Location

Location ANSS

2021/08/13 11:57:35 35.877 -84.898 0.0 3.0 Tennessee

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2021/08/13 11:57:35:0  35.88  -84.90   0.0 3.0 Tennessee
 
 Stations used:
   CO.CASEE CO.HODGE CO.PAULI ET.CPCT IM.TKL IU.WCI IU.WVT 
   N4.R49A N4.R50A N4.S51A N4.T47A N4.T50A N4.U49A N4.V48A 
   N4.V53A N4.V55A N4.W50A N4.W52A N4.X48A N4.X51A N4.Y52A 
   NM.BLO NM.USIN US.GOGA US.LRAL US.TZTN 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.35e+22 dyne-cm
  Mw = 4.02 
  Z  = 1 km
  Plane   Strike  Dip  Rake
   NP1      290    75   -90
   NP2      110    15   -90
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.35e+22     30      20
    N   0.00e+00     -0     290
    P  -1.35e+22     60     200

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     5.96e+21
       Mxy     2.17e+21
       Mxz     1.10e+22
       Myy     7.89e+20
       Myz     4.00e+21
       Mzz    -6.74e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              #################   ########           
             ################## T #########          
           ####################   ###########        
          ####################################       
         ######################################      
        -----------#############################     
        ------------------######################     
       #-----------------------##################    
       #----------------------------#############    
       #-------------------------------##########    
       ##---------------------------------#######    
        #---------------   ------------------###     
        ##-------------- P --------------------#     
         ##-------------   --------------------      
          ###---------------------------------       
           ###------------------------------#        
             ###--------------------------#          
              #####--------------------###           
                 ########---------#####              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -6.74e+21   1.10e+22  -4.00e+21 
  1.10e+22   5.96e+21  -2.17e+21 
 -4.00e+21  -2.17e+21   7.89e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210813115735/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 110
      DIP = 15
     RAKE = -90
       MW = 4.02
       HS = 1.0

The NDK file is 20210813115735.ndk The waveform inversion is preferred.

Sections

Moment tensor comparison
Local magnitudes
Spatial context
Double couple grid search (wvfgrd96)
Deviatoric moment tensor linear inversion (wvfmtd96)
Full moment tensor linear inversion (wvfmt96)
Grid search for full moment tensor (wvfmtgrd96)
Grid search for double couple (wvfmtgrd96 -DC)
Grid search for deviatoric moment tensor (wvfmtgrd96 -DEV)

Moment Tensor Comparison

The following compares this source inversion to others
SLU
TRUE
MTGRDDC
MTGRDDEV
MTGRD
WVFMTD
WVFMT
 USGS/SLU Moment Tensor Solution
 ENS  2021/08/13 11:57:35:0  35.88  -84.90   0.0 3.0 Tennessee
 
 Stations used:
   CO.CASEE CO.HODGE CO.PAULI ET.CPCT IM.TKL IU.WCI IU.WVT 
   N4.R49A N4.R50A N4.S51A N4.T47A N4.T50A N4.U49A N4.V48A 
   N4.V53A N4.V55A N4.W50A N4.W52A N4.X48A N4.X51A N4.Y52A 
   NM.BLO NM.USIN US.GOGA US.LRAL US.TZTN 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.35e+22 dyne-cm
  Mw = 4.02 
  Z  = 1 km
  Plane   Strike  Dip  Rake
   NP1      290    75   -90
   NP2      110    15   -90
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.35e+22     30      20
    N   0.00e+00     -0     290
    P  -1.35e+22     60     200

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     5.96e+21
       Mxy     2.17e+21
       Mxz     1.10e+22
       Myy     7.89e+20
       Myz     4.00e+21
       Mzz    -6.74e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              #################   ########           
             ################## T #########          
           ####################   ###########        
          ####################################       
         ######################################      
        -----------#############################     
        ------------------######################     
       #-----------------------##################    
       #----------------------------#############    
       #-------------------------------##########    
       ##---------------------------------#######    
        #---------------   ------------------###     
        ##-------------- P --------------------#     
         ##-------------   --------------------      
          ###---------------------------------       
           ###------------------------------#        
             ###--------------------------#          
              #####--------------------###           
                 ########---------#####              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -6.74e+21   1.10e+22  -4.00e+21 
  1.10e+22   5.96e+21  -2.17e+21 
 -4.00e+21  -2.17e+21   7.89e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20210813115735/index.html
	
