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1

Green’s functions

1.1 Introduction

Many texts give expressions for displacements in plane-layered media due to point

forces and moment tensors (Levshin and Yanson, 1971; Takeuchi and Saito, 1972;

Keilis-Borok, 1989; Aki and Richards, 2002). These solutions are useful in regional

moment tensor studies. However there are occasions when one in interested in

the stresses and strains generated by a seismic source. Ground motions of a large

earthquake may be such to change the stresses acting on neighboring faults in a

way to facilitate local faulting. The newly introduced Distributed Acoustic Sensors

(DAS) systems measure the strain in a fiber optic cable with great spatial detail.

Interpreting earthquake data requires codes for predicting the observed strain.

In a cylindrical coordinate system for isotropic or transverse isotropic media,

15 Green’s functions must be computed to represent the displacement wave field

due to point force and moment tensor sources. If one is interested in strain, then

the partial derivatives of the displacement with respect to the z and r coordinates

at the observation point will require an additional 30 functions to be computed.

The partials with respect to azimuth will not require any significant computational

effort since .

Computationally one performs a wavenumber integration to obtain the complete

solution, but when the epicentral distance is large compared to the wavelength, a

superposition of surface-wave models can provide a reasonable approximation to

the exact solution by modeling the larger signals following S. This discussion re-

view s the Green’s functions and and shows the modifications required to generate

strain, stress and rotation time series.
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1.2 Introduction

Progress in seismology has always involved the interaction of advances in in-

strumentation and computation. Recently there has been an emphasis on measur-

ing strain using DAS (distributed acoustic sensors) and rotation. Thus the ques-

tion of quantitative monitoring of these observations arises. Strain measurements

have long been a topic in earthquake seismology (Benioff) using strain meters and

dilatometers (Sacks) as well as in experimental rock mechanic procedures. Stress,

which is derivable from strain one the material properties are know, is of interest

in the remote triggering of earthquakes (Landers - Spudich).

The focus on this chapter is the generation of stress, strain and rotation time

series for point force and moment tensor sources in plane-layered isotropic media.

In line with the development through out the text, the synthetics will be computed

using a cylindrical coordinate system. Strains were defined for a Cartesian system

in §?? and for a cylindrical coordinate system in §1.3. Before adapting the previous

development to give stress, strain and rotation, we should review some continuum

mechanics and derive expression for stress and strain in cylindrical coordinates

(??-??).

1.3 Wave equation solutions in cylindrical coordinates

For a cylindrical coordinate system with coordinates (r, φ, z), the equations of mo-

tion for the displacement u = (ur , uφ, uz) are (Love, 1944; Aki and Richards, 2002)

ρ
∂2uz

∂t2
=
∂σrz

∂r
+

1

r

∂σφz

∂φ
+
∂σzz

∂z
+
σrz

r
+ Fz

ρ
∂2ur

∂t2
=
∂σrr

∂r
+

1

r

∂σrφ

∂φ
+
∂σrz

∂z
+
σrr − σφφ

r
+ Fr

ρ
∂2uφ

∂t2
=
∂σrφ

∂r
+

1

r

∂σφφ

∂φ
+
∂σφz

∂z
+

2σrφ

r
+ Fφ

The local coordinate system is assumed to be such that z is positive downward.

In an isotropic medium, the stresses are related to displacements in a cylindrical

coordinate system through the relations (Hughes and Gaylord, 1964)

σrz = 2µerz σzz = λ∆ + 2µezz

σφz = 2µeφz σrr = λ∆ + 2µerr (1.3.1)

σrz = 2µerz σφφ = λ∆ + 2µeφφ
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where the strains are defined as

err =
∂ur

∂r
erφ =

1

2

(

1

r

∂ur

∂φ
+
∂uφ

∂r
−

uφ

r

)

eφφ =
1

r

(

∂uφ

∂φ
+ ur

)

erz =
1

2

(

∂uz

∂r
+
∂ur

∂z

)

(1.3.2)

ezz =
∂uz

∂z
eφz =

1

2

(

∂uφ

∂z
+

1

r

∂uz

∂φ

)

and the dilatation ∆ is given by

∆ = ∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uφ

∂φ
+
∂uz

∂z
. (1.3.3)

The rotations are defined as

ωrφ =
1

2

(

1

r

∂ur

∂φ
−
∂uφ

∂r
−

1

r
uφ

)

ωrz =
1

2

(

∂ur

∂z
−
∂uz

∂r

)

ωφz =
1

2

(

∂uφ

∂z
−

1

r

∂uz

∂φ

)

(1.3.4)

The derivation of these expressions for strain and rotation are given in the Ap-

pendix.

