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Ray amplitudes for a constant velocity sphere

Goals:

• To compute amplitudes as a function of great cricle arc

• To dev elop the correction curve for magnitude determination

Background:

Geometrical optics can be used to determine ray amplitudes on a sphere. Consider Figure 1.
The ray tube connects the source to the receiver. As the signal propagates from one end of the ray
to the other, the total energy passing through a particular cross-sectional area, which is normal to
the ray tube, is the same because of conservation of energy. This energy is distributed over the
cross-sectional area. If we defineA1 and A2 as the amplitudes of the signal at each cross-section,
then the conservation of energy requires that
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Fig. 1. Ray tube with differing cross-sectional areas.
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since the individual particle energy is proportional to the square of the amplitude.

To apply this to the Earth, consider the ray diagram in Figure 2. Here the epicentral distance
is ∆, the ray connection the source atS and the observation pointat R leaves the source with an
angle of incidenceis and is incident at the free surface with angleir . We will procede by consid-
ering the energy per unit area passing through a sector at the source and arriving at a sector at the
receiver.

Recall from solid geometry that the surface-area of a sphere of radiusr is 4π r2. The surface
area of a small sector bounded by anglesi andi + di is 2π r2 sinidi. So, at the source we have the
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Fig. 2. Geometry for propagation in the Earth.

sector area

2π a2 sinisdis

wherea is the radius of a small sphere about the source.

At the receiver the rays leaving the source between anglesi andi + di create a sector on the
surface of the sphere with area

2π r2
o sin∆d∆

wherero is the radius of the sphere andro sin∆ is the length of the lineAR in Figure 2. Since
the conservation of energy relation requires us to consider surfaces normal to the ray, the corre-
sponding area at the receiver is

2π r2
o cosir sin∆d∆

Since the square of the ratio of amplitudes is inversely proporational to theratio of the area, we
have




AR

AS




2

=
2π a2 sinisdis

2π r2
0 sin∆ cosir d∆

For small changes indis, the ratio of differentials in this expression becomes the derivative
dii /d∆.

If we use the spherical ray parameter definition, e.g.,

p =
rs

vs
sinis =

rr

vr
sinir =

dT

d∆
we quickly see that

dis

d∆
=

vs

rs

1

cosir

d2T

d∆2

by applying ad/d∆ operator to the ray parameter equation.

Thus,
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AR = AS



a2 sinisvs

r2
o sin∆ cosirrs cosis

|
d2T

d∆2
|


1

2

The || absolute values are taken because the second derivative can be negative.

This is an interesting equation. The travel-time actually contains information not only about
the ray parameter, through its slope, but also the amplitude, because of its second derivative. Sec-
ondly, we can expect large amplitudes whenever the second derivative equals zero, which was the
case for surface reflection in Assignment 13.

The final correction must account for the fact that the density and wav evelocity may be dif-
ferent at the source, S, and receiver, R. Accounting for this gives the final equation

AR = AS



ρ svs

ρ r vr
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Constant velocity sphere.

For a simple problem, consider a uniform sphere with constant velocity. Also assume that
the source and receiver are at the surface. For this sphere, the travel time (Assignment 13) is

T =
2r0

v
sin(∆/2)

p =
dT

d∆
=

r0

v
cos(∆/2)

and

d2T

d∆2
= −

r0

2v
sin(∆/2)

Using this, the fact thatis = ir in this case, we have

AR =
a

r0

AS

2 sin(∆/2)
(1)

What you must do:

• Plot the relation1/(2 sin(∆/2)) for angles between 1° and 180 °.

• Plot the relation1/(2 sin(∆/2)) for angles between 1° and 1 80 °. on a log y - lin x plot

• Plot the relation2 sin(∆/2) for angles between 1° and 1 80 °. on a log y - lin x plot. This par-
ticular plot would be the distance correction for magnitude.What you must submit:

The plots and a table of2 sin(∆/2) as a function of∆.


