WAVE THEORY FOR SEISMOGRAM SYNTHESIS

Chien-Ying Wang, B. S., M. S.

A Digest Presented to the Faculty of the Graduate School of Saint Louis University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

1981
DIGEST

A complete system of wave integral theory is established for purpose of synthesizing high quality and high frequency seismograms in plane layered media. The system consolidates the foundations of wave theory, and greatly facilitates its numerical application.

A classical contour integration method is extensively studied. Without introducing any sort of attenuation, the integration is taken directly along branch cuts and poles. An attempt to classify the constituents of seismograms from different integration contributions is discussed. Such a discussion proposes a new viewpoint for understanding wave fields.

The eigenfunctions of surface waves are found to have concise analytic solutions. These analytic forms not only provide a firm basis for theoretical development, but also provide a way to study high frequency signals and complicated structures.

The reflection and transmission properties of layer interfaces are reconsidered using a new approach. A simple method is proposed to decompose the wave fields, which can easily be incorporated into our system. Using this method, body as well as surface waves from a particular portion of structure are generated.
A new method for expressing seismic sources is explored, which enables us to isolate the fault orientation and receiver azimuthal dependences, thus facilitating the study of source mechanism. An inversion technique is developed to extract the instrument response coefficients. These coefficients were included in designing a recursive filter to describe the instrument effect.

Comparisons with other methods confirm that the new theory is both flexible and reliable. The present study clarifies several ambiguities in the theory of the wave integral method and provides several new techniques for simulating wave propagation in the earth.
WAVE THEORY FOR SEISMOGRAM SYNTHESIS

Chien-Ying Wang, B. S., M. S.

A Dissertation Presented to the Faculty of the Graduate School of Saint Louis University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

1981
COMMITTEE IN CHARGE OF CANDIDACY

Associate Professor Robert B. Herrmann
Chairman and Adviser

Professor Brian J. Mitchell
Professor Otto W. Nuttli
ACKNOWLEDGMENTS

Foremost, I wish to thank my advisor, Dr. Robert B. Herrmann, for providing continuous guidance and stimulating ideas, throughout the duration of this work. I am especially grateful for his meticulous contributions to major parts of this dissertation.

I benefited greatly from discussions with Dr. Brian J. Mitchell and Dr. Otto W. Muttl. Their interests provided much of the impetus and direction for the success of the work.

I want to thank Dr. David G. Harkrider for providing me the idea of using analytic solutions of eigenfunctions.

Special thanks are due to Eric J. Haug, Chandan K. Saikia, and David R. Russell. Their assistance in developing and maintaining the computer programs has been of great help. Finally, I thank my wife Tai-Chi and my son Albert, for their understanding and sacrifices in behalf of this effort.

This research was supported by National Science Foundation under Grant PFR-7909795.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III SURFACE WAVE</td>
<td>72</td>
</tr>
<tr>
<td>3.1 Haskell's Matrices for the Layers</td>
<td>73</td>
</tr>
<tr>
<td>3.2 Normal Mode Theory</td>
<td>85</td>
</tr>
<tr>
<td>IV BODY WAVE</td>
<td>100</td>
</tr>
<tr>
<td>4.1 The Influence of Leaky Modes on Body Waves</td>
<td>105</td>
</tr>
<tr>
<td>4.2 Locked Mode Approximation</td>
<td>124</td>
</tr>
<tr>
<td>4.3 Reflection Method and Reflectivity Method</td>
<td>134</td>
</tr>
<tr>
<td>V SOURCE AND INSTRUMENT</td>
<td>156</td>
</tr>
<tr>
<td>5.1 Source Considerations</td>
<td>156</td>
</tr>
<tr>
<td>5.2 Instrument Response Parameters by Least-Square Inversion</td>
<td>162</td>
</tr>
<tr>
<td>5.3 Simulating the Instrument by IIR</td>
<td>173</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (CONT'D)

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI COMPARI SONS</td>
<td>182</td>
</tr>
<tr>
<td>VII SUMMARY AND CONCLUSIONS</td>
<td>195</td>
</tr>
</tbody>
</table>

APPENDIX

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Layer Matrix</td>
<td>199</td>
</tr>
<tr>
<td>B Compound Matrix</td>
<td>201</td>
</tr>
<tr>
<td>C Symmetry of Compound Matrix</td>
<td>205</td>
</tr>
<tr>
<td>D Perturbation of Surface Wave</td>
<td></td>
</tr>
<tr>
<td>Energy Integrals</td>
<td>209</td>
</tr>
<tr>
<td>E Description of the Eigenfunction Programs</td>
<td>215</td>
</tr>
</tbody>
</table>

| BIBLIOGRAPHY | 226 |
| VITA AUCTORIS | 235 |
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Earth Models: Simple Crustal Model, Central U.S. Model.</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>Comparison of Parameters for Synthetic Pulses.</td>
<td>170</td>
</tr>
<tr>
<td>3</td>
<td>Two Layers Overlying Half-Space Model.</td>
<td>189</td>
</tr>
<tr>
<td>4</td>
<td>Earth Models: El Centro Structure, Imperial Valley Structure</td>
<td>191</td>
</tr>
<tr>
<td>5</td>
<td>Information for Synthesizing Seismograms.</td>
<td>217</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Illustration Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Direction of axes, numbering of layers and interfaces, and the depth of source in the source layer m.</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Contours in the complex k plane for evaluating the wavenumber integrals. The positions of the k_{an} and k_{bn} branch points and the surface-wave poles (X's) are indicated. Branch cuts are shown by thicker lines. Two circular arcs, γ_1 and γ_2, surround the possible Hankel function pole at $k = 0$.</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>The responses of integrands in equation (II-2-15) along the real k-axis branch cut. The CUS earth model, a source depth of 10 km and a frequency of 1.0 Hz, are used.</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>The real k-axis wavenumber responses of ZSS component along the real branch cut as a function of frequency between 0.1 and 10.0 Hz. The simple crust model (SCM) and a 10 km deep source are used.</td>
<td>57</td>
</tr>
<tr>
<td>5</td>
<td>The dispersions curves for Rayleigh waves as expressed in the frequency and wavenumber plane for a 30 layer oceanic model.</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>The dispersions curves for Rayleigh waves as expressed in the phase velocity and period plane. The same earth model as in Figure 5 is used.</td>
<td>61</td>
</tr>
<tr>
<td>7</td>
<td>Radial component velocity time histories (RDS) due to a vertical dip-slip dislocation source at a depth of 10 km in SCM model. A source time function with $\tau = 0.5$ sec and seismic moment of 1.0E+20 dyne-cm are used.</td>
<td>65</td>
</tr>
<tr>
<td>FIGURE</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Results corresponding to Figure 7 but for the vertical component.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Results corresponding to Figure 7 but for the tangential component.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Radial component velocity time histories (RDD) due to a 45° dip-slip dislocation source at a depth of 10 km in CUS model. Other parameters are the same as in Figure 7.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Vertical component velocity time histories (ZSS) due to a vertical strike-slip source in CUS model. The sources are buried at different depths as indicated at the end of each seismogram. Epicentral distance is kept at 100 km. Other parameters are the same as in Figure 7.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Theoretical seismograms generated by eigenfunction programs. The upper five seismograms are due to a dislocation source with a triangular source time function and buried at a depth of 14 km in CUS model. The frequencies used cover the range from 0 to 10 Hz. The bottom seismogram is due to the same dislocation source but with a step source time function. A Q-model with (Q_\beta = 250) for top 24 km and (Q_\beta = 2000) for other layers is used. The number at the end of each seismogram indicates the epicentral distance.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Results corresponding to Figure 12 but for the radial component.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Results corresponding to Figure 12 but for the tangential component.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Study of contribution of various components of contour integration. (a) is the set of vertical component seismograms.</td>
<td></td>
</tr>
<tr>
<td>FIGURE</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>due to an explosive source at 100 km away and buried at 10 km deep in SCM model. (b) is the set of radial component seismograms due to a 45° dip-slip source at 25 km away and buried at 1 km deep in CUS model. In each set of seismograms the top one is the complete solution, the middle is the pole contribution, and the bottom is the contribution from branch line integral</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Same comparison as for Figure 15. The radial component seismograms due to a dip-slip source buried at 10 km depth in SCM model are displayed. Two sets of seismograms correspond to epicentral distances at 25 km and 200 km, respectively</td>
<td>102</td>
</tr>
<tr>
<td>17</td>
<td>Same comparison as Figure 16 but for the vertical component</td>
<td>103</td>
</tr>
<tr>
<td>18</td>
<td>Same comparison as Figure 16 but for the tangential component</td>
<td>104</td>
</tr>
<tr>
<td>19</td>
<td>Curves of the null real part of the period equation (denote by '+i' sign) and of the null imaginary part (denote by 'x' sign) in the fourth quadrant of (+,−) sheet of complex k plane. k_{1N} and k_{2N} are branch points. The top figure is obtained at 0.32 Hz and the bottom at 0.33 Hz. The SCM model is used.</td>
<td>112</td>
</tr>
<tr>
<td>20</td>
<td>Paths of leaky modes of SCM model through the fourth quadrant of (+,−) sheet of complex k plane. The frequencies change from 0.25 Hz to 0.40 Hz. Two kinds of modes, namely PL and OP modes, exist before k_0, which is the wavenumber corresponding to the first layer P velocity. After this point, two kinds of modes mingle together and form the shear-coupled PL-OP mode. The numbers at the beginning of each path indicate the starting frequencies</td>
<td>113</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS (CONT'D)

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Same as Figure 20, but for leaky modes on ((-,-)) sheet of complex k plane.</td>
<td>114</td>
</tr>
<tr>
<td>22</td>
<td>Same as Figure 20, but for five-layer CUS model.</td>
<td>115</td>
</tr>
<tr>
<td>23</td>
<td>The effect of leaky modes on the variations of integrands along the real branch cut. 'x' denotes the modes on the ((+,-)) sheet and '+' denotes the modes on the ((-,-)) sheet. The response curves of integrands are obtained using the SCM model with the source at 10 km depth. The names of the integrand responses are the same as those in Figure 3. Four plots correspond to frequencies at 0.25 Hz, 0.50 Hz, 0.75 Hz, and 1.0 Hz, respectively.</td>
<td>118</td>
</tr>
<tr>
<td>24</td>
<td>Results corresponding to Figure 23, but for the CUS model at frequencies 0.25 Hz and 0.75 Hz.</td>
<td>120</td>
</tr>
<tr>
<td>25</td>
<td>Paths of leaky modes of SCM model for the SH case. Other parameters are the same as Figure 20.</td>
<td>123</td>
</tr>
<tr>
<td>26</td>
<td>The positions of poles along the real k-axis at frequencies 0.25 Hz, 0.50 Hz, 0.75 Hz, and 1.0 Hz.</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>$k_{\alpha N}$ and $k_{\beta N}$ are branch points for SCM model without the cap layer. When the cap layer is added, the leaky modes are forced to migrate into the normal mode positions as those shown to the left of $k_{\beta N}$. These created 'locked' modes are numerous and are difficult to locate. The positions of regular normal modes are essentially not affected by the present of the cap layer.</td>
<td></td>
</tr>
<tr>
<td>FIGURE</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>27</td>
<td>The amplitude factors, which represent the relative contributions of different modes to the final solution, are displayed against the period for the capped SCM model. The modes displayed are of the order 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 110.</td>
<td>129</td>
</tr>
<tr>
<td>28</td>
<td>Comparison of locked mode approximation to the complete solution using the method of chapter II. (a) the locked mode approximation solution; (b) the wave integral complete solution; (c) the pole contribution; (d) the branch line integral contribution. The SCM model with a strike-slip dislocation source at a depth of 10 km is used. The cap layer is located at 200 km deep and has a P velocity of 20 km/sec, S velocity of 10 km/sec, and density of 6 gm/cm³.</td>
<td>131</td>
</tr>
<tr>
<td>29</td>
<td>Results corresponding to Figure 28 but for the radial component and a dip-slip source.</td>
<td>132</td>
</tr>
<tr>
<td>30</td>
<td>Results corresponding to Figure 28 but for the tangential component and a 45° dip-slip source.</td>
<td>133</td>
</tr>
<tr>
<td>31a</td>
<td>Radial component complete seismograms. The SCM model and an explosive source at 10 km depth are used. A distance range of 25-500 km is presented. Multiple reflections and surface waves are well-developed, especially for large distances.</td>
<td>147</td>
</tr>
<tr>
<td>31b</td>
<td>Results using the source and model of Figure 31a, but the reflectivity of the free surface is suppressed. Some easily identified phases from the crust-mantle boundary are indicated.</td>
<td>148</td>
</tr>
<tr>
<td>32</td>
<td>Results using the source and model of Figure 31 but for the vertical component.</td>
<td>149</td>
</tr>
<tr>
<td>FIGURE</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>33</td>
<td>The effect of reflection suppression. The displays are for the radial component due to a strike-slip source buried at 10 km depth, and for stations at distances of 200 and 300 km. In each set, (a) is for the two-layer SCM model; (b) is for the three-layer modified SCM model; and (c) is for the modified SCM model with the reflections from the secondary interface suppressed.</td>
<td>152</td>
</tr>
<tr>
<td>34</td>
<td>Results using the source and model of Figure 33 but for the tangential component.</td>
<td>153</td>
</tr>
<tr>
<td>35</td>
<td>(a) Vertical component complete seismograms due to an explosive source buried at 10 km depth for the modified SCM model. (b) is the seismogram for the same model but with the reflections from the free surface and secondary interface suppressed. Compare (b) with Figure 32b.</td>
<td>154</td>
</tr>
<tr>
<td>36</td>
<td>The calibration pulse and its amplitude spectrum obtained from the WWSSN LPZ seismograph at the station FVM.</td>
<td>171</td>
</tr>
<tr>
<td>37</td>
<td>The impulse-response pulse and its amplitude and phase spectra of a simulated instrument obtained by applying the inversion technique to the calibration pulse of Figure 36.</td>
<td>173</td>
</tr>
<tr>
<td>38</td>
<td>Simulation of an LRSM 6284-13 instrument using the Z-transform method. Three response curves correspond to different sampling rates of 1.0 sec, 0.5 sec, and 0.0625 sec.</td>
<td>177</td>
</tr>
<tr>
<td>39</td>
<td>Simulation of a WWSSN SP instrument using the bilinear Z-transform method. Different response curves correspond to different sampling rates of 0.15 sec, 0.05 sec, 0.01 sec, and 0.005 sec.</td>
<td>179</td>
</tr>
<tr>
<td>FIGURE</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Seismograms showing the effect of the instrument. The two displays are for the vertical and tangential components, respectively. (a) is the ground displacement; and (b) is the seismogram after passing through a short-period instrument. The instrument response is that shown in Figure 39</td>
<td>181</td>
</tr>
<tr>
<td>41</td>
<td>Comparison of Cagniard-de Hoop and wave theory solutions for a vertical strike-slip source at a depth of 10 km in a half-space with parameters of the first layer of SCM model. (a) Cagniard-de Hoop solution. (b) The complete wave theory solution. (c) The wave theory solution containing only the near-field and far-field P-SV terms. (d) The wave theory solution including only the far-field P-SV term</td>
<td>183</td>
</tr>
<tr>
<td>42</td>
<td>Results using the source and model of Figure 41, but for the radial component due to a vertical dip-slip source</td>
<td>184</td>
</tr>
<tr>
<td>43</td>
<td>Comparison of wave integral solution with the finite element solution for the radial and tangential components due to a vertical strike-slip dislocation buried at a depth of 1 km in the two layers overlaying the half-space model of Table 3</td>
<td>186</td>
</tr>
<tr>
<td>44</td>
<td>Results using the source and model of Figure 43 but for a source buried at the depth of 5 km</td>
<td>187</td>
</tr>
</tbody>
</table>

LIST OF ILLUSTRATIONS (CONT'D)

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Comparison of Love wave synthetic ground displacements with Swanger and Boore's modal summation method (solid line in a) as well as Heaton and Helmberger's ray summation method (dashed line in a) of the 1968 Borrego Mountain earthquake. A vertical strike-slip source at 6 km depth and a symmetric triangular source time function of 1 second duration are used. The epicentral distance is 60 km and the azimuth is 8 degrees from the strike of the fault. The model used is the El Centro structure listed in Table 4. (b) is the result of eigenfunction programs but including only the first three modes which Swanger and Boore used. (c) is the result including all modes. (d) shows the synthetics from the locked mode approximation with a rigid layer at 200 km deep. Note that (d) successfully models the first arrival of ray theory solution.</td>
<td>192</td>
</tr>
<tr>
<td>46</td>
<td>Same comparison as for Figure 45 but for the 1976 Brawley earthquake. The Imperial Valley structure (Table 4) of Heaton and Helmberger (1978) is used. The source is a vertical strike-slip point buried at 6.9 km, and the source time function is a 1.5 sec duration triangle. The top trace gives the real data. Our solution (b), which is the summation of first five modes, shows a better fit of first arrival around 12 second than Swanger and Boore (1979). Again, the locked mode approximation solution (d) gives a good match to the ray theory solution in the front part of the record, but not in the rest.</td>
<td>193</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS (CONT'D)

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>Flow chart of eigenfunction programs</td>
<td>216</td>
</tr>
<tr>
<td>48</td>
<td>Jumping method for searching the poles</td>
<td>219</td>
</tr>
<tr>
<td>49</td>
<td>Phase velocity dispersion curves for the CUS model at short periods</td>
<td>220</td>
</tr>
<tr>
<td>50</td>
<td>A expansion of Figure 49 for period between 0.10 and 0.15 second and phase velocity between 3.8 and 3.9 km/sec</td>
<td>221</td>
</tr>
<tr>
<td>51</td>
<td>Group velocity dispersion curves for the CUS model. Note that the low order higher modes have group velocity around 3.5 km/sec.</td>
<td>224</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

1.1 The Problem

In recent years synthetic seismograms have become increasingly useful as an aid to seismic data interpretation. Various techniques have been developed to calculate theoretical seismograms which are valid, at least, for plane-layered media. However, further improvements are still desirable. The problems of computational efficiency and accuracy, restricted by the use of a computer, continue to be a challenge. To solve them a thorough understanding of the nature of the problem and a detailed reexamination of the related theories are truly necessary.

The work of Thomson (1950) and Haskell (1953) first permitted the treatment of multi-layered media using matrix calculus. Prior to that time it was only possible to consider simple one- and two-layer models. Many developments based on the Thomson-Haskell technique have been pursued. The extension of their work to compound matrices and source specification are notable examples. Most of these developments, however, can be related to Haskell's work between 1953 and 1964. Because of simplicity in both concept and mathematics,
Haskell's research provided an easily understandable approach to the problem. The purpose of this dissertation is to reconcile different formalisms and to establish a complete system to treat wave propagation in layered media using Haskell's work as a starting point. Such a system will provide a foundation for handling more complicated cases and for extending the theoretical studies.

The formulation of the method developed by Haskell is constructed in the frequency domain. The complete response at a particular frequency is represented by semi-infinite integrals with respect to wavenumber so as to automatically include all types of waves. To match the boundary conditions, the responses are described in terms of a layer matrix. There still exist several questions about the properties of this matrix and its compound form. A systematic approach to the problem will provide further insight to the Haskell matrices, and will promote their use.

After stacking the layer matrices over layers, time domain seismograms can be synthesized by performing any of several integrations in complex frequency-wavenumber plane. The behavior of the integrands must be known in order to choose the proper numerical method for integrations. This analysis also provides a framework for understanding the nature of different signals
on the recorded seismogram, which in turn establishes a basis for exploring the effects of seismic source and earth structure on the seismograms.

The main application of the theory developed in this dissertation will be for synthesizing high quality seismograms at high frequencies. High frequency signals have become increasingly important in the studies of deep earth structure, earthquake source mechanism, and strong ground motion.

1.2 Historical Review

The era of the seismogram synthesis was opened by H. Lamb (1904), who generated the first synthetic seismogram for an impulse source acting upon a semi-infinite medium. Most early studies were for simple models such as liquid layers or one solid layer over a halfspace (see Ewing et al, 1957). With the advent of modern computers, the research rapidly grew to cover more complicated models and more sophisticated cases. In the last two decades, theoretical as well as numerical developments have progressed tremendously. We will now review the contribution of some papers on synthesizing seismogram. Most of them have formed the foundation of modern theoretical seismology.

In most theoretical developments, the evaluation
of synthetic seismograms generally can be divided into two parts: first, the solution of an ordinary differential equation using transform methods with appropriate radiation and boundary conditions, and second, the evaluation of the corresponding inverse transforms. Several methods exist for both parts and many combinations are possible. One important approach, called 'generalized ray theory', uses the Laplace transform technique and generates waves at discrete time points by summing hundreds of rays. The basis of this method comes from Cagniard (1962) and de-Hoop (1960). Although this theory works well in predicting particular phases, it can be inaccurate and cumbersome when modeling long time duration seismograms for a multilayered structure. Hron (1972), Kennett (1974) and Wiggins and Madrid (1974) have made great efforts to improve the efficiency of calculating the responses of a large number of rays. A recent review of the method can be found in Pao and Gajewski (1977). Helmbberger (1968) and Vered and Ben-Menahem (1976) present typical applications of the method to layered media.

Another approach, called 'wave theory', uses the Fourier transform technique and calculates all the waves excited in the structure by integrating over frequency and wavenumber (or slowness). This method encompasses normal-mode theory, especially for the determination of dispersion of surface waves (Press et
al., 1961). Because of increasing complexity at higher frequencies, the method suffers from computational inefficiency and stability problems. This dissertation will thoroughly explore this theory, especially at high frequencies.

In 1953 Haskell published a corrected version of Thomson's (1950) theory of elastic waves in a plane multilayered medium. Haskell's study introduced the 'matrix method' to seismic wave studies. This method provides a systematic approach and greatly facilitates numerical computation. Since then, the theory has been extended principally by Haskell (1963, 1964) and Har-krider (1964, 1970) to deal with the surface wave motion. Because of growing exponential terms in the matrix under certain conditions, the simple matrix method suffered from numerical problems which caused loss of precision. Knopoff (1964), Dunkin (1965), and Thrower (1965) reformulated the computational procedures using compound matrix extensions in which the minors of the layer matrices are propagated from interface to interface instead of the matrices themselves, so that the squared exponential terms never appear, thus controlling the precision problem. Randall (1967), Watson (1970), and Schwab and Knopoff (1970) made successful improvements in computational efficiency and accuracy. More recently Abo-Zena (1979) and Menke (1979) reexamined the matrix approach for
extension to very high frequencies.