1.4 Green’s functions

For problems in which the material properties only vary in the z-direction, define

the displacements as

uz(r, z, ω) =
∑

n

(

An cos nφ + Bn sin nφ

)

·

∫

∞

0

Uz(k, z, ω)Jn(kr)kdk

ur(r, z, ω) =
∑

n

(

An cos nφ + Bn sin nφ

)

·

∫

∞

0

[

Ur(k, z, ω)
∂Jn(kr)

∂r
−

n

r
Uφ(k, z, ω)Jn(kr)

]

dk (1.4.1)

uφ(r, z, ω) =
∑

n

(

An sin nφ − Bn cos nφ

)
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·

∫

∞

0

[

Uφ(k, z, ω)
∂Jn(kr)

∂r
−

n

r
Ur(k, z, ω)Jn(kr)

]

dk

and the force per unit volume as

Fz(r, z, ω) =
∑

n

(

An cos nφ + Bn sin nφ

)

·

∫

∞

0

fz(k, z, ω)Jn(kr)kdk

Fr(r, z, ω) =
∑

n

(

An cos nφ + Bn sin nφ

)

·

∫

∞

0

[

fr(k, z, ω)
∂Jn(kr)

∂r
−

n

r
fφ(k, z, ω)Jn(kr)

]

dk (1.4.2)

Fφ(r, z, ω) =
∑

n

(

An sin nφ − Bn cos nφ

)

·

∫

∞

0

[

fφ(k, z, ω)
∂Jn(kr)

∂r
−

n

r
fr(k, z, ω)Jn(kr)

]

dk

If one defines the transformed stresses as

Tr = µ













dU
(n)
r

dz
+ kU

(n)
z













Tz = (λ + 2µ)
dU

(n)
z

dz
− kλU

(n)
r (1.4.3)

Tφ = µ
dU

(n)
φ

dz

then the following ordinary differential equations must be solved for P-SV
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(1.4.4)

and

d

dz

[

Uφ

Tφ

]

=

[

0 1/µ

µk2
− ρω2 0

] [

Uφ

Tφ

]

−

[

0

fφ

]

(1.4.5)

for SH. In these equations, the transformed displacements are functions of wavenum-

ber, angular frequency and vertical position. Because none of the terms within the

square matrices involve derivatives with respect to z, and since the medium pa-

rameters vary continuously or piecewise continuously with the z-coordinate, we
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immediately see that the parameters Ur, Uz, Uφ, Tr, Tz and Tφ must be continu-

ous at depths where the force terms are zero. Discontinuities in these parameters

will occur when crossing the source layer. These discontinuities are used with the

propagator and reflection matrix techniques for solving these differential equations.

Modal superposition techniques work directly with the forces.

Solutions of the wave equation in cylindrical coordinates for a point force and/or

moment tensor source can be written as follows:

uz(r, z, h, ω) = (F1 cos φ + F2 sin φ) ZHF + F3ZVF

+ M11

[

ZS S

2
cos(2φ) −

ZDD

6
+

ZEX

3

]

+ M22

[

−ZS S

2
cos(2φ) −

ZDD

6
+

ZEX

3

]

+ M33

[

ZDD

3
+

ZEX

3

]

+ M12

[

ZS S sin(2φ)
]

+ M13

[

ZDS cos(φ)
]

+ M23

[

ZDS sin(φ)
]

ur(r, z, h, ω) = (F1 cos φ + F2 sin φ) RHF + F3RVF

+ M11

[

RS S

2
cos(2φ) −

RDD

6
+

REX

3

]

