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Ray amplitudes for a constant velocity sphere

Goals:

*  To compute amplitudes as a function of great cricle arc

* To devdop the correction cue/for magnitude determination
Background:

Geometrical optics can be used to determine ray amplitudes on a sphere. Consider Figure 1.
The ray tube connects the source to the veceAs the signal propagates from one end of the ray
to the otherthe total energy passing through a particular cross-sectional area, which is normal to
the ray tube, is the same because of coasiervof enegy. This energy is distributedver the
cross-sectional area. If we defidgand A, as the amplitudes of the signal at each cross-section,
then the conservation of energy requires that

Fig. 1. Ray tube with differing cross-sectional areas.

AIS = AS,
since the individual particle energy is proportional to the square of the amplitude.
To goply this to the Earth, consider the ray diagram in Figure 2. Here the epicentral distance
is A, the ray connection the sourceSand the observation poirdt R leaves the source with an
angle of incidencég and is incident at the free surface with arigl&Ve will procede by consid-
ering the engy per unit area passing through a sector at the source and arriving at a sector at the
recever.

Recall from solid geometry that the sagé-area of a sphere of raditis 47r2. The surfice
area of a small sector bounded by angkmsdi + di is 27zr2 sinidi. So, at the source we e
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Fig. 2. Geometry for propagation in the Earth.

sector area
2ma® sini4dig
wherea is the radius of a small sphere about the source.

At the recerer the rays leaving the source between angéesli + di create a sector on the
surface of the sphere with area

2mr2 sinAdA

wherer, is the radius of the sphere argkinA is the length of the linéR in Figure 2. Since
the conservation of ergyy relation requires us to consider surfaces normal to théhexgorre-
sponding area at the reeeiis

272 cosi, sinAdA

Since the square of the ratio of amplitudes v&rsely proporational to theatio of the area, we
have

DARD . 2mé? sinigdis
OAsO ™ 2nrZsinAcosi, dA
For small changes indig, the ratio of differentials in thisxpression becomes the detive
di;/dA.
If we use the spherical ray parameter definition, e.g.,
p:E siniS:r—rsinir =d—T
A Vv, dA
we quickly see that
dig ve 1 d°T
dA  rg cosi, dA?
by applying ad/dA operator to the ray parameter equation.
Thus,
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_ a0 a’ sinigvsg d’T lﬁ?

R™"Sr2sinAcosi, rycosig' dA2 'O
The || absolute values are taken because the secongiilaican be ngaive.

This is an interesting equation. Theviiatime actually contains information not only about
the ray parametgthrough its slope, but also the amplitude, because of its secondideriSec-
ondly, we @n expect lgge amplitudes wherer the second derative equals zero, which was the
case for surface reflection in Assignment 13.

The final correction must account for tlaetf that the density andawevelocity may be dif-
ferent at the source, S, and reegiR. Accounting for this gies the final equation

A

1

A= A PsYs a? sinigvs Id2T l[?

R™"SOp,v, r2sinAcosi,rycosig dA2 0
Constant velocity sphere.

For a ample problem, consider a uniform sphere with constafdcity. Also assume that
the source and reser are at the surface. For this sphere, thedrime (Assignment 13) is

2
T= % sin(A/2)

p= d—T = rvo cos(\/2)

dA
and
d2T o .
w = E S|n(A/2)
Using this, the fact that =i, in this case, we ha
a AS

A1 280 ?

What you must do:
*  Plot the relatiorL/(2 9n(A/2)) for angles between 1° and 180 °.
*  Plot the relatiorl/(2 9n(A/2)) for angles between 1° and 1 80 °. on alog y - lin x plot

*  Plot the relatior? sn(A/2) for angles between 1° and 1 80 °. on alog y - lin x plot. This par
ticular plot would be the distance correction for magnitudaat you must submit:

The plots and a table 8f9n(A/2) as a tinction ofA.