The existence of dispersive surface waves has been recognized since the early days of the science of seismology. Keilis-Borok (1960) presented a detailed study of surface waves generated in a layered medium. Vlaar (1966) applied eigenfunction theory in the analysis of Love wave generation. Saito (1967) developed a solution for surface wave excitation in terms of mutually orthogonal eigenfunctions for the generation of free oscillations in a radially inhomogeneous earth, and for surface waves in a vertically inhomogeneous flat earth. A recent contribution by Takeuchi and Saito (1972) summarized the previous studies, considering both theory and numerical methods. They applied the calculus of variations to derive the derivative-related quantities such as group velocity, attenuation factor, etc., from the surface wave eigenfunctions. This work provided a detailed mathematical basis for surface wave eigenfunction theory.

Hudson (1969a,b) extended the work of Haskell (1964) and Harkrider (1964) to synthesize seismic signals at teleseismic distances. Hudson's analysis is applicable for large epicentral distances, as all near-field terms are ignored. However, as shown by Herrmann (1978a), the truncation of these terms causes non-causal arrivals. Herrmann (1979) and Wang and
Herrmann (1980) expressed the Haskell formalism in a more concise form, and improved the integration method of Ewing et al. (1957) for synthesizing high quality seismograms. Other interesting methods to treat the problem of integration over the wavenumber-frequency domain appear in the work of Chapman (1978), Apsel (1979), and Bouchon (1979, 1981).

Using another approach, Fuchs (1968) and Fuchs and Müller (1971) recognized that the reflectivity of some layers (reflection zone) can be isolated and excited by some incident waves from a 'transmission zone' to produce synthetic body wave seismograms. Their development was named the 'reflectivity method'. Fuchs (1971) simplified the solution by using the stationary phase approximation. The method is largely used in the study of crust or upper mantle structures from an artificial explosive source. However Kind and Müller (1975, 1977) and Müller and Kind (1976) extended the method to include a double-couple point source, and after adding the earth flattening correction (Müller, 1971), they were able to simulate many real earth phases, such as Sn, ScS, SKS, etc. Kennett (1975) skillfully separated the transmission response beneath the source and the receiver in order to study the laterally varying structures. Another achievement of this method was the introduction of attenuation into the layers in the form of complex velocities (Kind, 1978). This modification
enables a computation for only a short time window, even if the nonattenuated seismogram has a long duration.

Extending the systematic development by Gilbert and Backus (1966) of the 'propagator matrix', Kennett (1974) and his colleagues were able to express the matrix in terms of reflection and transmission properties of the stratified medium. This research bridged the gap between the wave approach and the ray method, and also provided an internal view of the layer matrix theory. Kennett et al. (1978) extensively explored the symmetry properties of reflection and transmission coefficients. These symmetries not only reflect the theory of reciprocity, but provide a novel approach to exploit the properties of Haskell matrices. Kennett and Kerry (1979), Kennett (1980), and Kerry (1981) gave a complete derivation for this 'reflection and transmission coefficient' method and also proposed some interesting numerical evaluation techniques.

In searching for the roots of the period equation in the complex frequency plane, Gilbert (1964) described several wave-guide generated waves as leaky modes. Alsop (1970) interpreted these waves as a constructive interference of reverberating waves within a layer. Abramovici (1968) and Cochran et al. (1970) found a relationship of this kind of mode to the regular nor-
mal mode. Watson (1972) gave a very detailed discussion of leaky modes by using real frequency-complex wavenumber analysis. In the observed data, it is believed that a dispersive body wave, called the PL wave, which arrives between the direct P and S waves, arises from the contribution of leaky modes. Oliver and Major (1960), Laster et al. (1965), and Su and Dorman (1965) provided some real and experimental data analysis to reveal the properties of this wave. The success of improved computation with Haskell's method may lead to further insight into this phase.
CHAPTER II

WAVE INTEGRAL THEORY

The objective of this chapter is to establish a complete, self-contained, system for wave integral theory. The solution for the surface displacements is found using procedures parallel to those of Haskell (1964). The derivations are put forth in an easily understandable, step by step, way. Some interesting symmetry properties of the layer matrix or its compound form are revealed, which are then used to simplify the numerical application or theoretical extension.

A numerical integration technique of Herrmann (1978a, 1979) also is extended. The method requires contour integration in the complex wavenumber plane, the performance of which is complicated by the presence of singularities. The contour integration reduces to a consideration of pole residue contributions and branch line integrals. A detailed discussion of these aspects is undertaken, which is then used to improve the computational efficiency. The discussion also provides a framework for the investigation of different signals making up the complete seismogram.
2.1 Haskell's Matrix

In the present section a previous modification (Wang and Herrmann, 1980) of Haskell's theory (Haskell 1963, 1964) is further developed and revised. All of the derivations are made in a step-by-step manner for clarity. Several significant differences with respect to Haskell's papers are specifically noted. Such revisions are made not only to simplify the expressions, but also to compare them to other related formalisms to be discussed later. The three different types of waves, P, SV and SH, existing in the layered media are all included.

We define a semi-infinite elastic medium made up of N parallel, solid, homogeneous, isotropic layers (Figure 1). Each layer is characterized by the compressional wave velocity c, the shear wave velocity β, the density ρ, and the layer thickness d. Any linear variation of elastic properties can be approximated by many small layers (Fuchs, 1968). The m^{th} layer is bounded by the m and $m+1$ interfaces. Thus any quantities at the free surface are denoted by the subscript '1'. If a water layer is placed on the top, it will be assigned a layer index '0'. The parameters in the half-space are denoted by the subscript 'N'. In order to match the boundary conditions at the horizontal layer interfaces, a cylindrical coordinate
Figure 1. Direction of axes, numbering of layers and interfaces, and the depth of source in the source layer m.
system \((r, \varphi, z)\) is chosen with origin on the free surface just above the source, and the \(z\) axis is taken positive downward.

In the following, expressions will be derived for the displacements from a point source using Haskell's notation (Haskell, 1964). Let us start from the very beginning. The displacement field can be expressed in terms of three different types of potentials, \(\varphi\) for P waves, \(\psi\) for SV waves, and \(\chi\) for SH waves. The function \(\varphi\) is known as the scalar potential. \(\psi\) and \(\chi\) are the vector potentials. Define

\[
A = e_z \chi + \nabla \times (e_z \psi),
\]

where \(e_z\) is the unit vector in the \(z\) direction. Variables with bold cases represent vectors or matrices. The displacement \(u\) can be expressed as

\[
u = \nabla \varphi + \nabla \times A = \nabla \varphi + \nabla \times (e_z \chi) + \nabla \times \nabla \times (e_z \psi), \tag{II-1-1}
\]

where the potential functions \(\varphi\), \(\psi\), and \(\chi\) satisfy the wave equations:

\[
\nabla^2 \varphi = \frac{1}{\alpha^2} \frac{\partial^2 \varphi}{\partial t^2},
\]

\[
\nabla^2 \psi = \frac{1}{\beta^2} \frac{\partial^2 \psi}{\partial t^2}, \tag{II-1-2}
\]

\[
\nabla^2 \chi = \frac{1}{\beta^2} \frac{\partial^2 \chi}{\partial t^2}.
\]

Expanding the gradient and curl operators in equation (II-1-1) in cylindrical coordinates, we obtain the
three components of displacement in terms of potentials:

\[
\begin{align*}
 u_r &= \frac{\partial \varphi}{\partial r} + \frac{\partial \chi}{\partial \varphi} + \frac{\partial^2 \psi}{\partial r \partial \varphi} \\
 u_z &= \frac{\partial \varphi}{\partial z} + \frac{\partial^2 \psi}{\partial z^2} - \nabla^2 \psi \\
 u_\varphi &= \frac{\partial \varphi}{r \partial \varphi} - \frac{\partial \chi}{\partial r} + \frac{\partial^2 \psi}{r \partial \varphi \partial \varphi}.
\end{align*}
\]

(II-1-3)

If the time dependence is isolated by the Fourier transform factor \(e^{i \omega t} \), the resulting Helmholtz equations (II-1-2) can be solved using characteristic functions of three cylindrical coordinates:

\[
\begin{align*}
 \psi(r, \theta, z, \omega) &= \begin{pmatrix} \cos n \varphi \\ \sin n \varphi \end{pmatrix} \begin{pmatrix} J_n(kr) \\ Z_1(z) \end{pmatrix} \\
 \chi(r, \theta, z, \omega) &= \begin{pmatrix} \cos n \varphi \\ -\sin n \varphi \end{pmatrix} \begin{pmatrix} J_n(kr) \\ F_3(z) \end{pmatrix}.
\end{align*}
\]

(II-1-4)

where \(J_n(kr) \) is the Bessel function of the first kind of order \(n \). The solution involving the Bessel function of the second kind, \(Y_n \), is not used since the solution must be valid at \(r = 0 \) where this function becomes unbounded. The subscript index, \(n \), indicates azimuthal mode number, and \(k \) indicates the horizontal wavenumber. \(Z_1 \), \(Z_2 \), and \(F_3 \) are functions of \(z \) only, satisfying

\[
\begin{align*}
 \frac{d^2 Z_1}{dz^2} - \nu_a^2 Z_1 &= 0 \\
 \frac{d^2 Z_2}{dz^2} - \nu_\theta^2 Z_2 &= 0 \\
 \frac{d^2 F_3}{dz^2} - \nu_\theta^2 F_3 &= 0.
\end{align*}
\]

(II-1-5)
where

\[
\nu_\alpha = \begin{cases}
\sqrt{\frac{k^2 - \omega^2}{\alpha^2}} & k \geq \frac{\omega}{\alpha} \\
i \frac{\omega}{\alpha^2 - k^2} & k < \frac{\omega}{\alpha}
\end{cases}
\]

\[
\nu_\beta = \begin{cases}
\sqrt{\frac{k^2 - \omega^2}{\beta^2}} & k \geq \frac{\omega}{\beta} \\
i \frac{\omega}{\beta^2 - k^2} & k < \frac{\omega}{\beta}
\end{cases}
\]

Now let us consider one homogeneous layer first. By substituting equation (II-1-4) into (II-1-3), we find

\[
4\pi \rho u_r(r, \theta, z, \omega) = \cos n \theta \left[- \left(\frac{d \zeta_2}{dz} + Z_1^2 \right) k \right] J_n(kr) \right] \\
+ \sin n \theta \left[c \rightarrow s \right]
\]

\[
4\pi \rho u_\theta(r, \theta, z, \omega) = \cos n \theta \left[k^2 Z_2^2 + \frac{d \zeta_1}{dz} \right] J_n(kr) \right] \\
+ \sin n \theta \left[c \rightarrow s \right] \quad \text{(II-1-6)}
\]

\[
4\pi \rho u_\phi(r, \theta, z, \omega) = \sin n \theta \left[k F^2 \right] \frac{d J_n(kr)}{dr} + \left(\frac{d \zeta_2}{dz} + Z_1^2 \right) k \frac{n J_n(kr)}{kr} \\
- \cos n \theta \left[c \rightarrow s \right]
\]

where 'c→s' indicates the term in brackets above with c replaced by s. The constant \(\rho \) is included for simplifying the notation when the stresses are involved, and \(4\pi \) for balancing the source terms which come from the Green's function. Using the transformed displacements given by equations (II-1-6), the transformed
stresses across a horizontal plane are

\[4\pi T_{z\varphi}(r, \varphi, z, \omega) = 4\pi \mu \left[\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \right] \]

\[= \cos n \varphi \left\{ \omega^2 \left[(\gamma-1)Z_0^2 + \frac{\gamma}{k^2} \frac{dZ_0^2}{dz} \right] k \right\} \frac{dJ_n(kr)}{dkr} - \left\{ \frac{\mu}{\rho} \frac{dF_0^2}{dz} k \right\} \frac{nJ_n(kr)}{kr} \]

\[+ \sin n \varphi \left\{ c \right\} \]

\[4\pi T_{zz}(r, \varphi, z, \omega) = 4\pi \lambda \left[\frac{\partial u_r}{\partial r} + \frac{1}{r} \frac{\partial u_\varphi}{\partial \varphi} + \frac{u_r}{r} + \frac{\partial u_\varphi}{\partial z} + 2\mu \frac{\partial u_z}{\partial z} \right] \]

\[= \cos n \varphi \left\{ \omega^2 \left[(\gamma-1)Z_0^2 + \frac{\gamma}{k^2} \frac{dZ_0^2}{dz} \right] J_n(kr) \right\} \]

\[+ \sin n \varphi \left\{ c \right\} \] \hspace{1cm} (II-1-7)

\[4\pi T_{z\varphi}(r, \varphi, z, \omega) = 4\pi \mu \left[\frac{1}{r} \frac{\partial u_\varphi}{\partial \varphi} + \frac{\partial u_z}{\partial z} \right] \]

\[= \sin n \varphi \left\{ \frac{\mu}{\rho} \frac{dF_0^2}{dz} k \right\} \frac{dJ_n(kr)}{dkr} + \omega^2 \left[(\gamma-1)Z_0^2 + \frac{\gamma}{k^2} \frac{dZ_0^2}{dz} \right] k \frac{nJ_n(kr)}{kr} \]

\[- \cos n \varphi \left\{ c \right\} \]

where

\[\gamma = \frac{2\rho^2 k^2}{\omega^2} \]

In equations (II-1-6) and (II-1-7), the azimuth dependent terms, the cosine and sine functions, are implied by the superscripts c and s, respectively. Since the model is plane layered, such a dependence arises solely from the orientation of the force system of the source. For homogeneous solutions, we first ignore the azimuthal terms and define the functions \(U_r, U_z, T_z, T_\varphi, U_\varphi, \) and \(T_\varphi \) from the bracketed terms in equation (II-1-6)
and (II-1-7) as follows

\[\rho U_r = - \left(\frac{dZ_2}{dz} + Z_1 \right) k \]
\[\rho U_z = k^2 Z_2 + \frac{dZ_1}{dz} \]
\[T_z = (\gamma - 1) Z_1 + \gamma \frac{dZ_2}{dz} \]
\[T_r = \left[(\gamma - 1) Z_2 + \frac{\gamma}{k^2} \frac{dZ_1}{dz} \right] k \]
\[\rho U_\theta = F_3 k \]
\[T_\theta = \frac{\mu}{\rho} \frac{dF_\theta}{dz} k. \]

The azimuthal terms dropped will be reconsidered when the source is introduced.

These functions are useful, since all of them satisfy the transformed boundary conditions: (a) the continuity of displacement and stress across the interfaces of layers, (b) the vanishing of stresses at the free surface, and (c) no upward waves in the bottom halfspace if the source is inside one of the upper layers. If we further require that waves decay exponentially in the halfspace, these functions are nothing but the eigenfunctions of a boundary value problem. In equation (II-1-8) there are extra k's compared to Haskell's (1964) definitions. The functions with an extra k are those which possess \(\frac{dJ_n(kr)}{dkr} \) in the corresponding equations (II-1-6) and (II-1-7). Since \(J_n(kr) \) or \(J_{n-1}(kr) \) are characteristic functions in the \(r \) direction, these k's make the functions \(U_r, U_z, \) and...
U_θ have dimensions of displacement. Also U_τ differs by a minus sign and T_θ by ω^2 when compared to Haskell (1964) or Wang and Herrmann (1980). Such a particular definition will allow the layer matrix α and all other Haskell's matrices defined below to be more symmetric.

From equation (II-1-8), it is easy to find ordinary differential equations for these functions. Expressing equation (II-1-8) in matrix form, we have

$$
\begin{bmatrix}
U_\tau \\
U_z \\
T_z \\
T_\tau \\
U_\theta \\
T_\theta
\end{bmatrix}
=
\begin{bmatrix}
0 & -\frac{k}{\rho} & -\frac{k}{\rho} & 0 & 0 & 0 \\
1 & 0 & 0 & \frac{k^2}{\rho} & 0 & 0 \\
(\gamma-1) & \gamma & 0 & 0 & 0 & Z_1 \\
\frac{\gamma}{k} & 0 & 0 & (\gamma-1)k & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{k}{\rho} & 0 \\
0 & 0 & 0 & 0 & \mu\frac{k}{\rho} & 0
\end{bmatrix}
\begin{bmatrix}
\frac{dZ_1}{dz} \\
Z_1 \\
\frac{dZ_2}{dz} \\
Z_2 \\
\frac{dF_3}{dz} \\
F_3
\end{bmatrix}
$$

(II-1-9)

The inverse of this equation is

$$
\begin{bmatrix}
\frac{dZ_1}{dz} \\
Z_1 \\
\frac{dZ_2}{dz} \\
Z_2 \\
\frac{dF_3}{dz} \\
F_3
\end{bmatrix}
=
\begin{bmatrix}
0 & -\rho(\gamma-1) & 0 & k & 0 & 0 \\
-\rho\frac{\gamma}{k} & 0 & -1 & 0 & 0 & 0 \\
\rho(\gamma-1) & 0 & 1 & 0 & 0 & 0 \\
0 & -\rho\frac{\gamma}{k^2} & 0 & -\frac{1}{k} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{\rho}{\mu k} & 0 \\
0 & 0 & 0 & 0 & \frac{\rho}{k} & 0
\end{bmatrix}
\begin{bmatrix}
U_\tau \\
U_z \\
T_z \\
T_\tau \\
U_\theta \\
T_\theta
\end{bmatrix}
$$

(II-1-10)

If we take the depth derivative on both sides of equation (II-1-9), replace the second z-derivatives of Z_1,
Z_c, and \mathcal{F}_3 by equation (II-1-5), combine with equation (II-1-10), and use $\rho a^2 = \lambda + 2\mu$, $\rho b^2 = \mu$, we find that

$$
\frac{d}{dz} \begin{bmatrix}
U_r \\
U_z \\
T_x \\
T_r \\
U_\theta \\
T_\theta
\end{bmatrix} =
\begin{bmatrix}
0 & k & 0 & -\frac{a^2}{\mu} & 0 & 0 \\
-k\sigma & 0 & \frac{a^2\sigma}{\lambda} & 0 & 0 & 0 \\
0 & -\rho & 0 & k & 0 & 0 \\
\rho-\xi^2\frac{k^2}{a^2} & 0 & -k\sigma & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{\mu} \\
0 & 0 & 0 & 0 & \mu\nu^2 & 0
\end{bmatrix}
\begin{bmatrix}
U_r \\
U_z \\
T_x \\
T_r \\
U_\theta \\
T_\theta
\end{bmatrix}
$$

(II-1-11)

where

$$
\xi = \frac{4\mu(\lambda + \mu)}{\lambda + 2\mu} \quad \sigma = \frac{\lambda}{\lambda + 2\mu}.
$$

The matrix on the right hand side of this equation is denoted by A. Note that A is a skew-symmetric matrix, i.e., symmetric about the secondary diagonal axis. Such symmetric properties will reappear later. Actually, one part of the differential equations in (II-1-11) comes from the equation of motion and the other from the relationship between displacement and stress. The differential equation (II-1-11) forms the basis of the propagator matrix theory of Gilbert and Backus (1966) and the starting point for solving the eigenfunction problem by numerical integration (Takeuchi and Saito, 1972).

The z components of potentials satisfying equation (II-1-5) have the solutions
\[Z_1 = A' e^{-\nu a z} + A'' e^{\nu a z} \]
\[Z_2 = B' e^{-\nu b z} + B'' e^{\nu b z} \] \hspace{1cm} (II-1-12)
\[F_3 = C' e^{-\nu c z} + C'' e^{\nu c z} , \]

where the single primes represent the waves propagating in the positive \(z \) direction, i.e., downward, and the double primes for waves in the negative direction, i.e., upward. Some authors normalize the coefficients in equation (II-1-12) by the energy flux in the \(z \) direction (Kennett et al, 1978), which is \(\sqrt{2\nu a/\rho} \) for \(A \) and \(\sqrt{2k^2\nu b/\rho} \) for \(B \) and \(C \). Normalization is not used here, but this point should be remembered in reference to the reflection and transmission coefficients. After substituting \(Z_1, Z_2, F_3 \) into equation (II-1-8), the \(U \)'s and \(T \)'s in the layer \(m \) can be expressed by the following matrix:

\[
\begin{bmatrix}
U_r \\
U_z \\
T_z \\
T_r \\
U_\theta \\
T_\theta
\end{bmatrix}_{m+1} = \begin{bmatrix}
-k & -\frac{\nu b k}{\rho} & -k & \frac{\nu b k}{\rho} & 0 & 0 \\
\frac{\nu a}{\rho} & \frac{k^2}{\rho} & -\frac{\nu a}{\rho} & \frac{k^2}{\rho} & 0 & 0 \\
(\gamma-1) & \gamma b & (\gamma-1) & -\gamma b & 0 & 0 \\
\frac{\gamma a}{k} & (\gamma-1)k & -\frac{\gamma a}{k} & (\gamma-1)k & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{k}{\rho} & \frac{k}{\rho} \\
0 & 0 & 0 & 0 & \frac{\mu k \nu b}{\rho} & -\frac{\mu k \nu b}{\rho}
\end{bmatrix}_{m+1}
\begin{bmatrix}
e^{-\nu a z} \\
e^{-\nu b z} \\
e^{-\nu c z} \\
e^{-\nu a z} \\
e^{-\nu b z} \\
e^{-\nu c z}
\end{bmatrix}_{m+1} = \begin{bmatrix}
A'' \\
B'' \\
C'' \\
A' \\
B' \\
C'
\end{bmatrix}_{m+1}
\] \hspace{1cm} (II-1-13)

where the subscript \(m \) is the layer index. We have denoted the quantities at the top of the \(m \)'th layer by
m and at the bottom by m+1. From equation (II-1-11) and (II-1-13), it is obvious that the \(v \) component can be separated from the \(r, z \) components. This represents the SH wave with particle motion parallel to the interfaces. For ease of expression, we will keep the three transformed components of motion together.

It is convenient to introduce the matrices

\[
B = [U_r, U_z, T_r, T_z, U_\phi, T_\phi]^T,
\]

\[
\Lambda = [A'', B'', A', B', C'', C']^T,
\]

\(E \) for the first matrix, and \(\Lambda \) for the diagonal second matrix on the right hand side of equation (II-1-13). Note that the matrix \(\Lambda \) describes phase variation along the depth direction. With these substitutions, equation (II-1-13) becomes

\[
B_{m+1} = E_m \Lambda_m(z) K_m. \tag{II-1-14}
\]

In equation (II-1-14) we have one of the most important equations of this dissertation. Matrix \(B \), the eigenfunction vector is also called the motion-stress vector (Aki and Richards, 1980) and has the convenient property of being continuous across interfaces except at the depth of the source. Matrix \(K \) is called the potential-constant vector which is composed of potential coefficients from equation (II-1-12). These coefficients are constant everywhere inside a homogeneous
layer. In the reflectivity method, the vector \(p \) plays an important role.