+ M22

[

−RS S

2
cos(2φ) −

RDD

6
+

REX

3

]

+ M33

[

RDD

3
+

REX

3

]

+ M12

[

RS S sin(2φ)
]

+ M13

[

RDS cos(φ)
]

+ M23

[

RDS sin(φ)
]

uφ(r, z, h, ω) = (−F1 sin φ + F2 cos φ) T HF

+ M11

[

TS S

2
sin(2φ)

]

+ M22

[

−TS S

2
sin(2φ)

]

+ M12

[

−TS S cos(2φ)
]

+ M13

[

T DS sin(φ)
]

+ M23

[

−T DS cos(φ)
]

.

(1.4.6)

This expression assumes that the moment tensor, Mi j, is symmetric. The terms as-

sociated F1, F2 and F3 are the medium response to a point force, while the other
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functions are the response to specific moment tensor expressions. The functions,

e.g., ZSS, within the square brackets are the Green’s functions for one particular

representation of forces. The terminology used for these basic force and moment

tensor solutions is simple. The leading Z, R or T, indicates the component of mo-

tion. The S S indicates that the solution is due to a strike-slip source, with only

M12 , 0 or with M11 = −M22 with other elements zero. The DS solution is associ-

ated with a vertical dip-slip source with only M13 , 0 or M23 , 0. The EX solution

is for an isotropic center of expansion source with M11 = M22 = M33. The DD so-

lution does not correspond to a fault source, but can be understood as that part

of a vertical or radial displacements for a 45◦ dip-sip source (e.g., M22 = −M33)

observed at an azimuth of 45◦. The DD component is multiplied by the terms

2M33 − M11 − M22 which is known as a compensated linear vector dipole.

1.5 Computation of stress, strain and rotation

Rather than using explicit expressions for strain, stress and rotation, the decision

was made to first generate the time series for the partial derivatives of the displace-

ment with respect to r, φ and z, and then later combine them to make the desired

time series for strain or rotation. To illustrate the required steps, we consider the

vertical displacement for a strike-slip source defined by M12 with all other terms

equal to zero. Starting with

uz(r, z, h, ω) = + M12

[

ZS S sin(2φ)
]

(1.5.1)

The partial derivatives are

∂uz

∂r
(r, z, h, ω) = M12

[

∂ZS S

∂r
sin(2φ)

]

(1.5.2)

∂uz

∂φ
(r, z, h, ω) = M12

[

2ZS S cos(2φ)
]

(1.5.3)

∂uz

∂z
(r, z, h, ω) = M12

[

∂ZS S

∂z
sin(2φ)

]

(1.5.4)
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1.5.1 Wavenumber integration

Thus it is necessary to compute time series for ZS S , ∂ZS S/∂r and ∂ZS S/∂z. From

(1.4.1) we see that

∂ZS S

∂r
=

∫

∞

0

Uz

∂Jn(kr)

∂r
kdk (1.5.5)

∂ZS S

∂z
=

∫

∞

0

∂US S
z

∂z
Jn(kr)kdk (1.5.6)

=

∫

∞

0

1

λ + 2µ

(

T S S
z + kUS S

r

)

Jn(kr)kdk (1.5.7)

The latter expression arise from the definition of Tz in (1.4.3).

For a arbitrary source, We note that 15 functions, e.g., ZDD, ..., T HF must be

computed to obtain the displacements and ∂/∂φ and another 30 for obtain the ∂/∂r

and ∂/∂z.

1.5.2 Modal superposition

For media that have locked mode solutions, modal superposition techniques can be

used to form the time series corresponding to the pole contributions (Levshin and

Yanson, 1971; Takeuchi and Saito, 1972; Keilis-Borok, 1989; Aki and Richards,

2002). Following Levshin and Yanson (1971), the far-field pole contribution of

integrals of the form

uz(r, z, h, ω) =

∫

∞

0

Uz(k, z, h, ω)Jn(kr)kdk (1.5.8)

is of the form

uz(r, z, h, ω) = −πiAL,RD(km, h, ω)Uz(km, z, ω)H
(2)
n (kmr) (1.5.9)

= −πiAL,RD(km, h, ω)Uz(km, z, ω)

√

2

πmr
e−i(kmr− π

4
−

nπ
2

) (1.5.10)

(1.5.11)

In these equations h is the source depth, z is the receiver depth, km = ω/cm is

the wavenumber corresponding to the phase velocity cm. The Uz evaluated at the

receiver depth is the eigenfunction corresponding to the homogeneous solution of

(1.4.4, 1.4.5). The D() is a function of wavenumber and the eigenfunctions at the

source depth.