 Moment (dyne-cm)   1.27E+22   dyne-cm
 Magnitude (Mw)    4.00
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27E+22     29.     19.
    N  -3.22E+14      1.    288.
    P  -1.27E+22     61.    197.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx    6.16E+21
       Mxy    2.15E+21
       Mxz    1.02E+22
       Myy    7.46E+20
       Myz    3.30E+21
       Mzz   -6.91E+21
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -6.91E+21  1.02E+22 -3.30E+21
  T  1.02E+22  6.16E+21 -2.15E+21
  F -3.30E+21 -2.15E+21  7.46E+20
 Moment (dyne-cm)   1.27E+22   dyne-cm
 Magnitude (Mw)    4.00
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27E+22     29.     19.
    N  -3.22E+14      1.    288.
    P  -1.27E+22     61.    197.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx    6.16E+21                                beta:   90.00
       Mxy    2.15E+21                                gamma:   0.00
       Mxy    2.15E+21
       Mxz    1.02E+22
       Myy    7.46E+20
       Myz    3.30E+21
       Mzz   -6.91E+21
 
 
 
                    ##############                         :
                ######################                   :---:
             #################   ########              ::. ..::
            ################## T #########            :--------:
          ####################   ###########         :: .  . .  :
         ####################################        :  .  .  .  :
        ######################################      :------------::
       -----------#############################    ::  .   .  .   :
       -------------------#####################    :   .   .   .  :
      #-------------------------################   :---------------:
      #-----------------------------############   :   .   .   .   :
      #---------------------------------########   :=======#=======:
      ##----------------------------------######   :   .   .   .   :
       ##--------------   -------------------##    :   .   .   .   :
       ##-------------- P ---------------------    :---------------:
        ###------------   --------------------     :   .   .   .  :
         ###--------------------------------#      ::  .   .  .   :
          ####-----------------------------#        :------------::
            ####-------------------------#           :  .  .  .  :
             ######------------------####            :: .  . .  :
                #########-------######                :--------:
                    ##############                     ::. ..::
                                                         :---:
                                                           :
 
 
        
 Moment (dyne-cm)   1.36E+22   dyne-cm
 Magnitude (Mw)    4.02
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.36E+22     30.     20.
    N   2.60E+18      0.    290.
    P  -1.36E+22     60.    200.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx    6.00E+21
       Mxy    2.18E+21
       Mxz    1.11E+22
       Myy    7.95E+20
       Myz    4.02E+21
       Mzz   -6.79E+21
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -6.79E+21  1.11E+22 -4.02E+21
  T  1.11E+22  6.00E+21 -2.18E+21
  F -4.02E+21 -2.18E+21  7.95E+20
 Moment (dyne-cm)   1.36E+22   dyne-cm
 Magnitude (Mw)    4.02
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.36E+22     30.     20.
    N   2.60E+18      0.    290.
    P  -1.36E+22     60.    200.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx    6.00E+21                                beta:   89.99
       Mxy    2.18E+21                                gamma:   0.00
       Mxy    2.18E+21
       Mxz    1.11E+22
       Myy    7.95E+20
       Myz    4.02E+21
       Mzz   -6.79E+21
 
 
 
                    ##############                         :
                ######################                   :---:
             #################   ########              ::. ..::
            ################## T #########            :--------:
          ####################   ###########         :: .  . .  :
         ####################################        :  .  .  .  :
        ######################################      :------------::
       -----------#############################    ::  .   .  .   :
       ------------------######################    :   .   .   .  :
      #-----------------------##################   :---------------:
      #----------------------------#############   :   .   .   .   :
      #-------------------------------##########   :=======#=======:
      ##---------------------------------#######   :   .   .   .   :
       #---------------   ------------------###    :   .   .   .   :
       ##-------------- P --------------------#    :---------------:
        ##-------------   --------------------     :   .   .   .  :
         ###---------------------------------      ::  .   .  .   :
          ###------------------------------#        :------------::
            ###--------------------------#           :  .  .  .  :
             #####--------------------###            :: .  . .  :
                #######----------#####                :--------:
                    ##############                     ::. ..::
                                                         :---:
                                                           :
 