Let \(B_m \) be the value of \(B \) at the top of the \(m \)'th layer and \(B_{m+1} \) be its value at the bottom of this layer. Taking \(z = 0 \) in equation (II-1-14), we have

\[
B_m = E_m K_m , \quad (\text{II-1-15})
\]

and taking \(z = d_m \), we have

\[
B_{m+1} = E_m \Lambda_m(d_m) K_m . \quad (\text{II-1-16})
\]

It is important to mention that although \(K_m \) is constant in the \(m \)'th layer, it can be premultiplied by the matrix \(\Lambda_m \) to become 'propagatable' when it is used to describe waves inside the layer. Therefore \(\Lambda_m(0)K_m \) represents the potential at the top of layer \(m \) and \(\Lambda_m(d_m)K_m \) is the potential at the bottom of this layer.

By combining equations (II-1-15) and (II-1-16), we obtain a useful formula:

\[
B_{m+1} = E_m \Lambda_m \left(E_m^{-1} B_m \right) \\
= (E_m \Lambda_m E_m^{-1}) B_m = \alpha_m B_m , \quad (\text{II-1-17})
\]

where we have defined

\[
\alpha_m = E_m \Lambda_m E_m^{-1} , \quad (\text{II-1-18})
\]

and \(E_m^{-1} \) is
\[
E^{-1}_m = \frac{1}{2} \begin{bmatrix}
-\rho \frac{\gamma}{k} & -\rho \frac{(\gamma-1)}{\nu_\alpha} & -1 & \frac{k}{\nu_\alpha} & 0 & 0 \\
\rho \frac{(\gamma-1)}{\nu_\beta k} & \rho \frac{\gamma}{k^2} & \frac{1}{\nu_\beta} & -\frac{1}{k} & 0 & 0 \\
-\rho \frac{\gamma}{k} & \rho \frac{(\gamma-1)}{\nu_\alpha} & -1 & -\frac{k}{\nu_\alpha} & 0 & 0 \\
-\rho \frac{(\gamma-1)}{\nu_\beta k} & \rho \frac{\gamma}{k^2} & -\frac{1}{\nu_\beta} & -\frac{1}{k} & 0 & 0 \\
0 & 0 & 0 & 0 & \rho \frac{\mu k}{\nu_\beta} & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{\rho}{\mu k \nu_\beta}
\end{bmatrix}
\]

Matrix \(a \) transfers the motion-stress vector through the layer; hence it is usually referred to as the layer matrix or matrix propagator. The elements of \(a \) are defined in Appendix A. This matrix possesses several interesting properties:

1. \(a(z) \) is a function of \(z \) only, i.e., it propagates in the vertical direction, and this \(z \)-dependence arises solely from the diagonal matrix \(\Lambda(z) \).

2. \(a^{-1}(z) = a(-z) \), since

\[
a^{-1}(z) = \left[E \Lambda(z) E^{-1} \right]^{-1} = E \Lambda^{-1}(z) E^{-1} = E \Lambda(-z) E^{-1} = a(-z).
\]

3. \(a_{ij}^{-1} = (-1)^{i+j} a_{ij} \), this can be seen from Appendix A where terms with \(i+j = \text{odd} \) are related to \(\sinh(\nu_{\alpha,\beta}z) \) which is an odd function, and terms with \(i+j = \text{even} \) are related to \(\cosh(\nu_{\alpha,\beta}z) \) which is an even function.
(4) In a homogeneous layer,

\[a_m(z_1 + z_2) = a_m(z_1) a_m(z_2) \]

since the diagonal matrix \(\Lambda \) can be decomposed:

\[
\begin{align*}
a_m(z_1 + z_2) &= E_m \, \Lambda_m(z_1 + z_2) \, E_m^{-1} \\
&= E_m \, \Lambda_m(z_1) \, \Lambda_m(z_2) \, E_m^{-1} \\
&= E_m \, \Lambda_m(z_1) \, E_m^{-1} \, E_m \, \Lambda_m(z_2) \, E_m^{-1} \\
&= a_m(z_1) \, a_m(z_2).
\end{align*}
\]

This is the property of a propagator matrix (Gilbert and Backus, 1966).

(5) All of the elements of matrix \(a \) are real for real \(k \) and \(\omega \), and most importantly the sinh functions always appear as \(\sinh(\nu_{\alpha,\beta} z) / \nu_{\alpha,\beta} \) or \(\sinh(\nu_{\alpha,\beta} z) \cdot \nu_{\alpha,\beta} \), which suppress the possible branch points due to the multivalued functions \(\nu_{\alpha,\beta} \).

(6) \(a \) has a type of symmetry

\[a_{ij} = a_{5-j,5-i} \quad \text{for} \quad P-SV \]

\[a_{65} = a_{66} \quad \text{for} \quad SH. \]

Properties (3) and (6) can be combined as

\[
\begin{align*}
a_{ij}^{-1} &= (-1)^{i+j} a_{6-j,5-i} \quad \text{for} \quad P-SV \\
a_{ij}^{-1} &= (-1)^{i+j} a_{11-j,11-i} \quad \text{for} \quad SH.
\end{align*}
\]

(II-1-20)

In a similar way, the potential-constant vector can be transferred across the layer boundary by
\[K_{m+1} = E_{m+1}^{-1} E_m \Lambda_m(d_m) K_m. \] \hspace{1cm} (II-1-21)

\(\Lambda_m(d_m)K_m \) is the potential located just above the \(m+1 \) interface and \(K_{m+1} \) just below this interface. Hence, \(E_{m+1}^{-1}E_m \) contains the information about the reflection and transmission of waves passing through the \(m+1 \) interface. This property was extensively used by Kennett (1974) in his study of reflection and transmission coefficients.

In the above discussion, we constructed the displacement-stress field in a layered medium with the aid of the motion-stress vector \(B \) which in some sense represents the character of the boundaries. To connect these vectors between layers, a potential-constant vector \(K \) was defined in a more direct way than Haskell (1953,1964). Haskell (1964) defined \(K = [A^+A^-, A^-A^+, B^-B^+, B^+B^-]^T \). This quantity is not convenient for application and was replaced by \(FK \) in Wang and Herrmann (1980). The potential-constant vector represents the waves inside the layers. With this new \(K \) we are able to find a diagonal matrix \(\Lambda \), and consequently a better form for the layer matrix \(a = E\Lambda E^{-1} \). Matrix \(E \) consists of eigenvectors of matrix \(A \) in the differential equation (II-1-11), which will be further explored in section 2.3. It is noted that use of the matrix \(D \) of Haskell (1964) and matrix \(F \) of Wang and Herrmann (1980) has been avoided.
2.2 Compound Matrix

The compound matrix theory was first introduced to seismology by Dunkin (1965). This theory was proposed to treat the problem of loss of precision during calculation of the layer matrix in Haskell's (1953) original theory. Knopoff (1964) also developed a method using matrix representation to solve this problem. However, because of complexity in notation his method was not widely applied. The reason that Haskell's layer matrix needed to be extended to a compound matrix arises from the exponential terms contained in matrix Λ. During the calculation, these exponential terms, when they happen to be real functions as in the case of surface waves, will grow very large to obscure the significant figures of other factors. The remedy for this is to control the exponential values during the computation of these elements and/or to reformulate the matrix theory of Thomson (1950) or Haskell (1953) using compound matrix forms. In this section, we will discuss the compound matrix in detail and also consider the source representation to obtain complete solutions. The source function will be further explored in chapter V.

From Hudson (1969a) the source effect can be taken into account by means of a discontinuity of motion-stress vector across the source depth. Suppose that a
source is in the m'th layer at a depth h_m beneath the m interface. The source vector S is defined as

$$S = B_m^+ - B_m^-,$$ \hspace{1cm} (II-2-1)

where B_m^-, B_m^+ are the motion-stress vectors immediately above and below the source depth $z_m + h_m$, respectively. Such a source definition is different from that of Wang and Herrmann (1980), which is a modification of Haskell (1964), in that the S they used comes from the discontinuity of potential-constant vector K, i.e.,

$$\Sigma = K_m^+ - K_m^-.$$ The relation of these two expression is just

$$S = E_m \Sigma.$$ \hspace{1cm} (II-2-2)

Haskell's expression for the source is also useful when applied to other theories such as the reflectivity method (Fuchs, 1968). The introduction of revised source terms has the advantage that the factors ν_α and ν_β are no longer required.

It is straightforward to relate the motion-stress vector B_1 at the surface to B_m^- by the layer matrices in between:

$$B_m^- = \alpha_m(h_m) \alpha_{m-1} \cdots \alpha_1 B_1 = Z B_1.$$ \hspace{1cm} (II-2-3)

Similarly, B_m^+ can be related to K_N in the half-space by

$$K_N = E_N^{-1} \alpha_N^{-1} \cdots \alpha_m(d_m - h_m) B_m^+ = X B_m^+.$$ \hspace{1cm} (II-2-4)
Equations (II-2-1), (II-2-3), and (II-2-4) are further combined as

$$K_N = XB_m^* = XS + XZB_1 = XS + RB_1$$ \hspace{1cm} (II-2-5)

where

$$X = E_N^{-1} a_{N-1} \cdots a_m (d_m - h_m)$$
$$Z = a_m (h_m) \cdots a_1$$ \hspace{1cm} (II-2-6)
$$R = XZ = E_N^{-1} a_{N-1} \cdots a_1 .$$

We have used property (4) of matrix a (page 24) to define matrix R.

Now we consider the boundary conditions at the free surface and the half-space. Vanishing of stresses at the free surface requires B_1 to be

$$B_1 = \begin{bmatrix} U_{r_1}, U_{z_1}, 0, 0, U_{\phi_1}, 0 \end{bmatrix}^T .$$

Inasmuch as the source is assumed to be in one of the layers, there can be no upwardly propagating waves in the half-space. Thus $A_N^* = B_N^* = C_N^* = 0$, and K_N takes the form

$$K_N = \begin{bmatrix} 0, 0, A_N^*, B_N^*, 0, C_N^* \end{bmatrix}^T .$$

The first two and the fifth rows in matrix equation (II-2-5) can be written as

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} & X_{13} & X_{14} \\ X_{21} & X_{22} & X_{23} & X_{24} \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \end{bmatrix} + \begin{bmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{bmatrix} \begin{bmatrix} U_{r_1} \\ U_{z_1} \end{bmatrix}$$
\[0 = [X_{65}, X_{56}] \begin{bmatrix} S_5 \\ S_6 \end{bmatrix} + R_{56} U_{\psi_1}. \]

Here the P-SV and the SH components are separated. The free surface displacements are easily found to be

\[
\begin{bmatrix} U_r \\ U_s \end{bmatrix}_1 = (-1) \begin{bmatrix} R_{22} & -R_{13} \\ -R_{21} & R_{11} \end{bmatrix} \begin{bmatrix} X_{1i} \\ X_{2i} \end{bmatrix} S_i / R^{1/2} \quad i=1, \ldots, 4
\]

\[
U_{\psi_1} = (-1) (X_{5j} S_j) / R_{55} \quad j=5,6,
\]

where the use of summation convention for the subscripts and the compound matrix or second order sub-determinant definition \(R^{1/2} = R_{ik} R_{jk} - R_{ii} R_{jj} \) are understood. This is the extent of Haskell’s (1964) development. Let us consider the P-SV waves further. Since \(R = X Z \), i.e., \(R_{ij} = X_{ik} Z_{kj} \), equation (II-2-7) is further developed as

\[
\begin{bmatrix} U_r \\ U_s \end{bmatrix}_1 = \begin{bmatrix} -S_i X^{1/2}_j Z_j \frac{1}{2} \\ S_i X^{1/2}_j Z_{j1} \frac{1}{2} \end{bmatrix} / R^{1/2}.
\]

(A compound matrix can be expressed as the matrix product of its compound sub-matrices (Dunkin, 1965). Hence from equation (II-2-6)

\[
X^{1/2}_j = E_N^{-1} \begin{bmatrix} a_{N-1} |_{ij}^{mm} \cdots a_{m+1} |_{ij}^{qT} \cdots a_m (d_m - h_m) |_{ij}^{sT} \end{bmatrix}.
\]

\[
R^{1/2} = E_N^{-1} \begin{bmatrix} \alpha_2 |_{ij}^{sT} \alpha_1 \end{bmatrix}^{sT}.
\]
The elements of compound matrices $E_N^{1}_{ij}$ and a_{ij} are listed in Appendix B. It is important to point out that in deriving a_{ij} from matrix a_{ij} we are able to remove the questionable square exponential terms by the analytic equality $\cosh^2(\nu z) - \sinh^2(\nu z) = 1$. This is the basic reason that the compound matrix is better than the simple matrix in Haskell's theory. In Appendix B, we have factored out the quantity $1/(4k \nu_a \nu_\beta N)$ when defining $E_N^{1}_{ij}$ to remove the possible singularities from ν_a and ν_β. This quantity is usually canceled out by division of similar terms in the denominator of equation (II-2-8). Therefore it will be suppressed in our calculation. However, in other cases, this term might not be discarded so easily, such as when considering the stresses (Baumgardt, 1980). This point should be noted when the compound matrix $E_N^{1}_{ij}$ is included in the formulation.

The compound matrix a_{ij} can be looked at as a 6 by 6 matrix, if we assign the indices as

\[
12 \rightarrow 1 \quad 13 \rightarrow 2 \quad 14 \rightarrow 3 \\
23 \rightarrow 4 \quad 24 \rightarrow 5 \quad 34 \rightarrow 6.
\]

In Appendix B, we find that the third and fourth rows or columns of compound matrix a_{ij} are equivalent in a particular way. This can be explained mathematically in Appendix C by means of two properties of compound matrices. As indicated by Watson (1970), this equivalence permits us to reduce the 6 by 6 matrix to a
5 by 5 matrix by discarding the third column and row and replacing the fourth row by \[
\begin{bmatrix}
2a | \frac{\theta^2}{\rho^2} & 2a | \frac{\theta^2}{\rho^2} & 2a | \frac{\theta^2}{\rho^2} & 1.2a | \frac{\theta^2}{\rho^2} & 2a | \frac{\theta^2}{\rho^2}
\end{bmatrix}
\] during the matrix multiplication. The \(E_N^{-1}\) matrix also drops the third component \(E_N^{-1}|_{12}\). Such a reduction saves some storage space and computer time. The third component dropped can be retrieved easily, since it is exactly the same as the old fourth component.

Because of the symmetry exhibited by matrices \(a\) and \(E^{-1}\), there exist some interesting properties of their compound forms. As shown in Appendix C and equation (II-1-20), the compound matrices \(X\) and \(R\), which consist of \(E^{-1}\) and \(a\), possess the following properties:

\[
\begin{align*}
Y^{-1}|_{34} &= (-1)^{i+j+1} q_N Y|_{5-j,5-i} \\
Y|_{14} &= Y|_{23} \\
Y^{-1}|_{34} &= Y^{-1}|_{23}
\end{align*}
\]

where \(Y\) might be \(E^{-1}\), \(X\), or \(R\), and the constant \(q_N = \frac{4k^2\nu_{\alpha N} \nu_{\beta N}}{\rho_N^2}\). This constant consists of the normalization factors we have mentioned in equation (II-1-12). Matrix \(Z\), which consists of \(a\)'s, also has the properties:

\[
\begin{align*}
Z_{ij}^{-1} &= (-1)^{i+j} Z_{5-j,5-i} \\
Z^{-1}|_{ij} &= (-1)^{i+j+k+l} Z|_{5-j,5-k}
\end{align*}
\]

These symmetry properties are a characteristic of
Haskell's formulation, although they arise from a somewhat arbitrary choice of motion-stress and potential-constant vectors in the last section. In Haskell's work (1964) or other similar formulations, these properties are more or less missing. These properties will be of particular interest when relating the eigenfunction theory and matrix theory in the next chapter.

The surface displacements in the forms of equation (II-2-8) are stable for calculation, since they include \(X|_{\mu}^{1/2} \), which imposes the boundary conditions from halfspaces all the time. However, Harkrider (1964) and Harvey (1981) used another form. Since \(R= XZ \) or equivalently \(X= RZ^{-1} \) we have

\[
X|_{\mu}^{1/2}Z_{dp} = (X_{1j}X_{2j} - X_{1j}X_{2t})Z_{dp} \\
= R_{1k}Z_{ki}^{-1}R_{2t}(Z_{ij}^{-1}Z_{dp}) - R_{1m}(Z_{mj}^{-1}Z_{dp})R_{2k}Z_{ki}^{-1} \\
= R_{1k}Z_{ki}^{-1}R_{dp} - R_{1p}R_{2k}Z_{ki}^{-1} \\
= R|_{kp}^{1/2}Z_{ki}^{-1}.
\]

Hence

\[
\begin{bmatrix}
U_r \\
U_z
\end{bmatrix} = (-1) \begin{bmatrix}
R|_{kp}^{1/2}Z_{ki}^{-1}S_t \\
-R|_{kp}^{1/2}Z_{ki}^{-1}S_t
\end{bmatrix} / R|_{kp}^{1/2}.
\]

(II-2-11)

Numerically this form is not as good as equation (II-2-8), since it requires more calculations with \(R|_{\mu}^{1/2} \) than with \(X|_{\mu}^{1/2} \). However it is a useful expression for deriving other properties.

At this point, it is interesting to consider the
dispersion property of surface waves. It is known that
the dispersion is determined by the velocity structure
and is independent of sources. Assuming \(S = 0 \) and
\(K_N = RB_1 \), we obtain

\[
\begin{bmatrix}
0 \\
0 \\
A' \\
B'
\end{bmatrix} = \begin{bmatrix}
R_{11} & R_{12} & \cdots & U_{r_1} \\
R_{21} & R_{22} & \cdots & U_{z_1} \\
\vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \ddots & 0
\end{bmatrix}
\]

The first two rows give

\[
\frac{U_{r_1}}{U_{z_1}} = - \frac{R_{12}}{R_{11}} = - \frac{R_{22}}{R_{21}}
\]

and the last equality defines the period equation
\(R \left| \frac{R}{12} \right| = 0 \). \(U_{r_1}/U_{z_1} \) is called the ellipticity of Ray-
leigh waves at the free surface, which is usually
denoted by \(\varepsilon \). By applying the arithmetic equality

\[
\frac{b}{a} = \frac{d}{c} = \frac{bx - dy}{ax - cy}
\]

where \(x \) and \(y \) are suitably arbitrary numbers, it is not
difficult to find that

\[
\varepsilon = \frac{U_{r_1}}{U_{z_1}} = - \frac{R \left| \frac{R}{12} \right|}{R \left| \frac{R}{13} \right|} = - \frac{R \left| \frac{R}{12} \right|}{R \left| \frac{R}{14} \right|}
\]

(II-2-12)

(This is the derivation of Equation 20 in Harkrider
(1970)). Furthermore, another expression exists for the
ellipticity in terms of \(R' \). By using the symmetry pro-
erties of compound \(R \) (equation (II-2-10)), it is found
that
\[\varepsilon = \frac{R^{-1}|_{\frac{13}{34}}}{R^{-1}|_{\frac{53}{34}}} = \frac{R^{-1}|_{\frac{14}{34}}}{R^{-1}|_{\frac{24}{34}}} . \]

The period equation in this case is \(R^{-1}|_{\frac{24}{34}} = 0 \).

The solutions in equation (II-2-8) include the source terms \(S_i \). For the surface waves in which \(R|_{\frac{12}{34}} = 0 \), the ellipticity of Rayleigh waves is known to be independent of the source. This can be shown by another form of the solution in equation (II-2-11):

\[\varepsilon = \frac{U_{r_1}}{U_{z_1}} = - \frac{R|_{\frac{12}{34}} Z_{6i}^{-1} S_i}{R|_{\frac{14}{34}} Z_{6i}^{-1} S_i} \]

\[= - \frac{R|_{\frac{12}{34}} (Z_{3i}^{-1} S_i + \frac{R|_{\frac{18}{34}}}{R|_{\frac{18}{34}}} Z_{4i}^{-1} S_i)}{R|_{\frac{12}{34}} (Z_{3i}^{-1} S_i + \frac{R|_{\frac{16}{34}}}{R|_{\frac{16}{34}}} Z_{4i}^{-1} S_i)} . \]

Using an equality for any compound matrix \(R|_{\frac{12}{4}} \) (Abramovici, 1968),

\[R|_{\frac{12}{34}} R|_{\frac{12}{34}} + R|_{\frac{12}{4}} R|_{\frac{12}{34}} = R|_{\frac{12}{16}} R|_{\frac{12}{34}} , \]

however since \(R|_{\frac{12}{34}} = 0 \), equation (II-2-13) becomes

\[\varepsilon = - \frac{R|_{\frac{12}{34}}}{R|_{\frac{12}{16}}} . \]

Thus we have shown that the ellipticity is really a quantity determined from the layer response only and is independent of the source.