To obtain the required partial derivatives of the displacement, the ∂/∂φ is com-
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2

x1

x

φ

x

xr

φ

Figure 1.1 Transformation between (r, φ, z) coordinate system to an (x, y, z) co-
ordinate system. The z-coordinate is down into the figure. The φ component of
motion is the transverse component. Often the (x, y) axes are aligned north and
east, respectively. In the case of DAS systems, one might align the x-axis with the
direction of the fiber.

puted as before. The other partials are

∂uz

∂r
(r, z, h, ω) = −πiAL,RD(km, h, ω)Uz(km, z, ω)(−ikm)

√

2

πmr
e−i(kmr− π

4
−

nπ
2

)

∂uz

∂z
(r, z, h, ω) = −πiAL,RD(km, h, ω)

∂Uz

∂z
(km, z, ω)

√

2

πmr
e−i(kmr− π

4
−

nπ
2

) (1.5.12)

= −πiAL,RD(km, h, ω)
1

λ + 2µ

(

Tz + kUr

)

√

2

πmr
e−i(kmr− π

4
−

nπ
2

)

1.6 Conversion of cylindrical strain to cartesian

The choice of using a cylindrical coordinate system to describe wave propagation

was made for computational efficiency, since the cartesian displacement at any

point can be obtained from the cylindrical through a simple coordinate system

rotation. Consider the coordinate system shown in Figure 1.1. The displacements

in the (x, y, z) coordinate system are related to those in the (r, φ, z) system through

the transformation
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0 0 1
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Bower (2010) showed how to relate stresses in a cylindrical coordinate system

to those in a Cartesian system. Rearranging those gives
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A similar transformation is used to relate cartesian strains to cylindrical strains.
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Finally the expressions for rotation are
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Appendix A

Stress, strain and rotetion

A.1 Introduction

The focus on this appendix is the expression of stress, strain and rotation in cylin-

drical coordinates. Strains for a Cartesian system in are defined as ei j =
1
2

(

∂ui

∂x j
+
∂u j

∂xi

)

and for a cylindrical coordinate system in §1.3. This appendix derives the expres-

sions for strain oin cylindrical coordinates.

A.2 Strain

Following (Sollberger et al., 2020), consider a point x where there is a displacement

u, e.g., u = u(x). At a position x + δx, the displacement would be u(x + δx) ≈

u(x) + δu where

δu =























δu1

δu2

δu3























= G























δx1

δu2

δx3























=

























∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3















































δx1

δu2

δx3























(A.2.1)

The matrix G can be written as

G =
1

2

(

G +GT
)

+
1

2

(

G −GT
)

(A.2.2)

The differential displacement can also be written as

δu = ǫ δx +Ω δx (A.2.3)

The first term on the right is the infinitesimal strain tensor and the second is the

rotation tensor, e.g.,

ǫ =
1

2

(

G +GT
)

=



























∂u1

∂x1

1
2

(

∂u1

∂x2
+
∂u2

∂x1

)

1
2

(

∂u1

∂x3
+
∂u3

∂x1

)

1
2

(

∂u2

∂x1
+
∂u1

∂x2

)

∂u2

∂x2

1
2

(

∂u2

∂x3
+
∂u3

∂x2

)

1
2

(

∂u3

∂x1
+
∂u1

∂x3

)

1
2

(

∂u3

∂x2
+
∂u2

∂x3

)

∂u3

∂x3



























(A.2.4)
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and

Ω =
1

2

(

G −GT
)

=



























0 1
2

(

∂u1

∂x2
−
∂u2

∂x1

)