 
        
 Moment (dyne-cm)   1.36E+22   dyne-cm
 Magnitude (Mw)    4.02
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.36E+22     30.     20.
    N   2.60E+18      0.    290.
    P  -1.36E+22     60.    200.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx    6.00E+21
       Mxy    2.18E+21
       Mxz    1.11E+22
       Myy    7.95E+20
       Myz    4.02E+21
       Mzz   -6.79E+21
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -6.79E+21  1.11E+22 -4.02E+21
  T  1.11E+22  6.00E+21 -2.18E+21
  F -4.02E+21 -2.18E+21  7.95E+20
 Moment (dyne-cm)   1.36E+22   dyne-cm
 Magnitude (Mw)    4.02
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.36E+22     30.     20.
    N   2.60E+18      0.    290.
    P  -1.36E+22     60.    200.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx    6.00E+21                                beta:   89.99
       Mxy    2.18E+21                                gamma:   0.00
       Mxy    2.18E+21
       Mxz    1.11E+22
       Myy    7.95E+20
       Myz    4.02E+21
       Mzz   -6.79E+21
 
 
 
                    ##############                         :
                ######################                   :---:
             #################   ########              ::. ..::
            ################## T #########            :--------:
          ####################   ###########         :: .  . .  :
         ####################################        :  .  .  .  :
        ######################################      :------------::
       -----------#############################    ::  .   .  .   :
       ------------------######################    :   .   .   .  :
      #-----------------------##################   :---------------:
      #----------------------------#############   :   .   .   .   :
      #-------------------------------##########   :=======#=======:
      ##---------------------------------#######   :   .   .   .   :
       #---------------   ------------------###    :   .   .   .   :
       ##-------------- P --------------------#    :---------------:
        ##-------------   --------------------     :   .   .   .  :
         ###---------------------------------      ::  .   .  .   :
          ###------------------------------#        :------------::
            ###--------------------------#           :  .  .  .  :
             #####--------------------###            :: .  . .  :
                #######----------#####                :--------:
                    ##############                     ::. ..::
                                                         :---:
                                                           :
 
 
        
 Moment (dyne-cm)   1.27E+22   dyne-cm
 Magnitude (Mw)    4.00
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.37E+22     30.     20.
    N   1.32E+20      0.    290.
    P  -1.16E+22     60.    200.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx    6.48E+21
       Mxy    2.31E+21
       Mxz    1.03E+22
       Myy    9.73E+20
       Myz    3.74E+21
       Mzz   -5.31E+21
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -5.31E+21  1.03E+22 -3.74E+21
  T  1.03E+22  6.48E+21 -2.31E+21
  F -3.74E+21 -2.31E+21  9.73E+20
 Moment (dyne-cm)   1.27E+22   dyne-cm
 Magnitude (Mw)    4.00
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.37E+22     30.     20.
    N   1.32E+20      0.    290.
    P  -1.16E+22     60.    200.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx    6.48E+21                                beta:   86.05
       Mxy    2.31E+21                                gamma:  -2.28
       Mxy    2.31E+21
       Mxz    1.03E+22
       Myy    9.73E+20
       Myz    3.74E+21
       Mzz   -5.31E+21
 
 
 
                    ##############                         :
                ######################                   :---:
             #################   ########              ::. ..::
            ################## T #########            :--------:
          ####################   ###########         :: .  . .  :
         ####################################        :  .  .  .  :
        ######################################      :------------::
       ##------################################    ::  .   .  .   :
       #---------------########################    :   .   .   .  :
      #----------------------###################   :---------------:
      #--------------------------###############   :   .   .   .   :
      ##-----------------------------###########   :======#========:
      ##--------------------------------########   :   .   .   .   :
       ##--------------   -----------------####    :   .   .   .   :
       ###------------- P -------------------##    :---------------:
        ###------------   -------------------#     :   .   .   .  :
         ###--------------------------------#      ::  .   .  .   :
          ####----------------------------##        :------------::
            ####------------------------##           :  .  .  .  :
             ######------------------####            :: .  . .  :
                ###########---########                :--------:
                    ##############                     ::. ..::
                                                         :---:
                                                           :
 