The solutions for the Fourier transformed displacements as expressed in equation (II-1-5), after
summing the mode numbers over horizontal and azimuthal directions, have the forms

\[
\begin{align*}
&u_x(r, \vartheta, 0, \omega) = \sum_{n=0}^{\infty} \int_0^\infty dk \left\{ (U_x^{nc} \cos n \vartheta + U_x^{ns} \sin n \vartheta) J_n(kr) / F_R \right\} \\
&-u_r(r, \vartheta, 0, \omega) = \sum_{n=0}^{\infty} \int_0^\infty dk \left\{ (U_r^{nc} \cos n \vartheta + U_r^{ns} \sin n \vartheta) J_{n-1}(kr) / F_R \right\} \\
&\quad - \left(\frac{n}{kr} \right) (U_r^{nc} \cos n \vartheta + U_r^{ns} \sin n \vartheta) J_n(kr) / F_R \\
&\quad + \left(\frac{n}{kr} \right) (U_r^{ns} \cos n \vartheta - U_r^{nc} \sin n \vartheta) J_n(kr) / F_L \quad \text{(II-2-14)}
\end{align*}
\]

\[
\begin{align*}
&-u_\vartheta(r, \vartheta, 0, \omega) = \sum_{n=0}^{\infty} \int_0^\infty dk \left\{ (U_\vartheta^{ns} \cos n \vartheta - U_\vartheta^{nc} \sin n \vartheta) J_{n-1}(kr) / F_L \right\} \\
&\quad - \left(\frac{n}{kr} \right) (U_\vartheta^{ns} \cos n \vartheta - U_\vartheta^{nc} \sin n \vartheta) J_n(kr) / F_L \\
&\quad + \left(\frac{n}{kr} \right) (U_\vartheta^{nc} \cos n \vartheta - U_\vartheta^{ns} \sin n \vartheta) J_n(kr) / F_R
\end{align*}
\]

where \(U_x^{nc,ns}, U_r^{nc,ns}, U_\vartheta^{nc,ns}, F_R \) and \(F_L \) are

\[
\begin{align*}
U_x^{ns} &= S^{nc,ns} X |_{12} Z_{j1} \\
U_r^{ns} &= - S^{nc,ns} X |_{12} Z_{j2} \\
U_\vartheta^{ns} &= - X_{5j} S^{nc,ns} \\
F_R &= R |_{12} \\
F_L &= R_{55}
\end{align*}
\]

There is now no doubt that an earthquake can be represented by a double-couple source without moment model (Aki and Richards, 1980, p.43). Haskell (1963) used \(n \) for the vector normal to the fault and \(f \) for the direction of force to describe the source. For practical applications, the dip \(d \), strike \(\varphi \) of the fault plane and the slip \(s \) of movement on this plane are usu-
ally preferred. The relation of these quantities to \(n \) and \(f \) are just

\[
\begin{align*}
n_1 &= - \sin d \sin \varphi \quad f_1 = \cos s \cos \varphi + \sin s \cos d \sin \varphi \\
n_2 &= \sin d \cos \varphi \quad f_2 = \cos s \sin \varphi - \sin s \cos d \cos \varphi \\
n_3 &= - \cos d \quad f_3 = - \sin s \sin d
\end{align*}
\]

The Fourier transformed displacements generated by such a dislocation source, for which \(n = 0,1,2 \) in equation (II-2-14), have the forms:

\[
\begin{align*}
u_x(r, \vartheta, 0, \omega) &= ZSS \cdot R_{ss} + ZDS \cdot R_{ds} + ZDD \cdot R_{dd} \\
u_r(r, \vartheta, 0, \omega) &= RSS \cdot R_{ss} + RDS \cdot R_{ds} + RDD \cdot R_{dd} \\
u_\theta(r, \vartheta, 0, \omega) &= TSS \cdot R_{ss} + TDS \cdot R_{ds}
\end{align*}
\]

where

\[
\begin{align*}R_{ss} &= (f_1 n_1 - f_2 n_2) \cdot \cos 2\vartheta + (f_1 n_2 + f_2 n_1) \cdot \sin 2\vartheta \\
 &= \sin d \cos s \sin 2(\vartheta - \varphi) + \frac{1}{2} \sin 2d \sin s \cos 2(\vartheta - \varphi) \\
R_{ds} &= (f_1 n_3 + f_2 n_1) \cdot \cos \vartheta + (f_2 n_3 + f_3 n_2) \cdot \sin \vartheta \\
 &= \cos 2d \sin s \sin (\vartheta - \varphi) - \cos d \cos s \cos (\vartheta - \varphi) \\
R_{dd} &= f_3 n_3 \\
 &= \frac{1}{2} \sin s \sin 2d \\
R_{ss}' &= (f_1 n_2 + f_2 n_1) \cdot \cos 2\vartheta - (f_1 n_1 - f_2 n_2) \cdot \sin 2\vartheta \\
 &= \sin d \cos s \cos 2(\vartheta - \varphi) - \frac{1}{2} \sin 2d \sin s \sin 2(\vartheta - \varphi) \\
R_{ds}' &= (f_2 n_3 + f_3 n_2) \cdot \cos \vartheta - (f_1 n_3 + f_3 n_1) \cdot \sin \vartheta \\
 &= \cos d \cos s \sin (\vartheta - \varphi) + \cos 2d \sin s \cos (\vartheta - \varphi) \\
ZSS &= \int_0^1 (1/F_R) \{ S^2 \cdot X |_{12} Z_{11} \} J_2(\kappa r) \, dk \\
ZDS &= \int_0^1 (1/F_R) \{ S^1 \cdot X |_{12} Z_{11} \} J_1(\kappa r) \, dk \\
ZDD &= \int_0^1 (1/F_R) \{ S^0 \cdot X |_{12} Z_{11} \} J_0(\kappa r) \, dk \\
RSS &= \int_0^1 (1/F_R) \{ S^2 \cdot X |_{12} Z_{12} \} J_1(\kappa r) \, dk
\end{align*}
\]
\[- \int_{0}^{(1/F_R)} \left\{ S_{i}^{0} X_{i}^{12} Z_{j2} \right\} 2J_{2}(kr)/kr \, dk \]

\[+ \int_{0}^{(1/F_L)} \left\{ S_{j}^{0} X_{j}^{5} \right\} 2J_{2}(kr)/kr \, dk \]

\[RDS = \int_{0}^{(1/F_R)} \left\{ S_{i}^{1} X_{i}^{12} Z_{j2} \right\} J_{0}(kr) \, dk \]

\[\quad - \int_{0}^{(1/F_R)} \left\{ S_{i}^{1} X_{i}^{12} Z_{j2} \right\} J_{1}(kr) \, dk \]

\[+ \int_{0}^{(1/F_L)} \left\{ S_{j}^{5} X_{j}^{6} \right\} J_{1}(kr) \, dk \]

\[RDD = -\int_{0}^{(1/F_R)} \left\{ S_{i}^{0} X_{i}^{12} Z_{j2} \right\} J_{1}(kr) \, dk \]

\[TSS = \int_{0}^{(1/F_L)} \left\{ X_{i}^{6} S_{i}^{0} \right\} J_{1}(kr) \, dk \]

\[\quad - \int_{0}^{(1/F_R)} \left\{ X_{i}^{5} S_{i}^{0} \right\} 2J_{2}(kr)/kr \, dk \]

\[+ \int_{0}^{(1/F_R)} \left\{ S_{i}^{2} X_{i}^{12} Z_{j2} \right\} 2J_{2}(kr)/kr \, dk \]

\[TDS = \int_{0}^{(1/F_R)} \left\{ X_{i}^{5} S_{i}^{2} \right\} J_{0}(kr) \, dk \]

\[\quad - \int_{0}^{(1/F_R)} \left\{ X_{i}^{5} S_{i}^{2} \right\} J_{1}(kr)/kr \, dk \]

\[+ \int_{0}^{(1/F_L)} \left\{ S_{i}^{1} X_{i}^{12} Z_{j2} \right\} J_{1}(kr)/kr \, dk \, ,\]

with

\[4\pi\rho_{m}\omega^{2}S_{i}^{0} = 4k \quad k_{\alpha_{m}}^{2} \quad 4\pi\omega^{2}S_{i}^{0} = 2k^{2} \left[(2\beta_{m}/\alpha_{m})^{2} - 3 \right] \]

\[4\pi\rho_{m}\omega^{2}S_{i}^{1} = -2k \quad k_{\beta_{m}}^{2} \quad 4\pi\omega^{2}S_{i}^{2} = -2k^{2} \quad (II-2-16) \]

\[4\pi\rho_{m}\beta_{m}^{2}S_{i}^{5} = -2k \quad 4\pi S_{i}^{2} = 2k^{2} \, .\]

All other S_{i}^{n} equal zero. The solutions and source forms for other types of sources will be given in chapter V.

In the above equations, SS represents a strike-slip type of source, DS represents a dip-slip type of
source, and DD represents a 45° dip-slip type of source. It is apparent that these three components are all that are necessary to represent the P-SV motion for any shear-dislocation source (Harkrider, 1976). The SH motion only needs SS and DS components. RSS, RDS, TSS, and TDS in equation (II-2-15) also include the near-field terms. These terms decrease faster with r than the others, and thus, are important only at short distances or low frequencies. The near-field terms in the r and t directions have exactly the same forms. It is worthwhile to indicate that the near-field terms have a higher order Bessel function than their far-field counterparts. The calculation of near-field terms requires special care. This will be studied in section 2.4.

2.3 Comparison with Other Formalisms

Many approaches have been developed to treat wave propagation in isotropic and homogeneous layered media. In this section, we will discuss three typical approaches from the standpoint of the system constructed in this dissertation. It will be shown that our system is related to these other approaches with only a little modification. Examples describing the merit of our approach will be given later.
The Eigenvector of ODE

We have already mentioned that the eigenfunction theory plays an important role in establishing our matrix system. The mathematical foundation of matrix theory was provided by Gilbert and Backus (1966) using the 'propagator matrix' description. The mathematical connection is enlarged in the following discussion.

The motion-stress vector satisfies the first order differential equation (II-1-11):

\[
\frac{d}{dz} B = A B,
\]

(II-3-1)

where \(A \) is a matrix representing the material property. Within a given layer, \(A \) is a constant, and the solution takes the form

\[
B(z) = e^{(z-z_0)\mathbf{A}} B(z_0),
\]

where \(z_0 \) is the reference depth. The function \(e^{(z-z_0)\mathbf{A}} \), called the matricant or layer matrix for a homogeneous layer, is defined by Sylvester's theorem (Hildebrand, 1965, p.61). Compared to equation (II-1-17), the layer matrix defined in equation (II-1-18) must be

\[
a = e^{(z-z_0)\mathbf{A}}.
\]

(II-3-2)

Applying matrix multiplication, with \(E^{-1} \) and \(E \) from equations (II-1-13) and (II-1-19), equation (II-3-2) becomes
\[\mathbf{E}^{-1} \mathbf{A} \mathbf{E} = \mathbf{E}^{-1} e^{(z-z_0) \mathbf{A}} \mathbf{E} = e^{(z-z_0) \mathbf{E}^{-1} \mathbf{A} \mathbf{E}}. \]

Since \(\Lambda(z) = \mathbf{E}^{-1} \mathbf{A} \mathbf{E} \) (equation II-1-18), we obtain an interesting form:

\[
\mathbf{E}^{-1} \mathbf{A} \mathbf{E} = \begin{bmatrix}
\nu_\alpha & 0 & 0 & 0 & 0 \\
0 & \nu_\beta & 0 & 0 & 0 \\
0 & 0 & -\nu_\alpha & 0 & 0 \\
0 & 0 & -\nu_\beta & 0 & 0 \\
0 & 0 & 0 & \nu_\beta & 0 \\
0 & 0 & 0 & 0 & -\nu_\beta
\end{bmatrix} = \mathbf{V}.
\]

It is found that matrix \(\mathbf{A} \) is diagonalized in a way similar to that of the characteristic-value problem. According to eigenvalue theory, \(\mathbf{E} \) must be constructed from the eigenvectors of \(\mathbf{A} \) and \(\pm \nu_\alpha \), \(\pm \nu_\beta \) are its eigenvalues. This fact is confirmed as we actually obtain the eigenvalues from matrix \(\mathbf{A} \) (Aki and Richards, 1980, p.275). Therefore the eigenvectors \(\mathbf{e}_k \)'s of \(\mathbf{A} \) constitute the successive columns of the \(\mathbf{E} \) matrix:

\[
\mathbf{E} = \begin{bmatrix}
\mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 & \mathbf{e}_4 \\
\mathbf{e}_5 & \mathbf{e}_6
\end{bmatrix}.
\]

The corresponding eigenvalues \(\lambda \)'s are \(\nu_\alpha, \nu_\beta, -\nu_\alpha, -\nu_\beta, \nu_\beta, -\nu_\beta \). The \(\mathbf{e}_k \)'s are mutually orthogonal.

With this view of the \(\mathbf{E} \) matrix, matrix \(\mathbf{B} \) in
equation (II-3-1) can also be expressed in terms of eigenvectors and eigenvalues. Project vector B into the direction of e_1 eigenvector, and denote this component by M_1:

$$M_1 = B \cdot e_1 = f_1(z) \cdot e_1.$$

Because of the linear independence of e_k's, M_1 still satisfies the differential equation (II-3-1):

$$\frac{d}{dz} (f_1(z) e_1) = A \cdot (f_1(z) e_1)$$

$$\left(\frac{d}{dz} f_1(z) \right) e_1 = (A \cdot e_1) f_1(z) = (\lambda_1 e_1) f_1(z),$$

i.e.,

$$\frac{d}{dz} f_1(z) = \lambda_1 f_1(z).$$

Hence in the e_1 direction, we have the solution

$$M_1 = e^{\lambda_1(z-z_0)} e_1.$$

Repeating the same procedure for the other components, we obtain the solution to the ordinary differential equation (II-3-1):

$$M = \begin{bmatrix}
e_1 & e_2 & e_3 & e_4 \\
e_5 & e_6 & e_7 & e_8 \\
e_9 & e_{10} & e_{11} & e_{12}
\end{bmatrix}
\begin{bmatrix}
e^{\lambda_1(z-z_0)} \\
e^{\lambda_2(z-z_0)}
\end{bmatrix}
\begin{bmatrix}
e^{\lambda_3(z-z_0)} & 0 \\
e^{\lambda_4(z-z_0)} & 0
\end{bmatrix}
= E \cdot \Lambda.$$

This form of solution is called a fundamental matrix.
The propagator matrix is defined from it (Gilbert and Backus, 1966, eq. 2.4):

\[
\alpha(z-z_0) = M(z) M^{-1}(z_0) = E \Lambda(z) [E \Lambda(z_0)]^{-1} \\
= E \Lambda(z) \Lambda(-z_0) E^{-1} \\
= E \Lambda(z-z_0) E^{-1}.
\]

The most general solution of equation (II-3-1) is described by a linear combination of the fundamental matrix \(M\),

\[
B = MK = E \Lambda K
\]

where \(K\) is any constant vector. It follows that the differential equation (II-3-1) can be written in the form:

\[
\frac{d}{dz} (E \Lambda(z) K) = A (E \Lambda(z) K) \\
\frac{d}{dz} (\Lambda(z) K) = (E^{-1} AE) \Lambda(z) K \\
= V (\Lambda(z) K),
\]

where we have used the fact that \(E\) and \(K\) are independent of \(z\). Since \(V\) is a diagonal matrix, it is said that the wave field has been 'decoupled' (Claerbout, 1976, p. 169). It is easy to see that vector \(K\) is just the potential-constant vector defined before, which consists of upgoing and downgoing waves. These waves flow up and down in homogeneous regions without interacting with each other.
Compound Matrix for High Frequencies

The compound matrix $X|_{ij}^{12}$ expressed in equation (II-2-9) appears as a (1X6) matrix during compound-compound multiplication (Dunkin, 1965):

$$X|_{ij}^{12} = [X|_{12}^{12}, X|_{13}^{12}, X|_{14}^{12}, X|_{23}^{12}, X|_{24}^{12}, X|_{34}^{12}]^T.$$

When $X|_{ij}^{12}$ is multiplied by a regular matrix as in equation (II-2-8), it can be viewed as a (4X4) anti-symmetric matrix:

$$X|_{ij}^{12} = \begin{bmatrix}
0 & X|_{12}^{12} & X|_{13}^{12} & X|_{14}^{12} \\
-X|_{12}^{12} & 0 & X|_{23}^{12} & X|_{24}^{12} \\
-X|_{13}^{12} & -X|_{23}^{12} & 0 & X|_{34}^{12} \\
-X|_{14}^{12} & -X|_{24}^{12} & -X|_{34}^{12} & 0 \\
\end{bmatrix}.$$

This property provides an alternative method of formulation.

In recent papers, Abo-Zena (1979) and Menke (1979) decomposed the layer matrix multiplication into a form with recursive relations:

$$Y_m = A_m^T \cdots A_{M-1} \{ [EA]^T [EB] - [EB]^T [EA] \} A_{M-1} \cdots A_m \quad (II-3-4)$$

is an anti-symmetric matrix, which is actually equivalent to our $E^{-1}|_{kl}^{12}$. After a tedious expansion, we find that
\[Y|_{\mu}^{\mu} A|_{\mu}^{\mu} = A_{\mu}^T Y|_{\mu}^{\mu} A_{\mu} \]

The recursive procedure (II-3-4) is exactly the same as the compound matrix multiplication we used to calculate \(R \) in equation (II-2-9).

Since layer matrix \(\alpha \) can be factored into \(E \alpha E^{-1} \), Abo-Zena further removed the phase terms in \(A \) out of \(\alpha \) in order to control the exponentially growing terms when the phase velocity is less than a wave velocity (Abo-Zena, equation 44). A similar technique can also be found in Kennett's (1974) 'phase-related' operation (ref. section 4.3). In such a reformulation, the square exponential terms are identically zero, as we have seen in deriving the compound matrix \(\alpha \). It is this procedure which makes the matrix method useful for very high frequencies.

Mantle Wave Simulation

A scheme by which the teleseismic body wave pulses from a seismic source are calculated, allowing for the effects of transmission through the mantle and crust, was given by Carpenter (1966) and Hudson (1969b). The calculation is divided into three parts: source crust response, mantle effect, and receiver crust response. The rays emitted from the source crust are allowed to travel through the homogeneous upper mantle, then enter the receiver crust and be recorded. Hudson (1969b) gave a detailed derivation providing both formalisms.
and approximating solutions. Here we will extend his result by using the compound matrix. Although both Carpenter (1966) and Hudson (1969b) start from Haskell (1964), our derivation is relatively simple and direct.

In the source crust, the waves from the source are reflected and refracted and finally enter the bottom halfspace as mantle waves following the equation:

\[W_N = X_S + RB_1. \]

After expanding, setting \(A_N = B_N = 0 \) and \(T_{r_1} = T_{s_1} = 0 \), and substituting equation (II-2-7), we have

\[A'_N = \left[R \left| \frac{12}{2} X_{3i} S_i + R \left| \frac{23}{2} X_{1i} S_i - R \left| \frac{12}{2} X_{2i} S_i \right. \right. \right] / R \left| \frac{12}{2} \right. \]

for P waves. This equation is equivalent to equation (3.3) of Hudson (1969b). Another form can easily be found by using

\[R^{-1} \left| \frac{ji}{ji} \right. = q_N(-1)^{i+j+k+4t} R \left| \frac{ji}{ji} \right. . \]

The result is

\[A'_N = S_i \left[R^{-1} \left| \frac{j4}{j4} X_{ji} \right. / R^{-1} \left| \frac{j4}{j4} \right. \right. \]

or, by \(R^{-1} = Z^{-1} X^{-1} \)

\[A'_N = S_i \left[Z^{-1} \left| \frac{j4}{j4} X_{ji}^{-1} \right. / R^{-1} \left| \frac{j4}{j4} \right. \right. \]

Similarly for SV waves, we have

\[B'_N = -S_i \left[R^{-1} \left| \frac{j3}{j3} X_{ji} \right. / R^{-1} \left| \frac{j3}{j3} \right. \right. \]

\[= -S_i \left[Z^{-1} \left| \frac{j3}{j3} X_{ji}^{-1} \right. / R^{-1} \left| \frac{j3}{j3} \right. \right. \]
Inside the mantle, the waves as expressed in displacement form are \(B_{N+1} = E_N A_N K_N \)

or,

\[
\begin{bmatrix}
U_r \\
U_z
\end{bmatrix}_{N+1} = \begin{bmatrix}
-\frac{k}{\rho} e^{-\nu z} A_N' + \frac{\nu k}{\rho} e^{-\nu z} B_N' \\
-\frac{\nu}{\rho} e^{-\nu z} A_N' + \frac{k^2}{\rho} e^{-\nu z} B_N'
\end{bmatrix} = \begin{bmatrix}
U_r^P + U_r^{SV} \\
U_z^P + U_z^{SV}
\end{bmatrix}_{N+1},
\]

(11-3-5)

where \(z \) is measured from the deepest interface. The solutions are divided into \(P \) and \(S \) components corresponding to \(A_N' \) and \(B_N' \) respectively. The final solutions similar to equation (II-2-15) can easily be found following the procedures in section 2.2.

When waves pass through the mantle, the effect of the mantle can be simply included by adding geometric spreading factors for \(P \) and \(S \) motions respectively (Ben-Menahem and Singh, 1972). The wave fields expressed in equation (II-3-5) are decomposed into the compressional and shear components by using the angle \(\vartheta \) which is the angle made by the downward vertical with the ray direction:

\[
U^P = U_r^P \sin \vartheta_P + U_z^P \cos \vartheta_P \\
U^{SV} = U_r^{SV} \cos \vartheta_S - U_z^{SV} \sin \vartheta_S
\]

where

\[
\vartheta_P = \tan^{-1} \frac{k}{\nu_{bN}} \\
\vartheta_S = \tan^{-1} \frac{k}{\nu_{pN}}
\]

\(U^P \) and \(U^{SV} \) are then multiplied by the spreading factors of \(P \) and \(SV \) waves, respectively, to take into account
the mantle effect. At the bottom of the receiver crust, the P and SV waves can be resolved back into the r and z directions as follows:

\[U_r' = U_{P'} \sin \phi_P - U_{SV} \cos \phi_S \]
\[U_z' = -U_{P'} \cos \phi_P - U_{SV} \sin \phi_S, \]

where the prime indicates the mantle waves which reach the receiver crust.

The effect of the receiver crust is easily taken into account by using the Haskell matrix \(R \) from the whole layer stacking. For our system, we just need to change \((J_{32} - J_{42}) \) in Hudson's equation (7.7) to \(R_{22} \), \((J_{31} - J_{41}) \) to \(R_{21} \), and evaluate the period equation by compound forms.

In the above discussion, we have shown how easy it is to extend our system. Many theories with difficult derivations come out simply by using the relation of Haskell matrices developed in section 2.1. More examples will be given in the later chapters.

2.4 Numerical Integration

Contour Integration

All of the integrals in equation (II-2-15) have the general form
\[
\int_0^\infty f(k, \omega) J_n(kr) \, dk.
\] (II-4-1)

The evaluation of this integral is complicated because the function \(f(k, \omega) \) has poles and branch points (Figure 2). The poles come from the zeros of the period equation, and the branch points from the radicals \(\nu_{an} \) and \(\nu_{bn} \) given in equation (II-1-5). To avoid dual values of these radicals, we introduce the branch cuts at the loci along which the real parts of \(\nu_{an} \) and \(\nu_{bn} \) are equal to zero. For the limiting case of real frequency and real layer velocities the two branch cuts, corresponding to \(\nu_{an} \) and \(\nu_{bn} \) respectively, collapse to form one branch cut along the real \(k \)-axis from the \(S \) branch point to the origin, then along the imaginary \(k \)-axis to \(-i\infty \). The number of poles is finite and all of them are located on the real \(k \)-axis. The positions of poles determine the dispersion values on the \(\omega-k \) domain.