1
2

(

∂u1

∂x3
−
∂u3

∂x1

)

1
2

(

∂u2

∂x1
−
∂u1

∂x2

)

0 1
2

(

∂u2

∂x3
−
∂u3

∂x2

)

1
2

(

∂u3

∂x1
−
∂u1

∂x3

)

1
2

(

∂u3

∂x2
−
∂u2

∂x3

)

0



























. (A.2.5)

The differential displacment can also be written as

δu = ǫ δx +Ω δx = ǫ δx + −→ω × δx (A.2.6)

where the rotation vector is defined as

−→ω =
1

2
∇ × u =

1

2



























(

∂u3

∂x2
−
∂u2

∂x3

)

(

∂u1

∂x3
−
∂u3

∂x1

)

(

∂u2

∂x1
−
∂u1

∂x2

)



























(A.2.7)

This vector notation shows that the ω12 element of Ω is associated with the e3

vector component of −→ω, indicating a rotation in the 1 − 2 plane.

A.2.1 Cartesian coordinate system rotation

Now consider a primed Cartesian coordinate system rleated to the unprimed system

through the transformation matrix, such that






















x1′

x2′

x3′























=























a11 a12 a13

a21 a22 a23

a31 a32 a33













































x1

x2

x3























= TT























x1

x2

x3























. (A.2.8)

where T is an orthonormal matrix, e.g., TT = T−1. In addition, the displacments in

the two coordinate systems are related by u′ = TT u. By the chain rule of differen-

tiation,

∂()

∂x1

=
∂()

∂x1′

∂x1′

∂x1

+
∂()

∂x2′

∂x2′

∂x1

+
∂()

∂x3′

∂x3′

∂x1

=
∂()

∂x1′
a11 +

∂()

∂x2′
a21 +

∂()

∂x3′
a31

(A.2.9)

The partials with respect to x2 and x3 are similarly defined. The deformation in this

new coordinate system is defined as

δu′ = ǫ′ δx′ +Ω′ δx′ (A.2.10)

where

ǫ′ =





























∂u1′

∂x1′

1
2

(

∂u1′

∂x2′
+
∂u2′

∂x1′

)

1
2

(

∂u1′

∂x3′
+
∂u3′

∂x1′

)

1
2

(

∂u2′

∂x1′
+
∂u1′

∂x2′

)

∂u2′

∂x2′

1
2

(

∂u2′

∂x3′
+
∂u3′

∂x2′

)

1
2

(

∂u3′

∂x1′
+
∂u1′

∂x3′

)

1
2

(

∂u3′

∂x2′
+
∂u2′

∂x3′

)

∂u3′

∂x3′





























(A.2.11)
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and

Ω
′ =





























0 1
2

(

∂u1′

∂x2′
−
∂u2′

∂x1′

)

1
2

(

∂u1′

∂x3′
−
∂u3′

∂x1′

)

1
2

(

∂u2′

∂x1′
−
∂u1′

∂x2′

)

0 1
2

(

∂u2′

∂x3′
−
∂u3′

∂x2′

)

1
2

(

∂u3′

∂x1′
−
∂u1′

∂x3′

)

1
2

(

∂u3′

∂x2′
−
∂u2′

∂x3′

)

0





























. (A.2.12)

Since u1 = a11u1′ + a21u2′ + a31u3′ , we have, for example,

e11 = a2
11

∂u1′

∂x1′
a11a21

(∂u1′

∂x2′
+
∂u2′

∂x1′

)

+

a11a31

(∂u1′

∂x3′
+
∂u3′

∂x1′

)

+ a2
21

∂u2′

∂x2′

a12a31

(∂u2′

∂x3′
+
∂u3′

∂x2′

)

+ a2
31

∂u3′

∂x3′

=























a11 a21 a31

... ... ...

... ... ...













































e′
11

e′
12

e′
13

e′
21

e′
22

e′
23

e′
31

e′
32

e′
33













































a11 ... ...

a21 ... ...

a31 ... ...