 
        
 Moment (dyne-cm)   1.27E+22   dyne-cm
 Magnitude (Mw)    4.00
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27E+22     29.     19.
    N   7.51E+13      1.    288.
    P  -1.27E+22     61.    197.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx    6.16E+21
       Mxy    2.15E+21
       Mxz    1.02E+22
       Myy    7.46E+20
       Myz    3.30E+21
       Mzz   -6.91E+21
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -6.91E+21  1.02E+22 -3.30E+21
  T  1.02E+22  6.16E+21 -2.15E+21
  F -3.30E+21 -2.15E+21  7.46E+20
 Moment (dyne-cm)   1.27E+22   dyne-cm
 Magnitude (Mw)    4.00
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27E+22     29.     19.
    N   7.51E+13      1.    288.
    P  -1.27E+22     61.    197.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx    6.16E+21                                beta:   90.00
       Mxy    2.15E+21                                gamma:   0.00
       Mxy    2.15E+21
       Mxz    1.02E+22
       Myy    7.46E+20
       Myz    3.30E+21
       Mzz   -6.91E+21
 
 
 
                    ##############                         :
                ######################                   :---:
             #################   ########              ::. ..::
            ################## T #########            :--------:
          ####################   ###########         :: .  . .  :
         ####################################        :  .  .  .  :
        ######################################      :------------::
       -----------#############################    ::  .   .  .   :
       -------------------#####################    :   .   .   .  :
      #-------------------------################   :---------------:
      #-----------------------------############   :   .   .   .   :
      #---------------------------------########   :=======#=======:
      ##----------------------------------######   :   .   .   .   :
       ##--------------   -------------------##    :   .   .   .   :
       ##-------------- P ---------------------    :---------------:
        ###------------   --------------------     :   .   .   .  :
         ###--------------------------------#      ::  .   .  .   :
          ####-----------------------------#        :------------::
            ####-------------------------#           :  .  .  .  :
             ######------------------####            :: .  . .  :
                #########-------######                :--------:
                    ##############                     ::. ..::
                                                         :---:
                                                           :
 
 
        
 Moment (dyne-cm)   1.27E+22   dyne-cm
 Magnitude (Mw)    4.00
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27E+22     29.     19.
    N  -8.35E+14      1.    288.
    P  -1.27E+22     61.    197.
 Moment Tensor: (dyne-cm) Aki-Richards
    Component   Value
       Mxx    6.16E+21
       Mxy    2.15E+21
       Mxz    1.02E+22
       Myy    7.46E+20
       Myz    3.30E+21
       Mzz   -6.91E+21
 Global CMT Convention Moment Tensor: (dyne-cm)
         R         T         F
  R -6.91E+21  1.02E+22 -3.30E+21
  T  1.02E+22  6.16E+21 -2.15E+21
  F -3.30E+21 -2.15E+21  7.46E+20
 Moment (dyne-cm)   1.27E+22   dyne-cm
 Magnitude (Mw)    4.00
  
 Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.27E+22     29.     19.
    N  -8.35E+14      1.    288.
    P  -1.27E+22     61.    197.
 Moment Tensor: (dyne-cm) Aki-Richards               Lune parameters
    Component   Value
       Mxx    6.16E+21                                beta:   90.00
       Mxy    2.15E+21                                gamma:   0.00
       Mxy    2.15E+21
       Mxz    1.02E+22
       Myy    7.46E+20
       Myz    3.30E+21
       Mzz   -6.91E+21
 
 
 
                    ##############                         :
                ######################                   :---:
             #################   ########              ::. ..::
            ################## T #########            :--------:
          ####################   ###########         :: .  . .  :
         ####################################        :  .  .  .  :
        ######################################      :------------::
       -----------#############################    ::  .   .  .   :
       -------------------#####################    :   .   .   .  :
      #-------------------------################   :---------------:
      #-----------------------------############   :   .   .   .   :
      #---------------------------------########   :===============:
      ##----------------------------------######   :   .   #   .   :
       ##--------------   -------------------##    :   .   .   .   :
       ##-------------- P ---------------------    :---------------:
        ###------------   --------------------     :   .   .   .  :
         ###--------------------------------#      ::  .   .  .   :
          ####-----------------------------#        :------------::
            ####-------------------------#           :  .  .  .  :
             ######------------------####            :: .  . .  :
                #########-------######                :--------:
                    ##############                     ::. ..::
                                                         :---:
                                                           :
 
