22 0.130E+22 -0.208E+22 3.7463 0.5662 WVFMTGRD96 7.0 -0.152E+22 -0.293E+22 -0.466E+21 -0.427E+22 0.616E+21 0.445E+22 3.7778 0.5785 WVFMTGRD96 8.0 -0.417E+22 -0.437E+22 -0.807E+21 -0.134E+22 -0.418E+21 0.854E+22 3.8526 0.6297 WVFMTGRD96 9.0 -0.469E+22 -0.413E+22 -0.767E+21 -0.101E+22 -0.710E+21 0.882E+22 3.8606 0.6739 WVFMTGRD96 10.0 -0.521E+22 -0.459E+22 -0.851E+21 -0.113E+22 -0.789E+21 0.979E+22 3.8909 0.6838
The best solution is
WVFMTGRD96 1.0 0.393E+22 0.363E+22 0.125E+21 0.939E+22 0.342E+22 -0.756E+22 3.9848 0.9977
The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDDEVinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.
The P-wave first motion mechanism corresponding to the best fit is
![]() |
|
The best fit as a function of depth is given in the following figure:
![]() |
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
![]() |
|
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.
The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00