(A.2.13)

or

ǫ′ = TT ǫT (A.2.14)

which is similar to the effect of a coordinate system rotation on the moment tensor.

A similar derivation would show that

Ω
′ = TT

ΩT (A.2.15)

Because T is orthogonal, it follows that

ǫ = Tǫ′TT (A.2.16)

and

Ω = TΩ′TT (A.2.17)

A.3 Cylindrical coordinate systems

Fung (1994) provided a simple derivation to express strain in a cylindrical coor-

dinate system. First define the primed coordinate system as one that arises from a

simple rotation matrix e.g.,

TT =























cos φ sin φ 0

− sin φ cos φ 0

0 0 1























(A.3.1)
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Such that x′ = TT x. In this new coordinate system, we define ur = u1′ , uφ = u2′

and uz = u3′ . Thus

u1 = ur cos φ − uφ sin φ

u2 = ur sin φ + uφ cos φ

u3 = uz

. (A.3.2)

If the strain matrix in the primed-coordinate system is defined as























err erφ erz

eφr eφφ eφz

ezr eφz ezz























=























e′
11

e′
12

e′
13

e′
21

e′
22

e′
23

e′
31

e′
32

e′
33























(A.3.3)

then the one can easily show that

err = e11 cos2 φ + e22 sin2 φ + e12 sin 2φ

eφφ = e11 sin2 φ + e22 cos2 φ − e12 sin 2φ

erφ = (e22 − e11) cos φ sin φ + e12(cos2 φ − sin2 φ)

erz = e13 cos φ + e23 sin φ

eφz = −e13 sin φ + e23 cos φ

ezz = e33

(A.3.4)

Similarly if the rotation matrix is defined as























0 ωrφ ωrz

−ωrφ 0 ωφz
−ωrz −ωφz 0























=























0′ ω′
12

ω′
13

−ω′
21

0′ ω′
23

−ω′
31
−ω′

32
0′























, (A.3.5)

then the one can easily show that

ωrφ = ω12

ωrz = ω13 cos φ + ω23 sin φ

ωφz = −ω13 sin φ + ω23 cos φ

(A.3.6)

The next step is to express the ei j and ωi j in terms of cylindrical coordinates

and then substitute these into these expressions. To express the ∂ui

∂x j
in terms of the

cylindrical coordinates, we need the operators

∂

∂x
=
∂r

∂x

∂

∂r
+
∂φ

∂x

∂

∂φ
= cos φ

∂

∂r
−

sin φ

r

∂

∂φ
(A.3.7)

∂

∂y
=
∂r

∂y

∂

∂r
+
∂φ

∂y

∂

∂φ
= sin φ

∂

∂r
+

cos φ

r

∂

∂φ
(A.3.8)
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Using these we have

∂u1

∂x1

=
(

cos φ
∂

∂r
−

sin φ

r

∂

∂φ

)

(ur cos φ − uφ sin φ)

= cos2 φ
∂ur

∂r
+ sin2 φ

(ur

r
+
∂uφ

r∂φ

)

− cos φ sin φ
(∂uφ

∂r
+
∂ur

r∂φ
−

uφ

r

)

∂u2

∂x1

=
(

cos φ
∂

∂r
−

sin φ

r

∂

∂φ

)

(ur sin φ + uφ cos φ)

= sin φ cos φ
(∂ur

∂r
−

ur

r
−
∂uφ

r∂φ

)

+ cos2 φ
∂uφ

∂r
− sin2 φ

( ∂ur

r∂φ
−

uφ

r

)

∂u3

∂x1

=
(

cos φ
∂

∂r
−

sin φ

r

∂

∂φ

)

uz

= cos φ
∂uz

∂r
−

sin φ

r

∂uz

∂φ

∂u1

∂x2

=
(

sin φ
∂

∂r
+

cos φ

r

∂

∂φ

)

(ur cos φ − uφ sin φ)

= − sin2 φ
∂uφ

∂r
+ cos2 φ

( ∂ur

r∂φ
−

uφ

r

)

+ cos φ sin φ
(∂ur

∂r
−
∂uφ

r∂φ
−

ur

r

)