 
        

Local Magnitudes

(Return to selection section)

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).
(Return to selection section)

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   110    15   -90   4.02 0.9978
WVFGRD96    2.0   290    65   -90   3.96 0.9242
WVFGRD96    3.0   105    25   -95   3.93 0.7786
WVFGRD96    4.0   110    70   -85   3.88 0.6722
WVFGRD96    5.0   280    20  -100   3.85 0.6352
WVFGRD96    6.0   110    70   -85   3.84 0.6130
WVFGRD96    7.0   110    75   -85   3.82 0.6030
WVFGRD96    8.0   345    60    40   3.84 0.5963
WVFGRD96    9.0   345    60    40   3.84 0.6037
WVFGRD96   10.0   115    80   -75   3.85 0.5902
WVFGRD96   11.0   105    20    85   3.85 0.5826
WVFGRD96   12.0   290    70    90   3.86 0.5888
WVFGRD96   13.0   105    20    85   3.87 0.5912
WVFGRD96   14.0   110    25    90   3.88 0.5912
WVFGRD96   15.0   110    25    90   3.89 0.5888
WVFGRD96   16.0   110    25    90   3.89 0.5840
WVFGRD96   17.0   290    60    90   3.91 0.5781
WVFGRD96   18.0   110    30    90   3.92 0.5707
WVFGRD96   19.0   290    60    90   3.93 0.5613
WVFGRD96   20.0   290    60    90   3.95 0.5458
WVFGRD96   21.0   290    60    90   3.96 0.5368
WVFGRD96   22.0   115    30    95   3.97 0.5265
WVFGRD96   23.0   115    35    95   3.98 0.5152
WVFGRD96   24.0   115    35    95   3.99 0.5027
WVFGRD96   25.0   115    35    95   3.99 0.4886
WVFGRD96   26.0   115    90    80   4.01 0.4819
WVFGRD96   27.0   120    85    80   4.03 0.4743
WVFGRD96   28.0   120    85    80   4.04 0.4656
WVFGRD96   29.0   120    85    80   4.04 0.4561

The best solution is

WVFGRD96    1.0   110    15   -90   4.02 0.9978

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

(Return to selection section)


Deviatoric Moment Tensor Inversion using wvfmtd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmtd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) STK    DIP  RAKE    Mw      Rvar  StdErr        Fit      WtRvar WtStdErr  Pclvd    Mxx(dyne-cm)   Myy            Mxy            Mxz             Myz           Mzz
WVFMTD961    0.5  288.   77.  -90.   4.02     0.988 0.158E-07     0.988     0.994 0.125E-07   4.0  0.5272953E+22  0.3828548E+21  0.1903535E+22  0.1146568E+23  0.3781525E+22 -0.5655808E+22
WVFMTD961    1.0  288.   74.  -91.   4.00     1.000 0.171E-12     1.000     1.000 0.141E-12   0.0  0.6160384E+22  0.7464938E+21  0.2148202E+22  0.1017061E+23  0.3297875E+22 -0.6906877E+22
WVFMTD961    2.0  289.   62.  -90.   3.97     0.931 0.384E-07     0.928     0.965 0.307E-07  15.6  0.7927731E+22  0.1786312E+22  0.2474400E+22  0.6031797E+22  0.2055521E+22 -0.9714043E+22
WVFMTD961    3.0  287.   63.  -91.   3.93     0.785 0.682E-07     0.775     0.886 0.543E-07   9.2  0.7242831E+22  0.3429268E+21  0.2488077E+22  0.5558179E+22  0.1640367E+22 -0.7585757E+22
WVFMTD961    4.0  292.   71.  -85.   3.84     0.641 0.884E-07     0.637     0.801 0.689E-07  77.3  0.4902474E+22 -0.2384569E+22  0.2626491E+22  0.4952387E+22  0.1817291E+22 -0.2517905E+22
WVFMTD961    5.0  163.   62.   45.   3.84     0.519 0.102E-06     0.543     0.721 0.765E-07  38.0  0.1549988E+22 -0.5488249E+22  0.2277796E+22  0.4095486E+22  0.2175244E+22  0.3938261E+22
WVFMTD961    6.0  168.   57.   53.   3.86     0.537 0.994E-07     0.567     0.735 0.743E-07  30.5  0.5811001E+21 -0.6263082E+22  0.2119343E+22  0.3747337E+22  0.1968597E+22  0.5681982E+22
WVFMTD961    7.0  171.   54.   58.   3.87     0.557 0.973E-07     0.590     0.750 0.724E-07  30.3 -0.5004246E+20 -0.6618708E+22  0.1920355E+22  0.3418862E+22  0.1753410E+22  0.6668751E+22
WVFMTD961    8.0  172.   53.   61.   3.87     0.572 0.956E-07     0.610     0.760 0.706E-07  34.1 -0.3245254E+21 -0.6693117E+22  0.1719968E+22  0.3372994E+22  0.1786633E+22  0.7017643E+22
WVFMTD961    9.0  173.   53.   63.   3.88     0.577 0.951E-07     0.619     0.764 0.697E-07  35.5 -0.6328949E+21 -0.6850955E+22  0.1638139E+22  0.3200347E+22  0.1761806E+22  0.7483849E+22
WVFMTD961   10.0  173.   52.   63.   3.90     0.578 0.949E-07     0.613     0.764 0.703E-07  44.1 -0.1037669E+22 -0.7230752E+22  0.1592521E+22  0.3679996E+22  0.1838325E+22  0.8268420E+22

