#!/bin/sh ##### # this is a program to compute the geometrical spreading from the # velocity model for the specified source depth # # the geometrical spreading of from Bullen. # I assume that MODEL is a spherical model # # We follow Bullen and the Herrmann notes http://www.eas.slu.edu/People/RBHerrmann/Courses/EASA462/ # for Ass14.pdf # # The geometrical spreading is dimensionless and gives the decrease in amplitude from # a distance of 1 km from the source to the receiver # 2 2 # ( a sin Is Vs d T ) # sqrt | ------------------------ ----- | # | 2 2 | # ( sin DEG cos Ir Rs Cos Is Rr d DEL ) # # a = radius of sphere about source - we use 1.0 km # Is= incident angle at source # Ir= incident angle at receiver # Rs= distance from center of Earth to source # Rr= distance from center of Earth to receiver # DEG=epicental distance in degrees # DEL=distance in radians # # note that the second derivative divided by Rr^2 is sec/km^2 - which we can get # from dp/dx where dp is in sec/km and dx is the distance in km, so we compute # 2 2 # ( a sin Is Vs d T ) # sqrt | ------------------------ ----- | # | 2 | # ( sin DEG cos Ir Rs Cos Is dx ) # # # The only imperfection is the numerical computation of dp/dD # # TO DO: # modify time96 to give the velocity at the source # modify time96 to give the velocity at the receiver # modify time96 to give the T* for the path # modify time96 to give everything for pP and sP ##### HS=10 MODEL=tak135sph.mod ##### # compute the geometrical spreading which is dimensionless # it propagates the amplitude from a distance of 1,0 km from the source to # the receiver ##### for PHASE in P pP sP do echo " " echo "--------------------------------------------------" echo " Phase ${PHASE} " echo " DEG HS T(s) p(s/deg) Geom T*(sec)" echo "--------------------------------------------------" for DEG in 30. 32.5 35. 37.5 40. 42.5 45. 50. 55. 60. 65. 70. 75. 80. 85. 90. do ##### # VS P velocity at the source in km/sec # VR P velocity at the receiver in km/sec # RR Radius of the earth sinc ethe receiver is assumed to be at the surface # RS Radius of the source which is RR - HS (computed) # DDEG increment in degrees for computing DP/DD by centered difference ##### VS=6.2 VR=6.2 RR=6371 RS=`echo $RR $HS | awk '{ print $1 - $2 }' ` ##### # compute the travel time and ray parameter and T* ##### DDEG=5 DEGP=`echo $DEG $DDEG | awk '{print $1 + $2 }' ` DEGM=`echo $DEG $DDEG | awk '{print $1 - $2 }' ` A=`time96 -${PHASE} -T -M ${MODEL} -GCARC ${DEG} -EVDP $HS` RAYP=`time96 -${PHASE} -RAYP -M ${MODEL} -GCARC ${DEG} -EVDP $HS` TS=`time96 -${PHASE} -TS -M ${MODEL} -GCARC ${DEG} -EVDP $HS` ##### # get the ray parameter in sec/deg for output ##### RAYPDEG=`echo $RAYP | awk '{print $1 * 111.195 }' ` ##### # get ray parameter in sec/radian for computation of angles ##### RAYPRAD=`echo $RAYPDEG | awk '{print $1 * 180.0/3.1415927 }' ` ##### # RAYP = sec/km # sec/km * 111.195 km/deg * 180 deg/pi radians ##### RAYPP=`time96 -${PHASE} -RAYP -M ${MODEL} -GCARC ${DEGP} -EVDP $HS` RAYPM=`time96 -${PHASE} -RAYP -M ${MODEL} -GCARC ${DEGM} -EVDP $HS` ##### # get DP/Dkm by centered difference which is obtained from the two valeus of # p(sec/km) divided by the distance in km, hence the 111.195 ##### DPDKM=`echo $RAYPM $RAYPP $DDEG | awk '{print ( $1 - $2)/(2. * $3 * 111.195 ) }' ` SINIS=`echo $VS $RS $RAYPRAD | awk '{print $3 * $1 / $2 }' ` COSIS=`echo $SINIS | awk '{print sqrt ( 1.0 - $1 * $1 ) }' ` SINIR=`echo $VS $RR $RAYPRAD | awk '{print $3 * $1 / $2 }' ` COSIR=`echo $SINIR | awk '{print sqrt ( 1.0 - $1 * $1 ) }' ` SIND=`echo $DEG | awk '{print sin ( $1 * 3.1415927 / 180.0 ) }' ` GEOM2=`echo $SINIS $VS $DPDKM $SIND $COSIR $RS $COSIS | awk '{ print ($1 * $2 * $3 )/($4 * $5 *$6 *$7) }' ` GEOM=`echo $GEOM2 | awk '{print sqrt ( $1 ) }' ` echo $DEG $HS $A $RAYPDEG $GEOM $TS| awk '{printf "%5.1f %5.1f %8.2f %7.3f %12.4g %5.2f\n",$1, $2, $3, $4, $5, $6 }' done done