The integration in equation (II-4-1) can be evaluated by applying Cauchy's theorem. This is a standard technique and is used, for example, by Ewing et al (1957), Harkrider (1964), Hudson (1969b), and Herrmann (1979) in their work. In order to deform the contour properly we need to apply a transformation which expresses the Bessel function in terms of the Hankel functions of the first and second kind:
Figure 2. Contours in the complex k plane for evaluating the wavenumber integrals. The positions of the k_α and k_β branch points and the surface-wave poles ('X's') are indicated. Branch cuts are shown by thicker lines. Two circular arcs, γ_1 and γ_2, surround the possible Hankel function pole at $k = 0$.

- 49 -
\[J_n(kr) = \frac{1}{2} \left[H_n^{(1)}(kr) + H_n^{(2)}(kr) \right]. \]

The integral path can be deformed into the first and fourth quadrants, since \(H_n^{(1)} \) and \(H_n^{(2)} \) are analytic in the first and fourth quadrants, respectively, of the complex \(k \) plane. These two contours can further be combined into one as shown in Figure 2. Herrmann (1979) finally expressed the contour integration in the form:

\[
\int_0^\infty f(k,\omega) J_n(kr) \, dk = -\pi i \sum_{\nu = \nu_n^{(1)}}^{\nu_n^{(1)}} \text{Res} f(k,\omega) H_n^{(\nu)}(kr) \\
+ i \int_0^{\infty} I_m f_+(k,\omega) H_n^{(\nu)}(kr) \, dk \\
+ \left(\frac{1}{n} \right) \int_0^\infty \left[f_+(i\tau,\omega) \exp(-in\tau/2) \right. \\
\left. + f_-(i\tau,\omega) \exp(in\tau/2) \right] K_n(\tau) \, d\tau,
\]

where the + or - subscripts indicate that \(\nu_n^{(1)}, \nu_n^{(2)} > 0 \) or \(< 0 \), respectively, be used to evaluate the function. \(K_n \) is the modified Bessel function which decreases exponentially with increasing argument.

At each different frequency, when wavenumber \(k \) approaches zero, there might be some singularity introduced by the Hankel function. Wang and Herrmann (1980) realized that the solution (II-4-2) is correct only if \(f(k,\omega) = O(k^{n+1}) \) as \(k \) approaches zero where \(n \) is the order of the Bessel function. Otherwise the singularity of the Hankel function at \(k = 0 \) contributes to the
integral. After carefully examining the k terms in the response function, we find that such a Hankel singularity only occurs in the components of the near-field displacement of a double-couple source, for which
\[f(k, \omega) = O(k^n) \quad \text{for} \quad n = 1 \quad \text{and} \quad f(k, \omega) = O(k^1) \quad \text{for} \quad n = 2. \]

Figure 2 shows the proper contour to be used for contour integration, where we have made a small circle to avoid the singularity at $k = 0$. One cannot contract the small contour about the origin since the Hankel function singularity is still present at the lower limits of the branch line integrals. An interesting way to overcome this is to use a known integral whose behavior at $k = 0$ is the same as that of the functions in equation (II-4-1). Using an integral from Harkrider (1976):

\[\int_0^\infty \frac{k v J_1(k r)}{v_r} \, dk = \left[1 - \exp(-i k v r) \right] / i r, \]

where $v^2(k, \omega) = k^2 - k_v^2$. The integral for $n = 1$ becomes

\[
\int_0^\infty f(k, \omega) J_1(k r) \, dk = -\pi i \sum \text{Res} \left[f(k, \omega) H^{(3)}(k r) \right] \\
+ \frac{1}{\pi} \int_0^{k_0} I_m \left[f_\infty(k, \omega) + \frac{k}{v_r} I_m f_\infty(0, \omega) \right] H^{(3)}(k r) \, dk \\
+ \frac{2}{\pi} \int_0^{\infty} I_m \left[f_\infty(i r, \omega) + \frac{k}{v_r(\pi r)} I_m f_\infty(0, \omega) \right] K_1(r r) \, d r.
\]
\[+ \frac{1}{r} \text{Re} f_+ (0, \omega) \]
\[+ i \frac{I_m f_+ (0, \omega)}{r} \left[1 - \exp (i k_v r) \right] . \]

To evaluate the near field integrals for \(n = 2 \), a careful examination of the integrands revealed that the integrand could easily be factored into the form \(f(k, \omega) = k g(k, \omega) \). This contour integration used the other integral of Harkrider (1976):

\[\int_0^\infty \frac{k v k J_2 (k r)}{\nu_v} \, dk = - \frac{k v}{r} \exp (-i k_v r) + 2 \left[1 - \exp (i k_v r) \right] / i r^2. \]

Using this integral and performing the contour integration:

\[\int_0^\infty f(k, \omega) J_2 (k r) \, dk = - n i \sum \text{Res} \left[k g(k, \omega) H^{(1)}_{\nu_v} (k r) \right] \]

\[+ i \int_0^\infty I_m \left[g_+ (k, \omega) + \frac{k_v}{\nu_v} I_m g_+ (0, \omega) \right] k H^{(1)}_{\nu_v} (k r) \, dk \]

\[+ \frac{2}{n} \int_0^\infty I_m \left[g_+ (i \tau, \omega) + \frac{k_v}{\nu_v} I_m g_+ (0, \omega) \right] \tau K_0 (\tau r) \, d \tau \]

\[+ \frac{2}{r^2} \text{Re} g_+ (0, \omega) \]
\[+ i \frac{I_m g_+ (0, \omega)}{r} \left[k_v \exp (-i k_v r) + \frac{2}{r} (1 - \exp (-i k_v r)) \right] . \]

In both equations (II-4-3) and (II-4-4), the lower limits of integration equal zero because the functions \(f(k, \omega) \) for \(n = 1 \) and \(g(k, \omega) \) for \(n = 2 \) are even functions in \(k \). Therefore the integrands in the branch line integrals are identically zero as the lower limit of
integration goes to zero. The choice of the parameter \(k_u \)
is somewhat arbitrary. For the SH terms, \(k_u = k_{\beta N} \)
is used while \(k_u = k_{\alpha} \) from equation (II-4-5) is used for
the P-SV terms. This point will be further discussed
later.

Numerical Integration

The solutions as shown in the integral form of
equation (II-4-2) consist of two contributions: the
pole residue contribution and the branch line
integrals. Generally speaking, the pole contribution
gives rise to surface waves and the branch line
integral yields most of the body waves. The pole and
its residue will be discussed using normal mode
theory in the next chapter. Later in chapter IV, the branch
line contribution will be examined using a leaky mode
approach. Here we just give a brief discussion of
these two contributions, and attempt to improve the
numerical integration technique.

To evaluate the integral

\[
\int_0^{k_{\beta N}} \{ I_m f(k,\omega) \} H_n^{(0)}(k r) k^m \, dk ,
\]

knowledge of the behavior of the function \(I_m f(k,\omega) \) is
essential. Figure 3 shows the variation of these func-
tions along the real branch axis at a frequency of 1 Hz
for a point source at a depth of 10 km in the central
Figure 3. The responses of integrands in equation (II-2-15) along the real k-axis branch cut. The central United States (CUS) earth model, a source depth of 10 km and a frequency of 1.0 Hz, are used.
United States (CUS) model (Nuttli et al., 1969; Herrmann, 1978a) of Table 1. The symbols indicate that the functions plotted arise from the corresponding integrands of far-field terms in equation (II-2-15). It can be noticed that the peaks and troughs of the excursions, corresponding to P-SV and SH respectively, are aligned, although the magnitude might vary. This is caused by some factors independent of the source type. Another feature seen in Figure 3 is that the tangential components, TSS and TDS, are substantially smoother than any of the P-SV function. The P-SV terms (Z and R components) oscillate rapidly near both k_{aN} and k_{RN} branch points, indicating that they should be sampled with care. Note also the behavior of the RDS and TDS plots as k goes to zero. These non-zero limits are the reason for the involved contour integration required in equations (II-4-3) and (II-4-4).

Figure 4 shows the variation of integrands for the ZSS component with frequencies between 0.10 and 10.0 Hz. The point source is at a depth of 10 km in the simple crust model (SCM) of Table 1. The requirements for adequate sampling of the integrand for proper numerical integration at high frequencies are obvious. Given the frequency f, we found it adequate to sample the region between $(0, k_{Ry})$ by $50+200* f$ points. This sampling represents one of the most time consuming aspects of our computations. Such calculations set practical
<table>
<thead>
<tr>
<th>Thickness (km)</th>
<th>P vel (km/sec)</th>
<th>S vel (km/sec)</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Crustal Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>6.15</td>
<td>3.55</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>8.09</td>
<td>4.67</td>
<td>3.3</td>
</tr>
<tr>
<td>Central U. S. Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.00</td>
<td>2.89</td>
<td>2.5</td>
</tr>
<tr>
<td>9</td>
<td>6.10</td>
<td>3.52</td>
<td>2.7</td>
</tr>
<tr>
<td>10</td>
<td>6.40</td>
<td>3.70</td>
<td>2.9</td>
</tr>
<tr>
<td>20</td>
<td>6.70</td>
<td>3.87</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>8.15</td>
<td>4.70</td>
<td>3.4</td>
</tr>
</tbody>
</table>
Figure 4. The real k-axis wavenumber responses of ZSS component along the real branch cut as a function of frequency between 0.1 and 10.0 Hz. The simple crust model (SCM) and a 10 km deep source are used.
limits to this form of numerical integration.

To alleviate any numerical problems near the P and S branch points, a change of variable of integration is introduced following Fuchs and Müller (1971):

\[
\kappa = \begin{cases}
\kappa_a \sin \gamma & \gamma = [0, \frac{\pi}{2}] \text{ for } 0 < \kappa \leq \kappa_a \\
\frac{\kappa_a + \kappa_B}{2} - \frac{\kappa_a - \kappa_B}{2} \cos \gamma & \gamma = [0, \pi] \text{ for } \kappa_a < \kappa \leq \kappa_B
\end{cases}
\]

(II-4-5)

where \(\kappa_a \) is chosen as an average of \(\kappa_{a_n} \) over all upper layers. This formulation permits the solution of the halfspace problem as a subset of the layered halfspace problem by removing the possible singularities due to the branch points at \(\kappa_{aN} \) and \(\kappa_{B_N} \). For a layered medium, the transformation weights out the possibility of a surface wave pole at the \(\kappa_{B_N} \) branch point interacting with the real branch line integral. The success of this particular transformation is evident from the quality of the synthetic seismograms presented later. For SH integrals, the transformation \(\kappa = \kappa_{B_N} \sin \gamma \) for \(\gamma = (0, \pi/2) \) is used.

The residues due to the poles of the integrand occur at the zeroes of the period equation. The number of poles, or surface wave modes, increases with frequency. For example, the SCM model of Table 1 has one Rayleigh wave pole at the frequency of 0.01 Hz, and twenty poles at the frequency of 2 Hz. The number of
poles increases almost linearly with frequency. For the dispersion studies, the positions of poles need only be grossly located compared to the precision requirements for seismogram synthesis.

Figures 5 and 6 display the dispersion relations in the frequency-wavenumber plane and phase velocity-period plane, respectively, for a complex oceanic model. A stair-like dispersion pattern is obvious, which usually causes difficulty for pole searching. To overcome this, a pole searching technique was developed. Since the dispersion curves vary more gently in the frequency-wavenumber domain than in the phase velocity-period domain, the pole location will be traced in the $\omega-k$ plane.

We start with a very fine search between $k = k_{\beta_{n}}$ and $k = k_{\beta_{\text{min}}}$ (for Rayleigh wave use $k = k_{\beta_{\text{min}}}/0.88$ to include the fundamental mode) at the two highest frequencies of interest. At this stage a dense search technique with an interval halving refinement is used to find zero crossings. The poles at the next lower frequency could, of course, be found by repeating the same procedures. However, we can save computation time by using the fact that for most earth models, the phase velocity of a given mode always increases with decreasing frequency. For a given mode we known that
Figure 5. The dispersion curves for Rayleigh waves as expressed in the frequency and wavenumber plane for a 30 layer oceanic model.
Figure 6. The dispersion curves for Rayleigh waves as expressed in the phase velocity and period plane. The same earth model as Figure 5 is used.
\[\omega = k c , \]

and that

\[\Delta k = \frac{\Delta \omega}{c} - k \frac{\Delta c}{c} . \] \hspace{1cm} (II-4-6)

This can be used to estimate the pole position of a mode from its position at slightly higher frequencies. The previously calculated pole positions at two higher frequencies are used to give \(\Delta c \). The search at the present frequency begins with the lowest order mode at \(k_{\text{new}} = k_{\text{old}} + \frac{\Delta \omega}{c} \). This guarantees that a particular mode is not overshot.

Next, several fractions of the increment \(k \frac{\Delta c}{c} \) are added to \(k_{\text{new}} \) to find the place where the sign of the period equation changes, at which time the interval-halving method is used to refine the zero. The computational efficiency as well as the results are found to be substantially improved, since the modes are now followed rather than searched at each frequency.

The numerical evaluation of the imaginary axis branch line integrals is the same as that given by Herrmann (1979). The Gauss-Laguerre integration rule was used since P-SV, SH functions vary harmonically and since the \(K_n(\tau \tau) \) decayed exponentially;

\[
\int_0^\infty f(i \tau, \omega) K_n(\tau \tau) \, d\tau = \sum_{k=1}^m w_k [f(i \frac{x_k}{\tau})] [x_k e^{\frac{x_k}{\tau}} K_n(x_k)] \frac{1}{x_k \tau}
\]
\[
\int_0^\infty f(i\tau,\omega) K_n(\tau r) \tau \, d\tau = \sum_{k=1}^m w_k [f(i\frac{x_k}{r})][x_k e^{x_k} K_n(x_k)] \frac{1}{r^2},
\]

(II-4-7)

where \(w_k\) is the weight and \(x = \tau r\). Because of the \(r\) term in equation (II-4-7), the imaginary branch line integral only becomes important at short distances. For computation, the integrand function equation (II-2-7) was used rather than compound matrix formulation (II-2-8) because there are no exponential terms involved. An \(m = 100\) order Gauss-Laguerre integration rule is used, which should be valid at radial distances as close as one-half source depth.

Synthetic Seismograms

After the values of \(u_x(r, \theta, 0, \omega)\), \(u_y(r, \theta, 0, \omega)\), and \(u_z(r, \theta, 0, \omega)\) are calculated at several discrete frequencies, we take the inverse Fourier transform with respect to frequency to form the time histories. The source time function with spectrum \(s(\omega)\) should be taken into account at the same time:

\[
u(r, \theta, 0, t) = \int s(\omega) u(r, \theta, 0, \omega) \exp(i\omega t) \, d\omega/2\pi.
\]

Since the fast Fourier transform (FFT) is used to approximate the Fourier integral, the source time function given by Herrmann (1979)
$$2\tau s(t) = \begin{cases} 0 & t \leq 0 \\ \frac{1}{2}(\frac{t}{\tau})^2 & 0 < t \leq \tau \\ -\frac{1}{2}(\frac{t}{\tau})^2 + 2(\frac{t}{\tau}) - 1 & \tau < t \leq 3\tau \\ \frac{1}{2}(\frac{t}{\tau})^2 - 4(\frac{t}{\tau}) + 8 & 3\tau < t \leq 4\tau \\ 0 & 4\tau < t \end{cases}$$ (II-4-8)

is used. In the context of dislocation theory, \(s(t) \) is proportional to the velocity of the dislocation, or equivalently the far-field displacement time history in an infinite medium. The time histories generated by such an impulse will be those of ground velocity. The Fourier amplitude spectrum of this pulse is enveloped by \(f^0 \) and \(f^{-3} \) asymptotes which intersect at a corner frequency of \(f_c = 1/(4.36^\ast\tau) \) (Herrmann and Wang, 1979). To avoid numerical noise problems with the FFT, \(\tau \) is taken to be an integral of sampling interval, \(\Delta t \).

The above numerical technique was tested by generating theoretical seismograms using the models listed in Table 1. Figures 7, 8, and 9 illustrate some high quality seismograms from a vertical dip-slip source in the SCM model for three different components, respectively. A source depth of 10 km, seismic moment of 1.0 E+20 dyne-cm, source-time function with \(\tau = 0.4 \) sec, and a frequency range from 0.0 to 1.25 Hz are used. The seismograms at distances less than 100 km include both the near- and far-field terms; beyond this dis-
Figure 7. Radial component velocity time histories (RDS) due to a vertical dip-slip dislocation source at a depth of 10 km in SCM model. A source time function with $\tau=0.5$ sec and seismic moment of 1.0E20 dyne-cm are used.
Figure 8. Results corresponding to Figure 7 but for the vertical component.
Figure 9. Results corresponding to Figure 7 but for the tangential component.
tance only the far-field terms are used. It is noted immediately that the body and surface phases are very clear. At large distances, there are multiple reflections following Pn, the first arrival, which last until the onset of the surface waves. Rayleigh-wave groups are well developed, even at short distances, in distinction to the Love-wave group which becomes apparent only at ranges larger than the S-wave critical distance (about 81.9 km). At the distance of 500 km, an interpolation of the pole contribution with one-half the frequency spacing was applied to double the time window (Kennett, 1980). At this distance, only the first half of the time series is plotted.

Figure 10 displays the radial component seimograms due to a 45° dip-slip source of 1 km depth in the CUS model of Table 1. The reverberation within the top layer provides a wave guide which generates large surface waves. The well-developed dispersed groups consist mostly of fundamental mode waves, which might have been greatly attenuated in the real earth structure. Some higher mode Lg wave arrivals prior to the dispersed wave train can easily be seen.

Figure 11 shows the effect of focal depth. The model used is the CUS model of Table 1, and the source type is vertical strike-slip. The epicentral distance is kept at 100 km. Numbers at the end of each seismo-
Figure 10. Radial component velocity time histories (RDD) due to a 45° dip-slip dislocation source at a depth of 10 km in CUS model. Other parameters are the same as in Figure 7.
Figure 11. Vertical component velocity time histories (ZSS) due to a vertical strike-slip source in CUS model. The sources are buried at different depths as indicated at the end of each seismogram. Epicentral distance is kept at 100 km. Other parameters are the same as in Figure 7.
gram are the source depths. It seems that for shallow earthquakes the surface wave is dominant. When the source is deeper the seismogram becomes complex due to the increase of the body waves with respect to the surface waves. When the source is very deep the seismogram becomes simple again, because it consists mostly of body waves. Surface waves have not yet had time to develop. Note that the source at depth 60 km is already in the halfspace.
CHAPTER III

SURFACE WAVE - NORMAL MODE STUDY

The application of eigenfunction theory to the study of surface waves is an important step which incorporates modern mathematics into the investigation of wave propagation in the earth. Using Green's theory as a tool, the response functions in the transformed domain can be defined along mutually perpendicular directions of chosen coordinates. By the imposition of boundary conditions, the values of response functions are discretized and yield specific modes of the surface wave. Because of this, the theory is also called normal mode theory. Orthogonality and normalization, two most useful procedures in eigenfunction theory, further produce the final solutions in a form which is easy to use. The reason for such a discrete excitation arises because surface waves are a type of trapped waves which reflect back and forth in the layers, and decay exponentially in the halfspace. A consequence of this system is the conservation of its total energy. Takeuchi and Saito (1972) used the calculus of variations to derive quantities concerning the derivatives of the conservative energy. These partial derivatives are somewhat sensitive to the properties of the model and can be used to invert for an earth model from surface wave dispersion data.
The numerical application of eigenfunction theory was discussed by Bolt and Dorman (1961) and Takeuchi and Saito (1972). They chose two independent solutions along two perpendicular directions as initial values and used the Runge-Kutta method to integrate over layers. The boundary condition at the free surface is imposed in order to regulate the variation to final solutions. Because of exponential growth of several terms, this method fails to fit the special case of very high frequencies. In this chapter, we will derive a new method to calculate the eigenfunctions. The main effort is directed toward relating the eigenfunction theory to the general layer matrix method. As a result of the symmetry properties of Haskell matrices revealed in the last chapter, the eigenfunctions as well as the energy integrals can be expressed in closed, analytic, forms. Some well-known formulae are revised and rigorously proved using the new framework. The overall objective of this chapter is the calculation of high frequency signals in any plane layered model.

3.1 Haskell Matrices for the Layers

The eigenfuction problem for the generation of surface waves in plane layered media is an important topic in the theory of seismogram synthesis. After Lamb's famous study, many authors have explored this
problem using different approaches (Alterman et al., 1959; Keilis-Borok, 1960; Saito, 1967; Takeuchi and Saito, 1972; Harvey, 1981). Here we will start with the solutions for displacements derived in the last chapter (equation II-2-8), and arrive at a formulation using eigenfunction values at the source depth. The reason we need the eigenfunctions rather than the Haskell's matrices X or Z is because these eigenfunctions can be used to determine the energy which is conserved for surface waves traveling in the layers. Such an energy system is permitted to be perturbed to derive other properties. For example, quantities such as group velocity, dissipation functions, and amplitude factors, which arise from small perturbations of elastic parameters, can be obtained by the variation of total energy (Jeffreys, 1961; Harkrider and Anderson, 1966). In this section, a new formulation for evaluating the eigenfunction values at any depth, which was suggested by Dr. D. G. Harkrider (personal communication), will be presented. This formulation is not only computationally stable and precise, but is consistent with the system derived in the last chapter.