The best solution is

WVFMTD961    1.0  288.   74.  -91.   4.00     1.000 0.171E-12     1.000     1.000 0.141E-12   0.0  0.6160384E+22  0.7464938E+21  0.2148202E+22  0.1017061E+23  0.3297875E+22 -0.6906877E+22

The complete moment tensor decomposition using the program mtdinfo is given in the text file MTDinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

(Return to selection section)


Full Moment Tensor Inversion using wvfmt96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmt96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) STK    DIP  RAKE    Mw      Rvar  StdErr        Fit      WtRvar WtStdErr  Pclvd    Mxx(dyne-cm)   Myy            Mxy            Mxz             Myz           Mzz
WVFMT961    0.5  288.   72.  -90.   4.07     0.995 0.101E-07     0.995     0.998 0.802E-08  23.4  0.3060780E+22 -0.1828070E+22  0.1897817E+22  0.1143987E+23  0.3761120E+22 -0.1427752E+23
WVFMT961    1.0  288.   74.  -91.   4.00     1.000 0.172E-12     1.000     1.000 0.141E-12   0.0  0.6160383E+22  0.7464929E+21  0.2148202E+22  0.1017061E+23  0.3297875E+22 -0.6906881E+22
WVFMT961    2.0  284.   72.  -97.   3.94     0.974 0.235E-07     0.973     0.987 0.187E-07  81.2  0.1074636E+23  0.4410171E+22  0.2606550E+22  0.4636622E+22  0.1442445E+22  0.4562300E+22
WVFMT961    3.0  157.   73.   23.   3.98     0.945 0.342E-07     0.943     0.972 0.272E-07  98.0  0.1211826E+23  0.5537518E+22  0.2703538E+22  0.4192982E+22  0.1512036E+22  0.7083022E+22
WVFMT961    4.0  159.   70.   26.   4.02     0.901 0.460E-07     0.904     0.949 0.352E-07  62.7  0.1303720E+23  0.6519482E+22  0.2646221E+22  0.3571630E+22  0.1440815E+22  0.1043169E+23
WVFMT961    5.0  160.   68.   30.   4.04     0.856 0.554E-07     0.864     0.926 0.419E-07  49.4  0.1332522E+23  0.6986453E+22  0.2496727E+22  0.3363982E+22  0.1461905E+22  0.1186732E+23
WVFMT961    6.0  160.   68.   33.   4.05     0.825 0.611E-07     0.840     0.909 0.453E-07  49.9  0.1358383E+23  0.7413580E+22  0.2336442E+22  0.3453004E+22  0.1593278E+22  0.1268259E+23
WVFMT961    7.0  160.   67.   39.   4.06     0.780 0.686E-07     0.820     0.886 0.479E-07  38.2  0.1392622E+23  0.7750256E+22  0.2170132E+22  0.3315910E+22  0.1837872E+22  0.1425223E+23
WVFMT961    8.0  161.   65.   43.   4.07     0.745 0.737E-07     0.796     0.868 0.509E-07  34.6  0.1384003E+23  0.7775447E+22  0.2024126E+22  0.3255497E+22  0.1897881E+22  0.1492469E+23
WVFMT961    9.0  162.   64.   45.   4.07     0.720 0.773E-07     0.773     0.854 0.538E-07  33.0  0.1367604E+23  0.7675180E+22  0.1929001E+22  0.3228292E+22  0.1855703E+22  0.1526566E+23
WVFMT961   10.0  166.   58.   52.   4.09     0.693 0.810E-07     0.746     0.838 0.568E-07  34.1  0.1387097E+23  0.7844432E+22  0.1692200E+22  0.3406378E+22  0.1805838E+22  0.1789701E+23

