
1 Theory

1.1 Fourier Transform

The definition of the Fourier transform pair used here is

H(ω) = F[h(t)] =

∫ ∞

−∞
h(t)e−iωtdt⇔ h(t) =

1

2π

∫ ∞

−∞
H(ω)e+iωtdω, (1)

or upon defining ω = 2π f ,

H( f ) =

∫ ∞

−∞
h(t)e−i2π f tdt ⇔ h(t) =

∫ ∞

−∞
H( f )e+i2π f td f . (2)

Some properties of the Fourier transform are

Table 1: Fourier transform properties and pairs

h(t) ⇔ H(ω)

H(t) ⇔ 2πh(−ω)

h(t − a) ⇔ H(ω)e−iωa

h(t) ∗ g(t) =
∫ ∞

−∞
h(τ)g(t − τ)dτ ⇔ H(ω)G(ω)

h(t)g(t) ⇔ 1
2π

H(ω) ∗G(ω)

δ(t) ⇔ 1

1 ⇔ 2πδ(ω)

sgn(t) =



























−1 t < 0

0 t = 0

1 t > 0

⇔
2

iω

i
1

πt
⇔ sgn(ω)

U(t) =



























0 t < 0
1
2

t = 0

1 t > 0

⇔ πδ(ω) + 1
iω

cosω0t ⇔ πδ(ω − ω0) + πδ(ω + ω0)

i sinω0t ⇔ πδ(ω − ω0) − πδ(ω + ω0)

The * operator represents convolution.

Now define the complex time series and its Fourier transform as

g(t) = h(t) + iq(t)⇔ G(ω) = R(ω) + iI(ω) (3)

where h(t), q(t), R(ω) and I(ω) are real functions. Some special cases are as follow:

• If g(t) is real, e.g., g(t) = h(t), then R(−ω) = R(ω) and I(−ω) = −I(ω) or equivalently h(t) ⇔ Re(ω) + iIo(ω), where the

subscripts indicate even and odd.

• If g(t) is imaginary, e.g., g(t) = iq(t), then R(−ω) = −R(ω) and I(−ω) = I(ω), or G(ω) = Ro(ω) + iIe(ω).
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1.2 Hilbert Transform

The Hilbert transform of a function x(t) is defined as

H[x(t)] =
1

π
p.v

∫ ∞

−∞

x(τ)

t − τ
dτ, (4)

where the p.v indicates a principal-value integral. In interesting this can be easily evaluated using Fourier transforms. Given

x(t) ⇔ X(ω), then H[x(t)] ⇔ sgn(ω)X(ω). Given this definition of the Hilbert transform and the Fourier transform properties in

Table 1, one can show that H[cosω0t] = sinω0t for ω0 > 0. Thus the Hilbert transform of a sinusoid returns another sinusoid

that is 90◦ out of phase.

If we want the q(t) above to be 90 degrees out of phase with the h(t), perform the following steps:

1. Form F[h(t)] = H(ω) = Re(ω) + iIo(ω).

2. Multiply by twice the unit step function, e.g., form 2U(ω)H(ω)

3. Evaluate the inverse Fourier transform to give , h(t) + iq(t) = F
−1[2U(ω)H(ω)].

4. The desired q(t) is the imaginary part of the result. The h(t) returned is the input h(t).1

The value of this approach is that only one complex array is used. More importantly the envelope of h(t) is e(t) =
√

h2(t) + q2(t).

1.3 Discrete Fourier Transform

A numerical implementation of the Fourier transform pair is the Discrete Fourier Transform (DFT). The fast algorithm is known

as the Fast Fourier Transform (FFT). The DFT with dimensions is defined as

H(n∆ f ) =

N−1
∑

k=0

h(k∆t)e−i2πnk∆ f∆t∆t ⇔ h(k∆t) =

N−1
∑

n=0

H(n∆ f )e+i2πnk∆ f∆t∆ f

H(n∆ f ) =

N−1
∑

k=0

h(k∆t)e−i2πnk/N∆t ⇔ h(k∆t) =

N−1
∑

n=0

H(n∆ f )e+i2πnk/N∆ f

(5)

where N is the number of evenly spaced samples, t = k∆t, f = n∆ f and ∆ f = 1
N∆t

. Note that the textbook definition of the

DFT transforms a one-dimensional array into another one-dimensional array of numbers without any sense of approximating an

integration. The definition given in 5 modifies the usual definition to add the dimensions, and thus approximates the Fourier

integral. An important aspect of the DFT is that both h(k) and H(n) are periodic, e.g., h(k) = h(k + mN) and H(n) = H(n + mN)

for m = . . . ,−2,−1, 0, 1, 2, . . . . Thus any use of the DFT to approximate the Fourier transform and its inverse must be careful

about periodicity, or in other words, wrap-around or aliasing.

Normally one starts with an h(k) = h(k∆t) and computes an H(n) = H(n∆ f ). Thus the negative frequency part of the spectrum

is given by H(−n) = H(N − n). In implementation, if one starts with the h(t − k∆t) and computes the H(n∆ f ) everything is

straightforward. When implementing theory, it is efficient to just compute the response for positive frequencies and then fill in

the negative frequencies to ensure that the inverse DFT gives a real time series. Pseudocode in FORTRAN 2 to yield the H(n)

corresponding to a real time series is

COMPLEX FUNCTION, DATA(NPTS)

N21 = N/2 + 1

do i = 1, N21

freq = (i-1)*df

DATA(i) = FUNC(freq)

if(i.eq.N21)then

DATA(i) = CMPLX(real(DATA(i),0.0)

endif

DATA(N*2-i) = CONJG(DATA(i))

enddo

The index i = N21 corresponds to the Nyquist frequency, fN =
1

2∆t
at which the imaginary part of the DFT must be zero.

1Note: there may be a slight difference in values and some distance in length when evaluated numerically.
2FORTRAN is used here because complex numbers are easily used. However, default array processing will be from 1 to N instead of 0 to N-1

2



1.4 Surface wave

In the frequency domain the surface wave signal at a distance r from the source in a cylindrical coordinate system can be repre-

sented as

H(ω) =
1
√

r
A(ω)e−ik(ω)r (6)

The surface-wave wavenumber k(ω) = ω/c, where c() is the phase velocity.

Implementing the inverse transform of (6) using (1) will give a time series that starts at t = 0. This is often inconvenient in

making synthetics, since there may be many seconds before the first arrival appears. To avoid this, one may modify (6) so that the

first sample of the time series is at t = t0, by using the transform pair

h(t − t0)⇔ eiωt0 H(ω) =
1
√

r
A(ω)ei(ωt0−k(ωr)) (7)

Now assume that the observed seismogram at distance r starts at t0 seconds after the origin time and that N evenly spaced

samples are used. Call this timeseries h(k) for k = 0, . . . ,N − 1. The h(0) is the observation at absolute/travel-time t0. Applying

the DFT gives the H(n) for N = 0, . . . ,N − 1. To correct the transform so that the inverse Fourier transform gives a time series

such that the first sample corresponds to a reference time of t = 0, one must form

e−ωt0 H(ω), (8)

where the ω = 2π f = 2πn∆ f . Also note that the complex spectrum at negative frequencies will be the complex conjugate of the

spectrum at positive frequencies.

If the surface wave signal consists of just one mode, then one can correct for dispersion and geometrical spreading by taking

the inverse Fourier transform of √
rei(−ωt0+kr)H(ω), (9)

where the H(ω) is the Fourier transform of the time series starting at t0.
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