Now, let us discuss the eigenfunctions in the layers. The eigenfunction at any depth can be determined from the eigenfunctions at the free surface by the layer matrices in between

\[B_m = Z B_1 \]

(III-1-1)
where
\[Z = \alpha_m \alpha_{m-1} \cdots \alpha_1. \]

\textbf{P-SV Eigenfunctions}

As the first step, we consider the P-SV case. Expressing equation (III-1-1) in index form:

\[B_{m_k} = Z_{k1} U_{r1} + Z_{k2} U_{z1}, \tag{III-1-2} \]

where we have used the surface boundary conditions which require the stresses to vanish at the free surface. For ease of expression, we will use the indices m, n, or N for the layers, and the indices i, j, k, or 1 for the components in the corresponding vector or matrix which have values 1 to 4 for P-SV waves and 5, 6 for SH waves. Normalizing by the surface z-component displacement \(U_{z1} \), equation (III-1-2) becomes

\[\bar{B}_{m_k} = \frac{B_{m_k}}{U_{z1}} = Z_{k1} \left(\frac{U_{r1}}{U_{z1}} \right) + Z_{k2}. \tag{III-1-3} \]

\(\frac{U_{r1}}{U_{z1}} \) is the ellipticity at the surface, which we already proved to be independent of the source and to possess several equivalent forms:

\[\varepsilon = \frac{U_{r1}}{U_{z1}} = -\frac{R_{12}}{R_{11}} = -\frac{R_{22}}{R_{21}} = -\frac{R_{12}}{R_{11} R_{12}} = -\frac{R_{22}}{R_{21} R_{22}} = \frac{R^{-1}_{12}}{R_{11}} = \frac{R^{-1}_{22}}{R_{21}}. \tag{III-1-4} \]

Using the last of equation (III-1-4), \(R^{-1}_{j4} = 0 \) (period equation), and \(R = XZ \), equation (III-1-3) becomes
$$\bar{E}_{m_k} = Z_{k1} (R^{-1} |^{34}_4 / R^{-1} |^{24}_4) + Z_{k2}$$

$$= [Z_{k1} R^{-1} |^{34}_4 + Z_{k2} R^{-1} |^{24}_4 + Z_{k9} R^{-1} |^{34}_4 + Z_{k4} R^{-1} |^{24}_4] / R^{-1} |^{24}_4$$

$$= [Z_{kp} R^{-1} |^{24}_4] / R^{-1} |^{24}_4$$

$$= [Z_{kp} (R^{-1} |^{34}_4 - R^{-1} |^{24}_4)] / R^{-1} |^{24}_4$$

$$= [(Z_{kp} Z_{p \bar{p}^*}) X_{23} X_{14} - (Z_{kp} Z_{p \bar{p}^*}) X_{24} X_{13}] / R^{-1} |^{24}_4$$

$$= \frac{Z_{ji} X^{-1} |^{34}_4}{R^{-1} |^{24}_4} \ . \ (III-1-5)$$

Equation (III-1-5) includes the inverses of Haskell's matrices, which can be related to normal matrices by using the symmetry properties of compound matrix described in Appendix C:

$$Z_{ji}^{-1} = (-1)^{j+i} Z_{b-i,b-j}$$

$$X^{-1} |^{34}_4 = q_N (-1)^{j+i+1} X |^{12}_{6-i,6-k}$$

$$R^{-1} |^{24}_4 = q_N (-1) R |^{13}_5 \ .$$

Using these, equation (III-1-5) can be written in another form:

$$\bar{E}_{m_k} = \frac{(-1)^{k+1} X |^{12}_{6-i,6-k} Z_{b-i,b} \ . (-1)^j}{- R |^{12}_i} \ .$$

by substituting 5-k=i 5-l=j,

$$\bar{E}_{m_{5-i}} = \frac{(-1)^i X |^{12}_{j,j} Z_{j1}}{R |^{12}_{i3}} \ (III-1-6)$$

which is equivalent to

$$X |^{12}_{j,j} Z_{j1} = (-1)^i R |^{12}_{i3} \ \bar{E}_{m_{5-i}} \ . \ (III-1-7)$$

Equation (III-1-6) will be the form chosen for applica-
From equation (III-1-6), we find that eigenfunctions at any depth can be calculated by a formula similar to equation (II-2-8), which has already been shown to be computationally stable and accurate. This point is worthwhile emphasizing. Since all of the Haskell matrices, their compound forms, and all of the boundary conditions are involved, this formula has attached to it many numerical and theoretical advantages. For example, the squared exponentially growing terms are suppressed by compound matrices. The models used are not restricted by the number of layers or layer thicknesses. The frequencies are permitted to go very high, say 200 Hz, as long as care is taken in evaluating the compound matrices. At the same time the efficiency and accuracy of calculation are all improved.

If the eigenvalues have already been found from another calculation, equation (III-1-6) can be used in the following way. First, we insert the source depths, which might be several different values, into the velocity structure as interfaces. To find the eigenfunctions at these interfaces, the calculation is started from the bottom of the layer stack upward. At every interface, X_{i}^{12} is calculated and stored. When reaching the surface, X is transformed into R, and R_{12} is obtained. Next, a downward procedure is taken to find
After combining with the stored $X|_{ij}^2$ at that depth, we obtain the eigenfunction B by equation (III-1-6). It is obvious that in these procedures the layer matrix a, its compound forms $a|_{ij}^2$, and the compound matrix $E_{ii}^{-1}|_{ij}^2$ are involved, hence the eigenfunction problem is said to be solved in an analytic way. Such an analytic form of calculation is useful especially for high frequencies and complex structures. One test has been made with Harkrider's oceanic model (Harkrider, 1970). The result is satisfactory even with frequency as high as 200 Hz.

If we start with different forms for ellipticity in equation (III-1-4), different formulas can be obtained following the same derivation procedures. They are

$$
\varepsilon = - \frac{R_{12}}{R_{11}} \rightarrow \overline{B}_{m} = \frac{X_{1f} Z |_{12}}{R_{11}}
$$

$$
\varepsilon = - \frac{R_{22}}{R_{21}} \rightarrow \overline{B}_{m} = \frac{X_{2f} Z |_{12}}{R_{21}}
$$

$$
\varepsilon = - \frac{R |_{12}}{R |_{12}} \rightarrow \overline{B}_{m} = \frac{(-1)^{1} Z_{ji}^{-1} R |_{12}}{R |_{12}}
$$

$$
\varepsilon = - \frac{R |_{12}}{R |_{12}} \rightarrow \overline{B}_{m} = \frac{(-1)^{1} Z_{ji}^{-1} R |_{12}}{R |_{12}}
$$

$$
\varepsilon = \frac{R^{-1} |_{12}}{R^{-1} |_{12}} \rightarrow \overline{B}_{m} = \frac{(-1)^{1} X |_{12} Z_{ij}^{2}}{R |_{12}}
$$

Except for the third one, these formulas are not very useful. The reason for this statement becomes clear when a surface water layer is introduced in the next
section.

Given the eigenfunctions at any depth, we can evaluate the energy integrals which are further used to find the quantities resulting from the perturbation of elastic properties. This technique is called the variational principle, which was introduced by Jeffreys (1961) and has been widely applied now (Takeuchi and Saito, 1972; Aki and Richards, 1980, chapter 7). The energy integrals needed to form the system Lagrangian L_R for the Rayleigh wave,

$$L_R = \omega^2 I_0 - k^2 I_1 - 2k I_2 - I_3$$ \hspace{1cm} (III-1.9)

are

$$I_0 = \int_0^L \rho \left[(\overline{U}_r)^2 + (\overline{U}_s)^2 \right] dz$$

$$I_1 = \int_0^L \left[(\lambda + 2\mu)(\overline{U}_r)^2 + \mu(\overline{U}_s)^2 \right] dz$$

$$I_2 = \int_0^L \left[-\mu \overline{U}_z \frac{d\overline{U}_r}{dz} + \lambda \overline{U}_r \frac{d\overline{U}_z}{dz} \right] dz$$ \hspace{1cm} (III-1.10)

$$I_3 = \int_0^L \left[(\lambda + 2\mu)(\frac{d\overline{U}_z}{dz})^2 + \mu(\frac{d\overline{U}_r}{dz})^2 \right] dz .$$

The Lagrangian is defined as the difference between the kinetic and potential energies. Its value is required to be zero if the system is at the eigen state. Hence, this function can be used to diagnose the numerical results. It should be noted that the eigenfunctions used in the integrals (equation III-1-10) are all normalized by the surface z-component displacement. The
integrals in equation (III-1-10) can be expressed in terms of the integral \(I_y \),

\[
I_y = \int \overline{B}_i \overline{B}_j \, dz
\]

where

\[
\overline{B} = [U_r, U_z, T_x, T_r]^T / U_{z_1} .
\]

The eigenfunction or motion-stress vector \(B_m \) in the \(m \)'th layer can be expressed as (equation II-1-14)

\[
B_m(z) = E_m \Lambda(z) K_m .
\]

Taking the explicit forms of matrices \(\Lambda_m \) and \(K_m \), we have

\[
B_m(z) = E_m [A^\alpha e^{\nu_\alpha z}, B^\alpha e^{\nu_\alpha z}, A^\beta e^{\nu_\beta z}, B^\beta e^{\nu_\beta z}]^T .
\]

Since the dependence on depth \(z \) arises solely from the diagonal exponential matrix \(\Lambda \), the integration of \(B_i B_j \) over a given layer \(m \) with thickness \(d_m \) is easily found to be

\[
\int_{z_m}^{z_{m+1}} B_i B_j \, dz = \left[E_{i1} E_{j1} \left(A^\alpha e^{\nu_\alpha d} \right)^2 + E_{i3} E_{j3} \left(A^\beta e^{\nu_\beta d} \right)^2 \right] \frac{1}{-2\nu_\alpha} \left(e^{-2\nu_\alpha d} - 1 \right)
\]

\[
+ \left[E_{i2} E_{j2} \left(B^\alpha e^{\nu_\alpha d} \right)^2 + E_{i4} E_{j4} \left(B^\beta e^{\nu_\beta d} \right)^2 \right] \frac{1}{-2\nu_\beta} \left(e^{-2\nu_\beta d} - 1 \right)
\]

\[
+ \left[(E_{i1} E_{j2} + E_{i2} E_{j1}) \left(A^\alpha e^{\nu_\alpha d} \right) \left(B^\alpha e^{\nu_\alpha d} \right) \right]
\]

\[
+ \left[(E_{i3} E_{j4} + E_{i4} E_{j3}) \left(A^\beta e^{\nu_\beta d} \right) \left(B^\beta e^{\nu_\beta d} \right) \right]
\]

\[
+ \left[(E_{i1} E_{j4} + E_{i4} E_{j1}) \left(A^\alpha e^{\nu_\alpha d} \right) \left(B^\alpha e^{\nu_\alpha d} \right) \right]
\]

\[
+ \left[(E_{i3} E_{j2} + E_{i2} E_{j3}) \left(A^\beta e^{\nu_\beta d} \right) \left(B^\beta e^{\nu_\beta d} \right) \right]
\]

\[
(III-1-11)
\]
\[+ (E_{12}E_{23} + E_{13}E_{22}) (B'' e^{\nu_d}) (A') \frac{1}{(\nu_a - \nu_b)(e^{-\nu_a} - e^{-\nu_b})} \]
\[+ [(E_{11}E_{23} + E_{13}E_{21}) (A'' e^{\nu_d})(A')] \ d \ e^{-\nu_d} \]
\[+ [(E_{12}E_{24} + E_{14}E_{22}) (B'' e^{\nu_d})(B')] \ d \ e^{-\nu_d}, \]

where the layer index \(m \) has been omitted. In equation (III-1-11), \(A' \) and \(B' \) are part of elements of the vector \(K_m \) (or \(\Lambda_m(0)K_m \)) which possess the values of potential constants at the top of layer, and \(A'' e^{\nu_d m} \) and \(B'' e^{\nu_d m} \) are part of components of the vector \(\Lambda_m(d_m)K_m \) which is at the bottom of layer. These quantities can be determined from equation (II-1-15) and equation (II-1-21):

\[
K_m = [A', B', A', B']^T_m = E_m^{-1} B_m
\]
\[
\Lambda_m K_m = [A'' e^{\nu_d m}, B'' e^{\nu_d m}, A' e^{-\nu_d}, B' e^{-\nu_d}]^T_m = E_m^{-1} B_{m+1},
\]
i.e., \(A' \) and \(B' \) are determined from eigenfunctions at the top of the layer and \(A'' e^{\nu_d m} \) and \(B'' e^{\nu_d m} \) from eigenfunctions at the bottom. If it were not done this way, the \(A', A'', B', B'' \) could be very inaccurate by just using \(E_m^{-1} B_m \). Suppose that the eigenfunctions have been determined precisely, the energy integrals as expressed in the analytic forms as equation (III-1-11) can be calculated with sufficient accuracy.

Equation (III-1-11) is applied to the layers lying above the half-space. In the half-space, the integral
has the simpler form

\[
\int B_i B_j \, dx = E_{i3} E_{j3} (A_N) \frac{1}{2v_{\alpha_n}} + E_{i4} E_{j4} (B_N) \frac{1}{2v_{\beta_n}} + (E_{i3} E_{j4} + E_{i4} E_{j3}) (A_N \cdot B_N) \frac{1}{v_{\alpha_n} + v_{\beta_n}}
\]

where \(A_N \) and \(B_N \) are the elements of vector \(K_N \), and can be determined from \(K_N = E_N^{-1} B_N \).

Some of the integrals in equation (III-1-10) require the derivatives of \(U_r \) and \(U_z \) with respect to the depth. From the differential equation (II-1-11), these derivatives can be expressed in terms of the eigenfunctions \(U_r \), \(U_z \), \(T_z \), and \(T_r \) as

\[
\frac{dU_r}{dz} = kU_z - \frac{\omega^2}{\mu} T_r
\]

\[
\frac{dU_z}{dz} = \frac{1}{\lambda + 2\mu} (-k \lambda U_r + \omega^2 T_z)
\]

Therefore, the integrals in equation (III-1-10) as expressed in the form of \(I_{ij} \)'s are

\[
I_0 = \sum_{n=1}^{N} \rho_n (I_{11} + (2\mu) n)
\]

\[
I_1 = \sum_{n=1}^{N} (\lambda + 2\mu) n (I_{11})_n + \mu_n (I_{22})_n
\]

\[
I_2 = \sum_{n=1}^{N} \omega^2 [\sigma_n (I_{13})_n + (I_{24})_n] - k[(\lambda \sigma)_n (I_{11})_n + \mu_n (I_{22})_n]
\]

\[
I_3 = \sum_{n=1}^{N} \omega^4 [\sigma_n (I_{13})_n + \mu_n (I_{22})_n] - 2k\omega^2 [\sigma_n (I_{13})_n + (1/\mu)_n (I_{44})_n]
\]

\[
+ \omega^4 [(\sigma/\lambda)_n (I_{33})_n + (1/\mu)_n (I_{44})_n]
\]

(III-1-12)
where

$$\sigma = \frac{\lambda}{\lambda + 2\mu}.$$

It is interesting to note that the Lagrangian L_R defined in equation (III-1-9) has the following form as expressed in I_{ij}'s:

$$L_R = \sum_{n=1}^{N} \left[(\rho - \frac{k^2}{\omega^2} \xi)_n (J_{11})_n + \rho_n (I_{22})_n - (\frac{\omega^2}{\lambda + 2\mu})_n (J_{33})_n - (\frac{\omega^2}{\mu})_n (I_{44})_n \right] \omega^2 \tag{III-1-13}$$

The coefficients before the I_{ij}'s in this equation are just those of skew-diagonal elements in the differential equation (II-1-11). This property will be used in Appendix D for finding the amplitude factors from energy integrals.

SH Eigenfunctions

The above derivation was for the P-SV, or Rayleigh waves. We have found the analytic solutions of the eigenfunction at any depth, and the analytic forms for taking energy integrals. Similarly, for the Love waves we have the following properties:

1. period equation $R_{65} = 0$.
2. symmetry of Haskell matrices: $Z_{ij} = (-1)^{i+j} Z_{i1-j,11-i}$
 and $X_{ij} = (-1)^{i+j} q_N X_{i1-j,11-i}$ with $q_N = -2k^2 \mu \rho / \rho_N$, and $i,j = 5,6$.
3. since $R_{54} R_{54}^{-1} = 1$, therefore $R_{66} R_{66}^{-1} = 1$.
Now the eigenfunctions normalized with the surface tangential displacement become

\[
\bar{B}_{m_k} = Z_k b_k
= X_k^{-1} R_{p5}
= X_k^{-1} R_{65}
= X_k^{-1} / R_{66}^{-1}
= (-1)^{k+1} X_{5,11-k}
\]

\[
R_{65} = k = 5, 6
\]

or equivalently

\[
X_{64} = (-1)^i R_{66} \bar{B}_{m_{11-i}}
\]

\[
i = 5, 6
\]

The Lagrangian for Love waves is

\[
L_L = \omega^2 I_0 - k^2 I_1 - I_2
\]

with

\[
I_0 = \int_0^z \rho \bar{U}_d^2 \, dz
\]

\[
I_1 = \int_0^z \mu \bar{U}_d^2 \, dz
\]

\[
I_2 = \int_0^z \mu \left(\frac{d\bar{U}_d}{dz} \right)^2 \, dz
\]

The integration over one of the upper layers is

\[
\int_{z_m}^{z_{m+1}} B_i B_j \, dz = \left[E_{t5} E_{f5} (C'' e^{\nu_d})^2 + E_{t6} E_{f6} (C')^2 \right] \frac{1}{-2\nu_\beta} (e^{-2\nu_d} - 1)
\]

\[
+ \left[(E_{t5} E_{f6} + E_{t6} E_{f5}) (C') (C'' e^{\nu_d}) \right] d e^{-\nu_d}
\]

and over bottom half-space is

\[
\int_{z_N}^{z_m} B_i B_j \, dz = E_{t6} E_{f6} (C')^2 \left(\frac{1}{2\nu_\beta} \right)
\]
The energy integrals as expressed in terms of \(I_y \)'s take the forms:

\[
I_0 = \sum_{n=1}^{N} \rho_n (I_{55})_n
\]

\[
I_1 = \sum_{n=1}^{N} \mu_n (I_{55})_n
\]

\[
I_2 = \sum_{n=1}^{N} \frac{1}{\mu_n} (I_{66})_n
\]

(III-1-17)

It is noted that there are some extra \(\omega \)'s present in equation (III-1-12) but not in equation (III-1-17). The reason arises from the somewhat arbitrary definitions for stress eigenfunctions which we chose in equation (II-1-7). The P-SV stresses used here should be multiplied by \(\omega^2 \) before comparing with other formalisms such as that of Takeuchi and Saito (1972).

3.2 Normal Mode Theory

Normal mode theory is a method which uses the boundary value problem technique to deal with the waves propagating within layers. A normal mode defines a preferred frequency of vibration for the system. The surface wave, which is the most prominent phase on the seismogram, comes from the summation of the contributions from various preferred vibrations, or modes, of the system. There have been a number of investigations of this theory (Haskell, 1964; Ben-Menahem and Herkrider, 1964; Vlaar, 1966; Saito, 1967; and Levshin and
Yanson, 1971). Their results are principally equivalent (Tsai and Aki, 1970), although some expression differences exist, especially for the source functions. In this section, a derivation will be performed using the results constructed in the last chapter, in which Saito’s (1967) important extension to evaluate the residual contributions by means of variational principles will be intensively discussed.

The Fourier-Hankel transformed displacements at the free surface expressed in equation (II-2-8) are

\[U_s, (\omega, k, n) = S_2 \left| \frac{j_1}{j_2} \right| Z_{j_2} / R \left| \frac{j_2}{j_2} \right| \]

\[U_r, (\omega, k, n) = -S_2 \left| \frac{j_1}{j_2} \right| Z_{j_2} / R \left| \frac{j_2}{j_2} \right| \]

\[U_q, (\omega, k, n) = -S_2 \left| 1 \right| X_{j_2} / R \left| j_2 \right| \]

From the discussion in section 2.2, the displacements at any depth for a double-couple dislocation source can be written as:

\[u_s (r, \theta, z, \omega) = \int U_s^{(0)} j_2 (kr) dk \cdot R_{ss} + \int U_s^{(1)} j_1 (kr) dk \cdot R_{ds} + \int U_s^{(0)} j_0 (kr) dk \cdot R_{ss} \]

\[u_r (r, \theta, z, \omega) = \int -U_r^{(0)} j_1 (kr) dk \cdot R_{ss} + \int -U_r^{(1)} j_0 (kr) dk \cdot R_{ds} + \int U_r^{(0)} j_1 (kr) dk \cdot R_{ss} \]

\[u_q (r, \theta, z, \omega) = \int -U_q^{(0)} j_1 (kr) dk \cdot R_{ss} + \int -U_q^{(1)} j_0 (kr) dk \cdot R_{ds} \]

where only the far-field terms are retained, and the \(R \)'s describing the radiation patterns are given in equation (II-2-15). The superscripts representing the azimuthal mode number are parenthesized for clarity. Since the eigenfunctions found in the last section are all nor-
malized with respect to \(U_{z_1} \) (P-SV) or \(U_{\varphi_1} \) (SH), the integral to be evaluated in equation (III-2-1) actually is

\[
\int_0^\infty B^{(n)}(z) \, J_m(kr) \, dk = \int_0^\infty \overline{B}(z) \, U_{z_1}^{(n)} \, J_m(kr) \, dk
\]

where \(\overline{B} \) is the normalized eigenfunction at the depth \(z \), and \(U_{z_1}^{(n)} \) is the surface \(z \)-component displacement. Of course, for Love waves we use \(U_{\varphi_1} \) instead of \(U_{z_1} \).

With the eigenfunctions available at different depths, we are ready to derive the surface wave fields. After laborious substitution and expansion, final results, similar to those of Saito (1967), Levshin and Yanson (1971), or Harvey (1981) will be found. Here we just show a component, RSS, for instance. With the aid of equation (III-1-7), the RSS component can be written as

\[
\tilde{R}_{\text{SS}} = \int_0^\infty \overline{U}_r(z) \, U_{z_1}^{(n)} \, J_1(kr) \, dk
\]

\[
= \int_0^\infty \overline{U}_r(z) \, \frac{S_t^{(n)} \, X |_{12} \, Z_{11}}{R |_{12}} \, J_1(kr) \, dk
\]

\[
= \int_0^\infty \overline{U}_r(z) \, (-1)^i \frac{R |_{12}}{R |_{12}} \, \overline{B}_{m_0-i} \, S_t^{(n)} \, J_1(kr) \, dk
\]

where the index \(m \) indicates the source layer. Setting the period equation \(R |_{12} = 0 \), and applying the residue theorem, we can find the surface wave displacements from the pole contributions.
\[RSS = -\pi i \sum \left[-\overline{U}_r(z) \right] \frac{R | \frac{12}{13} }{ \frac{\partial}{\partial k} R | \frac{12}{13} } (-1)^l \overline{B}_{m_{l-k}} S_l^{(2)} H_l^{(2)}(kr), \]

where the summation consists of each of the normal mode contribution at a given frequency. For far-field, i.e. \(r \) very large, the Hankel function \(H_n^{(2)}(kr) \) has the approximation

\[H_n^{(2)} = \left[\frac{2}{n kr} \right]^{\frac{1}{2}} e^{-ikr + \frac{n}{4}(1+2n)}. \]

By substituting the source function \(4\pi \omega^2 S_4^{(2)} = -2k^2 \), the RSS component surface wave at large distance becomes

\[RSS = \sum \left[-\overline{U}_r(z) \right] A_R \frac{1}{2\pi} k \overline{U}_m \left[\frac{2\pi}{kr} \right]^{\frac{1}{2}} e^{-ikr - i3n/4} \]

where

\[A_R = \frac{R | \frac{12}{13} }{ \frac{\partial}{\partial k} R | \frac{12}{13} } \frac{k}{\omega^2}. \]

The amplitude factor or amplitude response \(A_R \), defined by Harkrider (1964), can be evaluated in terms of phase velocity \(c \), group velocity \(U \), and the energy integral \(I_0 \) according to the following formula:

\[A_R = \frac{1}{2 \omega U I_0} \] (III-2-2)

(Harkrider and Anderson, 1966; Levshin and Yanson, 1971; Takeuchi and Saito, 1972). The verification of this relation was first provided by Saito (1967). He employed the variational technique and decomposed the eigenfunction into two parts, one of
which is continuous along the z-coordinate and the other is discontinuous by the interruption of the source at the source depth (Aki and Richards, 1980, p.310). However, such a splitting of the eigenfunction is not necessary if it is only desired to express the pole residue in terms of energy integrals. In Appendix D, we apply similar techniques from the variational principle, but use only the forms of the eigenfunction defined before. The derivation is relatively straightforward, but involved. An extra k and an extra ω^2, which were presented in section 2.3, automatically appear in our formulation.