The best solution is

WVFMT961    1.0  288.   74.  -91.   4.00     1.000 0.172E-12     1.000     1.000 0.141E-12   0.0  0.6160383E+22  0.7464929E+21  0.2148202E+22  0.1017061E+23  0.3297875E+22 -0.6906881E+22

The complete moment tensor decomposition using the program mtinfo is given in the text file MTinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

(Return to selection section)


Grid Search Full Moment Tensor Inversion using wvfmtgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmtgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) Mxx(dyne-cm)   Myy        Mxy        Mxz        Myz        Mzz       Mw      Fit
WVFMTGRD96    1.0  0.648E+22  0.973E+21  0.231E+22  0.103E+23  0.374E+22 -0.531E+22  4.0019  0.9982
WVFMTGRD96    2.0  0.977E+22  0.392E+22  0.246E+22  0.596E+22  0.217E+22  0.300E+20  3.9357  0.9802
WVFMTGRD96    3.0  0.114E+23  0.526E+22  0.257E+22  0.538E+22  0.196E+22  0.272E+22  3.9621  0.9477
WVFMTGRD96    4.0  0.128E+23  0.663E+22  0.267E+22  0.447E+22  0.193E+22  0.752E+22  4.0038  0.9166
WVFMTGRD96    5.0  0.133E+23  0.711E+22  0.248E+22  0.456E+22  0.189E+22  0.830E+22  4.0178  0.8874
WVFMTGRD96    6.0  0.140E+23  0.781E+22  0.247E+22  0.454E+22  0.188E+22  0.900E+22  4.0333  0.8606
WVFMTGRD96    7.0  0.143E+23  0.801E+22  0.229E+22  0.467E+22  0.184E+22  0.952E+22  4.0407  0.8391
WVFMTGRD96    8.0  0.148E+23  0.839E+22  0.255E+22  0.469E+22  0.194E+22  0.962E+22  4.0495  0.8170
WVFMTGRD96    9.0  0.148E+23  0.829E+22  0.237E+22  0.483E+22  0.190E+22  0.985E+22  4.0504  0.7982
WVFMTGRD96   10.0  0.150E+23  0.902E+22  0.238E+22  0.569E+22  0.201E+22  0.115E+23  4.0722  0.7784

The best solution is

WVFMTGRD96    1.0  0.648E+22  0.973E+21  0.231E+22  0.103E+23  0.374E+22 -0.531E+22  4.0019  0.9982

The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

(Return to selection section)