∂u2

∂x2

=
(

sin φ
∂

∂r
+

cos φ

r

∂

∂φ

)

(ur sin φ + uφ cos φ) (A.3.9)

= sin2 φ
∂ur

∂r
+ cos2 φ

(ur

r
+
∂uφ

r∂φ

)

+ cos φ sin φ
(∂uφ

∂r
+
∂ur

r∂φ
−

uφ

r

)

∂u3

∂x2

=
(

sin φ
∂

∂r
+

cos φ

r

∂

∂φ

)

uz

= sin φ
∂uz

∂r
+

cos φ

r

∂uz

∂φ

∂u1

∂x3

=
( ∂

∂z

)

(ur cos φ − uφ sin φ)

= cos φ
∂ur

∂z
− sin φ

∂uφ

∂z

∂u2

∂x3

=
( ∂

∂z

)

(ur sin φ + uφ cos φ)

= sin φ
∂ur

∂z
+ cos φ

∂uφ

∂z

∂u3

∂x3

=
∂uz

∂z

Substituting these into the definitions for ei j and ωi j, one then arrives at the
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folowing expressions for strain and rotation in cylindrical coordinates:

err =
∂ur

∂r
erφ =

1

2

(

1

r

∂ur

∂φ
+
∂uφ

∂r
−

uφ

r

)

eφφ =
1

r

(

∂uφ

∂φ
+ ur

)

erz =
1

2

(

∂uz

∂r
+
∂ur

∂z

)

(A.3.10)

ezz =
∂uz

∂z
eφz =

1

2

(

∂uφ

∂z
+

1

r

∂uz

∂φ

)

and

ωrφ =
1

2

(

1

r

∂ur

∂φ
−
∂uφ

∂r
−

1

r
uφ

)

ωrz =
1

2

(

∂ur

∂z
−
∂uz

∂r

)

ωφz =
1

2

(

∂uφ

∂z
−

1

r

∂uz

∂φ

)

and the dilatation ∆ is given by

∆ = ∇ · u =
1

r

∂(rur)

∂r
+

1

r

∂uφ

∂φ
+
∂uz

∂z
= err + eφφ + ezz. (A.3.11)

which is as expected for a divergence in cylindrical coordinates.

A.4 Computation of Cartesian strains, stresses and rotations

The effort in the previous section showed how to compute the stresses and rotations

in a cylindrical coordinate system in terms of the cylindrical displacements. This

is a requirement before modifying existing code to also compute these new quanti-

ties. However it will be necessary to transform these quantities to a local cartesian

system to compare with observations.

Thus far the (r, φ, z) refer to the position of the observation point with respect

to the source of the signal. Now consider the local coordinate system in Figure

A.1. Here the er and eφ indicate the radial and transverse directions with respec to

the source. A new coordinate system x-y is imposed at the observation point, O.

The x vector eR makes an angle θ with respect to the x−axis. The local coorinate

system axes do not have to be oriented N-S or E-W, respectively. In the case of

DAS measurements, the x−axis may be aligned with respect to the direction of the

fiber cable.
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O

x

y

θ

r

e

e

φ

Figure A.1 Sketch of local coordinate system at observation point.

These coordinate systems are related by the transformation






















ux

uy

uz























=























cos θ − sin θ 0

sin θ cos θ 0

0 0 1













































ur

uφ

uz























(A.4.1)

where the square matrix is defined as T.

Applying the tensor rotation rules, we have






















e11 e12 e13

e21 e22 e23

e31 e32 e33























= T























err erφ erz

eφr eφφ eφz

ezr eφz ezz























TT (A.4.2)

In a similar manner the rotated stresses are






















σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33























= T























σrr σrφ σrz

σφr σφφ σφz
σzr σφz σzz























TT (A.4.3)

and the transformed rotatations are






















0 ω12 ω13

−ω21 0 ω23

−ω31 −ω32 0























= T























0 ωrφ ωrz

−ωφr 0 ωφz

−ωzr −ωφz 0























TT (A.4.4)

Finally the dilatation is

∆ = e11 + e22 + e33 = err + eφφ + ezz (A.4.5)
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