Applying this result to the partial derivative of the period equation, we will obtain the excitation of surface waves in terms of the eigenfunction at the source depth and the energy integrals:

$$RSS = \sum \left[-\bar{U}_r(z)\right] \frac{1}{2cU_0} \frac{1}{2\pi} k \bar{U}_m \left[\frac{2\pi}{kr}\right]^{1/2} e^{-ikr-i\frac{3\pi}{4}}.$$

The same procedures can be applied to all other components with the results:

$$u_x(\tau, \theta, z, \omega) = \sum D_{kr} \frac{\bar{U}_x(z)}{2cU_0} \left[\frac{2\pi}{kr}\right]^{1/2} e^{-ikr-i\frac{\pi}{4}}$$

$$u_r(\tau, \theta, z, \omega) = \sum D_{kr} \frac{\bar{U}_r(z)}{2cU_0} \left[\frac{2\pi}{kr}\right]^{1/2} e^{-ikr-i\frac{3\pi}{4}}$$

$$u_\theta(\tau, \theta, z, \omega) = \sum D_{k\theta} \frac{\bar{U}_\theta(z)}{2cU_0} \left[\frac{2\pi}{kr}\right]^{1/2} e^{-ikr+i\frac{\pi}{4}}.$$
where

\[D_{kR} = \frac{1}{2\pi} \left[(k\overline{U}_m) R_{ss} + \frac{k^2}{\rho_m} \overline{T}_r - k \left[3 - \left(\frac{2\beta_m}{\alpha_m} \right)^2 \right] \overline{U}_r \right] R_{dd} \]

\[+ i \left(\frac{k^2}{\rho_m} \overline{T}_r \right) R_{ds} \]

\[D_{kL} = \frac{1}{2\pi} \left[k \overline{U}_m R_{ss} - i \left(\frac{1}{\mu_m} \overline{T}_m \right) R_{ds} \right]. \]

These solutions are the same as others (Saito, 1967; Herrmann, 1974; etc.). It is noted that at the free surface \(\overline{U}_{r_1} = \varepsilon \) and \(\overline{U}_{s_1}(0) = 1 \). Hence the \(z \)- and \(r \)-component displacements at a particular frequency have the ratio \(\varepsilon \) (Haskell, 1953), i.e., a 90 degrees phase shift and \(\varepsilon \) maximum amplitude ratio.

Water Layer

If there is a water layer on the top of the solid layer stack, as in oceanic models, the situation does not become overly complicated. Only a simple modification of the formula derived above is needed. Denote the surface water layer by index '0'. The calculation of eigenfunctions in the water layer is just a case of acoustic wave propagation which is widely used in applied physics. The equations to be solved are

\[\nabla^2 \varphi = \frac{1}{\alpha^2} \frac{\partial^2 \varphi}{\partial t^2} \]

\[u_r = \frac{\partial \varphi}{\partial r} \]

\[u_z = \frac{\partial \varphi}{\partial z} \]

\[T_z = \lambda \nabla^2 \varphi. \]
The boundary conditions become

\[
\begin{align*}
\varphi &= 0 \quad \text{at } z=0 \\
u_{z1} &= u_{z0} \quad \text{at } z=d_0 \\
T_{z1} &= T_{z0}
\end{align*}
\]

(Ewing et al, 1957, p.158). It is noticed that the \(u_r \) component is no longer continuous across the solid-liquid boundary, and \(T_r = 0 \) in the water layer, for which only compressional potential \(\varphi \) is still needed. The solutions similar to those of equation (II-1-4), (II-1-6), and (II-1-7) reduce to

\[
\varphi(r, \vartheta, z, \omega) = \left(\frac{\cos n \vartheta}{\sin n \vartheta} \right) J_n(kr) Z_1(z)
\]

and

\[
Z_1(z) = A' e^{-\nu_a z} + A'' e^{\nu_a z} = -2A' \sinh \nu_a z,
\]

where we have used the free surface boundary condition, i.e., \(Z_1(0) = 0 \). The eigenfunctions are defined in the same way as before;

\[
4\pi_0 u_r(r, \vartheta, z, \omega) = \cos \vartheta \left[-kZ_1 \left(\frac{dJ_n(kr)}{dkr} \right) \right] + \sin \vartheta \left[c \rightarrow s \right]
\]

\[
4\pi_0 u_z(r, \vartheta, z, \omega) = \cos \vartheta \left[\frac{dZ_1}{dz} J_n(kr) \right] + \sin \vartheta \left[c \rightarrow s \right] \quad (III-2-4)
\]

\[
4\pi T_z(r, \vartheta, z, \omega) = \cos \vartheta \left[\omega^2 Z_1 \right] J_n(kr) + \sin \vartheta \left[c \rightarrow s \right],
\]

i.e.,

\[
U_r = -\frac{k}{\rho_0} Z_1 = \frac{2A'}{\rho_0} k \sinh \nu_a z
\]

\[
U_z = \frac{1}{\rho_0} \frac{dZ_1}{dz} = -\frac{2A'}{\rho_0} \nu_a \cosh \nu_a z
\]

\[
T_z = -Z_1 = 2A' \sinh \nu_a z.
\]

After normalization by \(U_z \), at \(z = d_0 \), we have
\[\begin{align*}
\overline{U}_r &= -k \sinh \nu_a z / (\nu_a \cosh \nu_a d_0) \\
\overline{U}_z &= \cosh \nu_a z / \cosh \nu_a d_0 \\
\overline{T}_z &= -\rho_0 \sinh \nu_a z / (\nu_a \cosh \nu_a d_0)
\end{align*} \] (III-2-5)

Since there is the same Bessel function dependence for \(T_z \) and \(U_z \) components as in equation (III-2-4), we find that

\[\overline{T}_{z_1} = (-\frac{\rho_0 \sinh \nu_a d_0}{\nu_a \cosh \nu_a d_0}) \overline{U}_{z_1} = T \overline{U}_{z_1} \]

at the solid-liquid boundary. \(T \) was also derived by Harkrider (1964) from the ratio \(a_{32}/a_{22} \) for the water layer \(\beta_0 = 0 \).

Now let us check the effect of the water layer on the results derived before. The surface displacements to be found are now at the top of the solid layers. First, the period equation is altered to appear as

\[\begin{bmatrix}
0 \\
0 \\
A_N' \\
B_N'
\end{bmatrix} R \begin{bmatrix}
U_{r_1} \\
U_{z_1} \\
T_{z_1} \\
0
\end{bmatrix} = R \begin{bmatrix}
U_{r_1} \\
U_{z_1} \\
T_{z_1} \\
0
\end{bmatrix} \] (III-2-6)

where \(R \) includes the matrices for solid layers only. The first two rows give the new period equation:

\[R |^{12}_{12} + T R |^{12}_{12} = 0 \]

It is noted that because the period equation changes, so do the dispersion values. The form of the ellipticity relation at the solid-liquid boundary is not affected if we use the following derivation:
\[
\varepsilon = \frac{U_{r_{1}}}{U_{s_{1}}} = \frac{R_{12} + TR_{13}}{R_{11}} = \frac{R_{22} + TR_{23}}{R_{21}}
\]

\[
= -\frac{R_{12}R_{23} + TR_{13}R_{23}}{R_{11}R_{23}} = -\frac{R_{22}R_{13} + TR_{23}R_{13}}{R_{21}R_{13}}
\]

\[
= -\frac{R_{12}R_{23} - R_{22}R_{13} + T(R_{13}R_{23} - R_{23}R_{13})}{R_{11}R_{23} - R_{21}R_{13}} = -\frac{R_{12}^{2} + T R_{13}^{2}}{R_{13}^{2}} \quad (III-2-7)
\]

or equivalently,

\[
\varepsilon = \frac{R^{-1} R_{14}^{14}}{R^{-1} R_{24}^{24}}. \quad (III-2-8)
\]

However, other forms, such as those in equation (III-1-4), can no longer be used. For example, there is yet another form:

\[
\varepsilon = \frac{R_{12}^{12} + TR_{13}^{13}}{R_{13}^{13}}
\]

As a consequence, the eigenfunction formula (equations III-1-6 and III-1-8), if expressed in the corresponding forms with equations (III-2-7) and (III-2-8), will stay the same, but this is not true for the other forms. This point should be noticed when a water layer is imposed.

The energy trapped in the water layer is easy to obtain by direct integration from equation (III-2-5). Here we just list the results needed to calculate the Lagrangian:

\[
\int_{0}^{d_{0}} U_{r} U_{r} \, dz = \frac{k^{2}}{2A \nu^{2}} [B - d_{0}]
\]
\[
\begin{align*}
\int_{d_0}^{d_0} \overline{U}_r \, dz &= \frac{1}{2A} \left[B + d_0 \right] \\
\int_{d_0}^{d_0} \overline{U}_z \, dz &= \frac{-k}{2A} \left[B - d_0 \right] \\
\int_{d_0}^{d_0} \frac{d\overline{U}_z}{dz} \, dz &= \frac{\nu_a^2}{2A} \left[B - d_0 \right]
\end{align*}
\]

where

\[
A = \cosh^2 \nu_a d_0 \quad \quad B = \frac{\sinh 2\nu_a d_0}{2\nu_a}.
\]

The Lagrangian integral components \(I_i \) have the following forms, obtained by setting \(\mu_0 = 0 \) in equation (III-1-10),

\[
\begin{align*}
I_0 &= \int \rho_0 \left(\overline{U}_r^2 + \overline{U}_z^2 \right) \, dz \\
I_1 &= \int \lambda_0 \overline{U}_r^2 \, dz \\
I_2 &= \int \lambda_0 \overline{U}_z \frac{d\overline{U}_z}{dz} \, dz \\
I_3 &= \int \lambda_0 \frac{d\overline{U}_z}{dz} \frac{d\overline{U}_z}{dz} \, dz
\end{align*}
\]

These integrals over the water layer should be added to the corresponding integrals for solid layers derived in section 3.1. Although the displacement fields calculated are at the top of solid layers, we find part of the wave energy is trapped in the first water layer, especially for high frequency signals. When using the energy viewpoint to approach the eigenfunction problem, the contribution from the water layer cannot be simply ignored. The presence of the water layer does not affect the corresponding SH solution.
Synthetic High Frequency Seismograms

In the above discussion, we have set up a complete system to calculate eigenfunctions and the related parameters. A FORTRAN program was designed to compute the surface wave time history or its spectrum for relatively high frequencies and moderately complex models. An explanation of this program is given in Appendix E.

Figures 12, 13, and 14 show examples obtained from these programs for three different components. In each figure the upper five seismograms are obtained by using a symmetric triangular source time function with base of one second, and the bottom seismogram from a step source time function. The frequencies cover the range from 0 to 10 Hz, although the triangular source has the corner frequency at 0.7 Hz. The CUS model in Table 1 is used. Source parameters are dip = 50°, slip = 180°, strike = 40°, and depth = 14 km. The receivers are located to the north of source, and the epicentral distances are indicated at the end of each seismogram. Furthermore, a Q-model with $Q_\beta = 250$ for the top 24 km depth followed by $Q_\beta = 2000$ for the halfspace is also assumed. In these figures an apparent low frequency fundamental mode signal arrives after some high frequency Lg (Airy) phases. These synthetic seismograms seem to be of quite high quality. Even the step-source generated seismograms, which contain 10 Hz frequen-
Figure 12. Theoretical seismograms generated by eigenfunction programs. The upper five seismograms are due to a dislocation source with a triangular source time function buried at the depth of 14 km in CUS model. The frequencies used cover the range from 0 to 10 Hz. The bottom seismogram is due to the same dislocation source but with a step source time function. A Q-model with $Q_a = 250$ for top 24 km and $Q_a = 2000$ for other layers is used. The number at the end of each seismogram indicates the epicentral distance.
Figure 13. Results corresponding to Figure 12 but for the radial component.
Figure 14. Results corresponding to Figure 12 but for the tangential component.
cies, exhibit well developed and fairly noiseless waveforms.
CHAPTER IV

BODY WAVE - LEAKY MODE STUDY

In the previous chapter, the normal mode theory of surface waves was considered. The objective of this chapter is to present a detailed discussion about the generation of body waves. This part of the waveform comes from, at least for most P-SV cases, the branch line integral discussed in section 2.4. Figure 15a shows the contributions of the pole residue (middle), branch line integral (bottom), and the total seismogram (top) of the REP component with source depth = 10 km and $r = 100$ km for the SCM model of Table 1. Figure 15b gives a similar display for the RDS component with source depth = 1 km and $r = 25$ km for the CJS model. It is obvious that there are two definitely different signals arising from the pole contribution and the branch line integral, which constitute the final seismogram. This fact can further be seen from Figures 16 and 17. However for the SH case, the situation is totally different. Figure 18 indicates that, for the SH case, the pole contribution constitutes most of the signal, and the branch line integral is only required to make the total seismogram 'causal' (Herrmann, 1978a). Thus, what is the role of the branch line integral in constructing a seismogram? This question will be discussed in this chapter using the leaky mode
Figure 15. Study of contribution of various components of contour integration. (a) is the set of vertical component seismograms due to an explosive source at 100 km away and buried at 10 km depth in SCM model. (b) is the set of radial component seismograms due to a 45° dip-slip source at 25 km away and buried at 1 km depth in CUS model. In each set of seismograms, the top one is the complete solution, the middle is the pole contribution, and the bottom is the contribution from branch line integral.
Figure 16. Same comparison as for Figure 15. The radial component seismograms due to a dip-slip source buried at 10 km depth in SCM model are displayed. Two sets of seismograms correspond to epicentral distances at 25 km and 200 km, respectively.
Figure 17. Same comparison as Figure 16, but for the vertical component.
Figure 18. Same comparison as Figure 16, but for the tangential component.
approach.

Harvey (1981) imposed a deep and rigid cap at the bottom of the structure to lock the energy in the upper layers. It was found that this process is an approximation which ignores the leakage of waves and forces the leaky mode to appear on the real wavenumber axis as pseudo-normal modes. Since the normal modes are usually easy to handle, this approach provides a good way to simulate the body waves.

The reflectivity method of Fuchs and Müller (1971) is a widely used method for calculating body waves. Using a theory from Kennett (1974), we are able to generalize the reflectivity method. Most importantly, such a modification is made by simply adjusting our system constructed in chapter II. Hence, the reflectivity method is only a special case of our system.

4.1 The Influence of Leaky Modes on Body Waves

In section 2.4, we constructed the full wave field after combining two different types of solutions: the pole contribution and the branch line integral. The poles which describe the vibration modes of layered wave guides exhibit dispersion and contribute mainly to the surface wave. This point was further confirmed by the normal mode approach as presented in chapter III.
It is natural to ask whether the branch cut integral naturally gives rise to the body wave. In this section, we will extend the normal mode theory to include the leaky mode (or leaking mode), and investigate the role of branch line integration by means of the leaky mode approach.

The study of leaky modes began when the computer was still in its infancy. The direct evaluation of a line integral along the branch cuts is difficult. To overcome this, two methods were proposed. One was the use of the steepest descent method to find the approximate solutions for large source-receiver distances (Lapwood, 1949; Fuchs, 1971). The other was an attempt to deform the integration path into other Riemann sheets and evaluate the pole residue there (Rosenbaum, 1960; Phinney, 1961). The branch cut and Riemann sheets were introduced in order to make the vertical wavenumber single valued. There exist four sheets for P-SV with respect to four combinations of $\text{Re}(\nu_a)$, $\text{Re}(\nu_b)$ being positive or negative, and two sheets for SH. We will use $(+,-)$ for positive $\text{Re}(\nu_a)$ and negative $\text{Re}(\nu_b)$, respectively, and similar sign symbols for other combinations. The poles in the lower Riemann sheets are called leaky modes, as distinct from normal modes. Since these poles are situated off the real axis in the complex plane, imaginary parts cause the attenuation as waves propagate with distance or time.
Physically, the leaky modes describe traveling disturbances as a leaking S wave or P and S waves, respectively, into the substratum. At moderate distances, such a mode might be seen as it sometimes results in large amplitude dispersed oscillatory trains appearing in the interval between the P and S arrivals, which are called PL waves.

Many authors have explored leaky modes by extending the normal (or trapped) mode theory (Phinney, 1961; Gilbert, 1964; Laster et al., 1965; Haskell, 1966; Abramovici, 1968; Alsop, 1970; Cochran et al., 1970; Dainty, 1971; Watson, 1972). Among these works, that of Gilbert (1964) is of fundamental importance. Using real k-complex f as independent variables, Gilbert classified the modes into two types: Lamb's roots and organ pipe roots, when k approaches zero. Lamb's roots are associated largely with the properties of the half-space. One of these roots is the fundamental mode of the Rayleigh wave which occupies $(+,+)$ position over the whole range of $k-f$. But the other Lamb's roots behave like organ pipe modes as k or f become large. An organ pipe mode represents the standing wave trapped in the layer. It is the mode associated with the energy reverberated almost vertically inside the layers. Two forms of organ pipe mode exist: π modes which possess P-wave properties and originate from the $(-,+)$ sheet, and Σ modes which have S-wave properties and come from
the (+,-) sheet.

Following the work of Gilbert (1964), investigation principally concentrated on the search for modes, i.e., defining the dispersion curve and its attenuation relation. Laster et al (1965) provided a theoretical basis for the dispersion study. They also generated theoretical seismograms from leaky mode contributions and indicated the importance of the leaky mode in the early part of the seismogram by comparison to experimental data. Cochran et al (1970) displayed the dispersion curves for \(\pi \) and \(\Sigma \) modes in a multiple elastic wave guide, and found lattice dispersion patterns which are characterized by \(\pi \)-pseudo and \(\Sigma \)-pseudo modes. The \(\pi \)-pseudo modes were shown to make up the oscillatory part of the seismogram between \(P \) and \(S \), which depends solely on the \(P \) velocities. Abramovici (1968) extended the compound matrix technique to the leaky mode calculation, and defined a transfer function to study the contribution of individual modes. Except for Laster et al (1965), the real \(k \)-complex \(f \) approach of Gilbert (1964) has been employed to compute dispersion curves by all other investigators. Watson (1972) made an interesting study using real \(f \)-complex \(k \) analysis. The most significant contribution of his work was the identification of \(PL \) and \(OP \) modes. His approach is especially suitable for our present study. It will be seen that it is these two modes which affect the response
along the branch cut and enter into the final contribution of seismogram synthesis.

Following Watson (1972) we take the frequency to be real and allow the poles to wander on the complex wavenumber plane. The branch cuts are kept along the real and imaginary axes, as before. This differs from the cuts used by other studies (Gilbert, 1964; Laster et al., 1965; Watson, 1972), in which the branch cuts were usually made directly in the first or fourth quadrant to expose the lower Riemann surfaces. Our object is to investigate the influence of leaky mode poles on the response function along the real branch cut.

It is already known (Gilbert, 1964) that the poles in the complex plane occur in sets of four, that is, if \(k \) is a pole, so are \(-k, k^*, -k^*\). Here we will restrict ourselves to the fourth quadrant only. Keeping the branch cut along the real and imaginary axis, the radical \(\nu_a \) has values in the fourth quadrant given by

\[
\nu_a = \pm \left[\sqrt{\frac{r+x}{2}} - i \sqrt{\frac{r-x}{2}} \right]
\]

where

\[
x = k_R^2 - k_I^2 - k_a^2
\]
\[
y = 2 k_R k_I
\]
\[
r = \sqrt{x^2 + y^2}
\]
A similar definition for ν_β can be obtained by changing α to β.

Poles were searched for on the lower complex-k sheets corresponding to different frequencies. When frequency changes, the leaky poles also transit along some paths, and sometimes even pass across the branch cut and appear on other Riemann sheets. Since our branch line integrations are carried out on the $(+,+)$ sheet, we will consider only those poles which have the ability to enter this top sheet. When poles transit through the branch cut between $k_{\alpha N}$ and $k_{\beta N}$, only ν_α changes sign, but through the cut between 0 and $k_{\alpha N}$ both signs of the radicals change. Hence the candidates are those poles just below the $k_{\alpha N}-k_{\beta N}$ cut on the $(+,-)$ sheet and those near the cut between the origin and $k_{\alpha N}$ on the $(-,-)$ sheet. These two regions are called region I and region II by Watson (1972) and Pilant (1979). The poles on the $(-,+) \text{ sheet}$ have no effect on the integration, however they might transit into $(+,-)$ or $(-,-)$ sheets and become important.

A computer program was set up to find the curves in a finite region of interest in the complex-k plane, such that the real or imaginary parts of the period equation are zero. The intersections of these curves are taken as the roots of the leaky modes. Since we are only interested in their properties, no refinement of
pole position is necessary. Figure 19 shows the curves of the null real part of the period equation (denoted by '+' sign), and curves with the null imaginary part (denoted by 'x') at frequencies 0.32 Hz and 0.33 Hz. The model used is the SCM model listed in Table 1. These curves exhibit a particular pattern, which will help us to identify a specified pole as the frequency varies. The pattern obviously shows that two kinds of poles exist, the OP modes which always remain on the (+,-) sheet, follow an exponential type of path from $-i\infty$, and the PL modes which wander in the vicinity of the $k_{AN} - k_{BN}$ branch cut.