Grid Search Double Couple Inversion using wvfmtgrd96 -DC

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmtgrd96 -DC was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) Mxx(dyne-cm)   Myy        Mxy        Mxz        Myz        Mzz       Mw      Fit
WVFMTGRD96    1.0  0.600E+22  0.795E+21  0.218E+22  0.111E+23  0.402E+22 -0.679E+22  4.0221  0.9978
WVFMTGRD96    2.0  0.750E+22  0.994E+21  0.273E+22  0.670E+22  0.244E+22 -0.850E+22  3.9633  0.9242
WVFMTGRD96    3.0  0.692E+22  0.693E+21  0.222E+22  0.596E+22  0.241E+22 -0.761E+22  3.9325  0.7786
WVFMTGRD96    4.0  0.487E+22  0.483E+21  0.155E+22 -0.599E+22 -0.231E+22 -0.536E+22  3.8816  0.6726
WVFMTGRD96    5.0  0.453E+22  0.301E+21  0.125E+22 -0.545E+22 -0.222E+22 -0.483E+22  3.8549  0.6352
WVFMTGRD96    6.0  0.433E+22  0.145E+21  0.102E+22 -0.516E+22 -0.221E+22 -0.447E+22  3.8383  0.6140
WVFMTGRD96    7.0  0.313E+22  0.102E+21  0.722E+21 -0.543E+22 -0.215E+22 -0.323E+22  3.8169  0.6022
WVFMTGRD96    8.0  0.356E+22 -0.820E+21 -0.318E+21 -0.521E+22 -0.250E+22 -0.274E+22  3.8144  0.5956
WVFMTGRD96    9.0  0.216E+22 -0.625E+22  0.320E+22 -0.333E+22 -0.155E+22  0.409E+22  3.8440  0.6037
WVFMTGRD96   10.0  0.351E+22 -0.102E+22 -0.280E+21 -0.604E+22 -0.319E+22 -0.248E+22  3.8505  0.5902

The best solution is

WVFMTGRD96    1.0  0.600E+22  0.795E+21  0.218E+22  0.111E+23  0.402E+22 -0.679E+22  4.0221  0.9978

The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDDCinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

(Return to selection section)


Grid Search Deviatoric Moment Tensor Inversion using wvfmtgrd96 -DEV

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfmtgrd96 -DEV was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search over depth are as follow:

MT Program  H(km) Mxx(dyne-cm)   Myy        Mxy        Mxz        Myz        Mzz       Mw      Fit
WVFMTGRD96    1.0  0.600E+22  0.795E+21  0.218E+22  0.111E+23  0.402E+22 -0.679E+22  4.0221  0.9978
WVFMTGRD96    2.0  0.749E+22  0.168E+22  0.244E+22  0.692E+22  0.252E+22 -0.918E+22  3.9733  0.9337
WVFMTGRD96    3.0  0.692E+22  0.693E+21  0.222E+22  0.596E+22  0.241E+22 -0.761E+22  3.9325  0.7786
WVFMTGRD96    4.0  0.535E+22 -0.153E+22  0.231E+22 -0.561E+22 -0.208E+22 -0.382E+22  3.8686  0.7034
WVFMTGRD96    5.0  0.415E+22 -0.243E+22  0.235E+22 -0.550E+22 -0.190E+22 -0.172E+22  3.8398  0.6824
WVFMTGRD96    6.0  0.375E+22 -0.262E+22  0.224E+22 -0.546E+22 -0.209E+22 -0.113E+22  3.8338  0.6781
WVFMTGRD96    7.0  0.317E+22 -0.356E+22  0.230E+22 -0.536E+22 -0.195E+22  0.391E+21  3.8310  0.6778
WVFMTGRD96    8.0  0.290E+22 -0.370E+22  0.252E+22 -0.536E+22 -0.196E+22  0.803E+21  3.8339  0.6790
WVFMTGRD96    9.0  0.269E+22 -0.421E+22  0.216E+22 -0.537E+22 -0.196E+22  0.152E+22  3.8359  0.6781
WVFMTGRD96   10.0  0.262E+22 -0.449E+22  0.248E+22 -0.606E+22 -0.234E+22  0.187E+22  3.8678  0.6741

The best solution is

WVFMTGRD96    1.0  0.600E+22  0.795E+21  0.218E+22  0.111E+23  0.402E+22 -0.679E+22  4.0221  0.9978

The complete moment tensor decomposition using the program mtinfo is given in the text file MTGRDDEVinfo.txt. (Jost, M. L., and R. B. Herrmann (1989). A student's guide to and review of moment tensors, Seism. Res. Letters 60, 37-57. SRL_60_2_37-57.pdf.

The P-wave first motion mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

(Return to selection section)

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureau of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Oklahoma Geological Survey, TexNet, the Iris stations, the Transportable Array of EarthScope and other networks.

Velocity Model

The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 
Last Changed Sun 19 Sep 2021 06:07:26 PM CDT