Using these, we made a close search for poles by varying the frequency from 0.25 Hz to 0.40 Hz in steps of 0.01 Hz. The results are shown in Figures 20 to 22. Now the roles of the OP and PL modes are clear. In Figure 20 the OP poles migrate from the region with large imaginary k, i.e. high attenuation, and approach the point k_{a_i}. The PL modes, on the other hand, emerge from the (-,+) sheet by crossing the cut around k_{a_i}, and shift slowly in the region very close to the branch cut. These poles will contribute to the integration along the cut, which under some particular conditions are significant enough to generate a dispersive wavetrain between P and S, called PL waves. The PL and OP modes collide at the place just beneath k_{a_i}. After this, two kinds of modes mingle together and generate
Figure 19. Curves of the null real part of Rayleigh wave period equation (denoted by '＋' sign) and the null imaginary part (denoted by '×' sign) in the fourth quadrant of (+, -) sheet of complex k plane. $k_{\alpha N}$ and $k_{\beta N}$ are branch points. The top figure is obtained at 0.32 Hz and the bottom at 0.33 Hz. The SCM model is used.
Figure 20. Paths of leaky modes of SCM model through the fourth quadrant of $(+,-)$ sheet of complex k plane. The frequencies change from 0.25 Hz to 0.40 Hz. Two kinds of modes, namely PL and OP modes, exist before k_a, the wavenumber corresponding to the first layer P velocity. After this point, two modes mingle together and form the shear-coupled PL-OP mode. The numbers at the beginning of each path indicate the starting frequencies.
Figure 21. Same as Figure 20, but for leaky modes on
(-,-) sheet of complex k plane.
Figure 22. Same as Figure 20, but for five-layer CUS model.
the shear-coupled PL wave.

As the frequencies keep increasing, the poles will approach the shear branch point, then cross the cut, and enter the (+,+ sheet to become the normal modes. It is thus possible that, at some frequencies, the shear branch point is also a pole. One might suspect that the PL poles, when crossing the cut from (-,+) to (+,-) sheet, will give a singularity on our integration path. It is fortunate that this will not happen, because the integration is carried out on the (+,+) sheet and the cut which the PL modes cross is not the one we are integrating.

Figure 21 shows the leaky poles on the (-,-) sheet. Except around the P branch point, these poles have relatively large imaginary components. Hence we can expect that their contribution will be small. This is easy to understand since the waves from this part have large phase velocity, or equivalently travel nearly vertically. Hence the leakage of waves into the halfspace will carry away most of the energy. These poles will be named 'weak' leaky poles.

When the model becomes complex, the pole shifting also becomes complicated. Figure 22 shows the variation on the (+,-) sheet for the CUS model of Table 1. In this frequency range (0.25 to 0.4 Hz), the effect of the first weathered layer cannot be seen. The
variation between \(k_{a_2} \) and \(k_{a_N} \) is rapid; however, after \(k_{a_2} \) the shear-coupled PL modes retain their simple shifting pattern.

From the above discussion, we find that there exist at least three kinds of poles which affect the values of the integrand along the real branch cut: (1) weak leaky poles between 0 and \(k_{a_N} \), (2) PL-OP poles between \(k_{a_N} \) and \(k_{a_2} \), (3) shear-coupled PL poles between \(k_{a_2} \) and \(k_{\Phi_N} \). Figures 23 and 24 strongly support this conclusion. In Figure 23 pole positions and integrand responses like those of Figure 3 are displayed, with four plots corresponding to 0.25, 0.5, 0.75 and 1.0 Hz. Different source types are arbitrarily chosen. Figure 24 shows the same response variations with different source type and the corresponding leaky poles for the CUS model at 0.25 and 0.75 Hz, respectively. As expected, the correspondence between the pole location and integrand variation is very apparent. It is obvious that the PL-OP poles are the most significant contributors to the integration, which give rise to the main part of the body waves with dominant P characteristics. The shear-coupled PL poles are important only for several components such as ZSS. These shear-coupled poles have an apparent tendency to be associated with normal poles, which can be said to possess properties which are between 'pure' surface and 'pure' body waves. The causality appearing in Figures
Figure 23. The effect of leaky modes on the variations of integrands along the real branch cut. 'x' denotes the modes on the (+, -) sheet and '+' denotes the modes on the (-, -) sheet. The response curves of integrands are obtained using the SCM model with the source at 10 km depth. The names of the integrand responses are the same as those in Figure 3. Four plots (two in the next page) correspond to the frequencies at 0.25, 0.50, 0.75, and 1.00 Hz, respectively.
Figure 23. (cont'd)
Figure 24. Results corresponding to Figure 23, but for the CUS model at the frequencies 0.25 and 0.75 Hz.
Figure 24. (cont'd)
16 to 18 arises from the contributions of these poles which compensate the Gibb's effect of abrupt truncation of normal modes at the S branch point. The contribution of weak leaky poles is relatively small, even though they might be very near the branch cut. This leads to the argument that the $(-,-)$ cut is a stronger 'barrier' than the $(+,-)$ cut.

For SH waves, the situation changes since there are no more PL poles. Figure 25 shows the migration of SH-OP modes, which have the properties of weak poles and shear poles in the P-SV case. Their contributions are only in compensating the noncausality from normal modes. In this sense, we might be able to say that the shear or shear-coupled leaky poles and the normal modes near the S branch point are the factors which constitute the S type body waves. In this range, it is not possible to define an absolutely distinguishing point for surface and body waves. A similar conclusion was obtained from ray expansion theory which supposes that body waves come from a finite number of rays, but when infinite rays are included they form the surface wave (Kennett, 1974). There is not a definite separation between body and surface waves.

After the study of the influence of leaky modes on the integrand, it is now clear how to perform branch line integration. The variable transform in equation
Figure 25. Paths of leaky modes of SCM model for the SH case. Other parameters are the same as Figure 20.
(II-4-5) just makes the sampling closer in the region where PL-OP modes are important, and thus improves the computational accuracy. Finally, the solution in equation (II-4-1) is determined not only from the integrand discussed above, but from the inner product of this integrand and the Hankel function. The Hankel function is an oscillatory function which depends on kr, i.e., wavenumber times epicentral distance. The final contribution to synthesizing seismograms can be looked upon as a cross-correlation between these two oscillatory functions along the real wavenumber axis. Because of the relatively smooth variation of the SH component (Figure 3), the branch line integration contribution to the tangential component seismogram is significant only at short distances. However, for P-SV waves, the effect will persist to much greater distances, as seen from Figures 16 and 17.

4.2 Locked Mode Approximation

In the previous section we have discussed the relationship between branch line integrals and leaky modes as a way to improve the evaluation of body waves. An interesting method to treat this contribution, called the locked mode approximation, was introduced by Harvey (1981). He simply added a deep rigid cap to the bottom of the structure to 'catch' leaky modes. Since
the cutoff wavenumber for the locked modes is controlled by the half-space S-wave branch point, the branch cut shrinks and opens a place for more higher order 'locked' modes as the S-wave velocity in the bottom layer increases. These 'locked mode contributions' can easily be evaluated by normal mode superposition (Harkrider, 1964), which has been successfully used in synthesizing surface waves. Thus the method provides an easy-to-solve solution for the branch line integral or leaky mode contributions.

Another novel approach to the problem of branch line integration was proposed by Bouchon and Aki (1977) and Bouchon (1979, 1981). They made an attempt to discretize the wavenumber responses by presenting an infinite number of 'extra' sources at evenly spaced grid points or rings. Because of the interference of waves from these sources, the integrands are quantified and form an exact solution to be evaluated at discrete wavenumber points. This technique is beyond the scope of this dissertation. Here we just simply discuss the method of locked mode approximation which, in addition, serves as a test for our eigenfunction solutions of chapter III.

With the same methodology as used before, the integration is still made using real wavenumber and real frequency so that the search for poles is easier.
Nevertheless an anomalously high velocity cap layer is placed at the bottom of the structure. Such a process just serves to 'squeeze' the leaky modes in the lower Riemann sheets into the real 'trapped' mode position. The cap layer not only traps most of the seismic energy in the upper layers, but also brings in those pulses not existing in the real structure. If the cap layer is situated at a depth so large that the energy reaching it is small compared to the energy in the near surface layers, these false phases can be isolated and filtered by a wavenumber window (Embree et al., 1963). However for the test of normal mode theory of chapter III, we will not consider this filtering, so as to pursue the normal mode superposition method faithfully.

When using the locked mode approximation, several requirements should be fulfilled beforehand:

(1) The calculation of locked mode positions must be precise. Figure 26 shows the pole positions along the real wavenumber axis for a cap layer structure. The model is SCM listed in Table 1 with a cap layer at 240 km depth and P velocity 20 km/sec, S velocity 10 km/sec, and density 6 gm/cm³. As the regular normal modes are still kept at the same places, the surface wave contribution is not affected. However, the newly generated 'locked' poles are numerous and very close to each other. For example, 15 modes for the original
Figure 26. The positions of poles along the real k-axis at the frequencies 0.25, 0.50, 0.75, and 1.00 Hz. k_{aN} and k_{bN} are branch points for SCM model without the cap layer. When the cap layer is added, the leaky modes are forced to migrate into the normal mode positions as those shown to the left of k_{bN}. These created 'locked' modes are numerous and are difficult to locate. The positions of regular normal modes are essentially not affected by the present of the cap layer.
model at 1 Hz become 119 modes for the capped layer model. The treatment of these pseudo-normal modes requires special care.

(2) The pole contribution arising from the partial derivative of the period equation (or equivalently the amplitude factor defined in equation III-2-2) is not easy to evaluate since these poles have very large phase velocities and cause numerical difficulty. Thus we use equation (III-2-2) instead of the alternate expression for A_R.

(3) Because of the large number of poles involved, it is important to pay attention to the computational efficiency. In the previous section, we have found a different importance for each kind of leaky mode. Is there any difference of contribution from these locked poles? One test is shown in Figure 27, where the amplitude factors for mode order 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 110 are displayed. This figure reveals that each mode has about the same level of contribution. Hence, unfortunately, all of the locked modes must be taken into account.

To overcome these difficulties, a new technique other than the usual normal mode method (Harkrider, 1964; Saito, 1972) is required. Harvey (1981) used Abo-Zena's (1980) formulation to calculate displacement eigenfunctions, which in turn give the stress
Figure 27. The amplitude factors, which represent the relative contributions of different modes to the final solution, are displayed against periods for the capped SCM model. The modes displayed are of the order 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 110.
eigenfunctions, by a constraint derived from the relation between the displacements and stresses. Similarly after the study of normal mode theory in chapter III, we also raised the eigenfunction theory to a very powerful stage. This formulation will be used to consider the idea of locked mode approximation. On the other hand, the locked mode approximation may provide a good test of the stability of our method. Figures 28 to 30 present the results.

Figure 28 illustrates the results from methods of chapters II and III, as compared to the locked mode approximation. In this figure, (a) is the locked mode approximation, (b) the branch line integration and pole, (c) the normal pole contribution, and (d) the branch line integral. The display is the ZSS component due to a point source at 10 km depth in the SCM model with highest frequency 1 Hz and source time function (equation II-4-8) \(\tau = 0.5 \) sec. The agreement between (a) and (b) is excellent except for some artificial early arrivals due to the fact that the cap layer effectively introduces a sharp wavenumber cutoff in the solution. This means that the methods we developed in chapters II and III can be trusted. Figure 29 is the RDS component for the same case, and Figure 30 gives the TDD component. The match of results from the locked mode approximation to the complete seismogram is obvious. However the computation times are quite
Figure 28. Comparison of locked mode approximation to the complete solution using the method of chapter 2. (a) the locked mode approximation solution; (b) the wave integral complete solution; (c) the pole contribution; (d) the branch line integral contribution. The SCM model with a strike-slip dislocation source at the depth of 10 km is used. The cap layer is located at 200 km deep and has a P velocity of 20 km/sec, S velocity of 10 km/sec, and density of 6 gm/cm3.
Figure 29. Results corresponding to Figure 28, but for the radial component and a dip-slip dislocation source.
Figure 30. Results corresponding to Figure 28, but for the tangential component and a 45° dip-slip source.
different. Using the locked mode approximation the calculation takes about 2 hours on a DEC PDP 11/70 mini-computer, while using the direct integration method requires only half an hour. Since these two methods use the same wave theory, any time consuming aspect, such as the case of high frequencies, will be required for both methods. The advantage of the locked mode approach is that once the dispersion curves are found for a given model, they do not have to be recomputed.

4.3 Reflection Method and Reflectivity Method

In the previous chapters, we built up the whole wave field by summing the layer responses over wavenumber and frequency. The calculation includes all details of energy possibly excited in the layered medium. Sometimes, for the study of particular portions of the structure, we desire to suppress the reflections from certain interfaces. This is especially useful for body wave studies. This section will develop a method to 'eliminate' the reflections from some layer boundaries. The significance of the pole contribution to the generation of surface waves becomes apparent if the reflections from the free surface, the strongest reflector, are artificially suppressed. Two theories closely related to this section are worth reviewing. One is Kennett's reflection and transmission coeffi-
cient method, which is referred to as the 'reflection method' here (Kennett and Kerry, 1979), and the other is Fuchs's reflectivity method (Fuchs and Müller, 1971). In this section, these methods will be stated using the terminology of this dissertation.

Reflection Method

The reflection method introduced by Dr. Kennett and his colleagues (Kennett, 1974; Kennett et al., 1978; Kennett and Kerry, 1979; Kennett, 1980; and Kerry, 1981) possesses properties of both ray theory and wave theory. They established a connection between conventional matrix methods and the reflection and transmission properties of a single interface. This approach lends itself to a ray interpretation, however, from a viewpoint of gross reflection and transmission response of layers. Starting from the response of the entire stack of layers, the Haskell matrix R in equation (II-2-6):

$$R = E_n^1 \alpha_{n-1} \cdots \cdots \alpha_1.$$

α's, the layer matrices, can be expressed in terms of the fundamental matrix E and phase matrix Λ (equation II-1-18),

$$\alpha_n = E_n \Lambda_n E_n^{-1}.$$

Hence,
\[R = (E_{N}^{-1}E_{N-1}) \Lambda_{N-1} (E_{N-1}^{-1}E_{N-2}) \ldots \Lambda{n}(E_{n}^{-1}E_{n-1}) \Lambda_{n-1} \ldots (E_{2}^{-1}E_{1}) \Lambda_{1} E_{1}^{-1}. \] (IV-3-1)

The reflection and transmission can only occur at velocity discontinuities; therefore only the terms within the parenthesis of equation (IV-3-1) contain the information of wave-interface interaction. The matrix \(\Lambda \) is only used to 'phase relate' the waves through the layer. Consider a single interface. The potential-constant vector \(K \), which represents the waves inside the layer, can be rewritten as

\[K_{n} = \begin{bmatrix} A' \\ B' \\ A'' \\ B'' \end{bmatrix}_{n} = \begin{bmatrix} U \\ \cdots \\ D \end{bmatrix}_{n}, \]

where \(U \) and \(D \) are 2x1 matrices for the P-SV case containing upgoing P,SV and downgoing P,SV potentials, respectively. For the SH case, \(U \) and \(D \) are scalars. The waves just above and below the interface satisfy

\[\begin{bmatrix} U \\ D \end{bmatrix}_{n} = E_{n}^{-1}E_{n-1} \begin{bmatrix} U \\ D \end{bmatrix}_{n-1} = F_{n} \begin{bmatrix} U \\ D \end{bmatrix}_{n-1}. \]

The underscoring denotes the quantities at the bottom of the \(n-1 \) layer. \(F_{n} \) is called the reflection-and-transmission matrix. It is noted that \(F_{n} \) does not contain the phase terms. These terms, as discussed in section 2.2, might be exponentially growing and cause an accuracy problem.
Consider a downgoing wave incident at the boundary,

\[D \]

we define

\[D_{n-1} = r_D \ D_{n-1} \]
\[D_n = t_D \ D_{n-1} \]

\(r_D \) and \(t_D \) are matrices of the reflection and transmission coefficients for both P and SV waves in downward propagation,

\[
\begin{bmatrix}
 r_{pp} & r_{sp} \\
 r_{ps} & r_{ss}
\end{bmatrix}
\]
\[
\begin{bmatrix}
 t_{pp} & t_{sp} \\
 t_{ps} & t_{ss}
\end{bmatrix}
\]

Similarly, an upgoing wave incident at the boundary defines \(r_U \), \(t_U \). Following the discussion of Kennett (1974), or more clearly Frasier (1970), we have

\[
F_n = E_n^t E_{n-1} = \begin{bmatrix}
 t_U^t & -t_U^t r_D \\
 r_U t_U^t & t_D - r_U t_U^t r_D
\end{bmatrix}
\]

\[
(IV-3-2)
\]

and

\[
\begin{align*}
 r_D &= -F_{11}^t F_{12} \\
 t_D &= F_{22} - F_{21} F_{11}^t F_{12} \\
 r_U &= F_{21} F_{11}^t \\
 t_U &= F_{11}^t
\end{align*}
\]

\[
(IV-3-3)
\]
Note that $\psi_{st}(F_{11})$ is the Stoneley function.

If the waves pass through a layer from the bottom of layer 1 to the top of layer 3,

\[
\begin{array}{c}
\text{1} \\
\text{2} \\
\text{3}
\end{array}
\]

the response for potential-constant vectors through the layer becomes

\[(E_3^{-1}E_2) \Lambda_2 (E_2^{-1}E_1).\]

The situation does not become complex, since an iterative form can be found (Kennett, 1974):

\[
\begin{align*}
\mathbf{r}_{D_{31}} &= \mathbf{r}_{D_2} + t_{U_2}(P^{-1} \mathbf{r}_{D_3} P^{-1}) \left[1 - r_{U_2} (P^{-1} \mathbf{r}_{D_3} P^{-1})^{-1} t_{D_2} \right] \\
\mathbf{t}_{D_{31}} &= (t_{D_3} P^{-1}) \left[1 - r_{U_2} (P^{-1} \mathbf{r}_{D_3} P^{-1})^{-1} t_{D_2} \right] \\
\mathbf{r}_{U_{31}} &= \mathbf{r}_{U_3} + (t_{D_3} P^{-1}) r_{U_2} \left[1 - (P^{-1} \mathbf{r}_{D_3} P^{-1}) r_{U_2} \right]^{-1} (P^{-1} t_{U_3}) \\
\mathbf{t}_{U_{31}} &= t_{U_2} \left[1 - (P^{-1} \mathbf{r}_{D_3} P^{-1}) r_{U_2} \right]^{-1} (P^{-1} t_{U_3})
\end{align*}
\]

(IV-3-4)

where

\[
P = \begin{bmatrix} e^{\nu_a d_2} & 0 \\ 0 & e^{\nu_p d_2} \end{bmatrix},
\]

and 31 represents the stack between the top of layer 3 and the bottom of layer 1. In equation (IV-3-4) we have used P to phase relate the reflection and transmission coefficients at interface 3 to interface.
2. However, note that r_u^3 need not be 'phase related'. Equation (IV-3-4) reveals some interesting features:

(1) The term $[1 - r_u (P^{-1}r_d P^{-1})]^{-1}$ can be expanded as a power series:

$$[1 - r_u (P^{-1}r_d P^{-1})]^{-1} = 1 + r_u (P^{-1}r_d P^{-1}) + r_u (P^{-1}r_d P^{-1}) r_u (P^{-1}r_d P^{-1}) + \cdots$$

which describes the ray propagation with different internal reflections and transmissions in the layer. Kennett (1980) has provided a detailed explanation about this ray viewpoint of wave theory. Hence, the total response of layers is just a superposition of multiple reflections from boundaries.

(2) The phase term which might grow exponentially is excluded from the calculation of reflection and transmission coefficient at layer boundaries. Hence the problem of loss of precision can be well controlled.

(3) To calculate R, we need only start at the base of the layers, progress upward, iteratively adding a layer to the stack, one at a time. This iterative approach represents the most important step of Kennett's method.

Suppose that the stacking from the half-space to the top of first layer (just beneath the surface) has been accomplished. The $(1,1)$ component of 2×2 partition of matrix R can be determined from
\[R = \begin{bmatrix} t_{\delta i} & -t_{\delta D} \\ \vdots & \ddots & \ddots \\ \end{bmatrix}_N \begin{bmatrix} E_{ii} \\ \vdots \\ E_{21} \end{bmatrix}_1, \]
i.e.,
\[R_{11} = t_{\delta i} \left(\bar{E}_{11} - r_D \bar{E}_{21} \right), \]
where \(\bar{E} \) represents the inverse of the \(E \) matrix of the first layer. Going back to our formulas for the displacement at the free surface (equation II-2-5),
\[\begin{bmatrix} 0 \\ \vdots \\ D_N \end{bmatrix} = X S + \begin{bmatrix} R_{11} & R_{12} \\ \vdots & \ddots & \ddots \\ R_{21} & R_{22} & 0 \end{bmatrix}_N \begin{bmatrix} W_1 \\ \vdots \end{bmatrix}_1 \]
or
\[W_1 = \begin{bmatrix} U_{r_1} \\ U_{s_1} \end{bmatrix} = -R_{i1} \times X_i S_i. \quad (IV-3-5) \]
If we use the discontinuity in the constant-potential vector to describe the source (their explicit form will be listed in section 5.1) rather than a discontinuity in displacement and stress,
\[X S = E_{N-1}^{-1} E_{N-1} \Lambda_{N-1} E_{N-1}^{-1} \cdots \Lambda_m \left(E_m^{-1} S \right) = (E_{N-1}^{-1} \Lambda_{N-1} \cdots \Lambda_m) \Sigma_m = \begin{bmatrix} t_{\delta i} & -t_{\delta D} \\ \vdots & \ddots & \ddots \\ \end{bmatrix}_N \begin{bmatrix} \Sigma_U \\ \vdots \\ \Sigma_D \end{bmatrix}_m \]
and equation (IV-3-5) becomes
\[W_1 = - (\overline{E}_{11} - r_{D_{N_1}, \overline{E}_{21}})^{-1} t_{U_{N_1}} t_{U_{N_S}}^\dagger (\Sigma_U - r_{D_{N_S}} \Sigma_D). \] \hspace{1cm} (IV-3-6)

\(\det(\overline{E}_{11} - r_{D_{N_1}, \overline{E}_{21}}) \) is the period equation. Note that, except for the source depth, any partition of layer stacking at other places such as receiver depth has been avoided. There exist several different forms of the period equation in the derivation (Kennett, 1974; Kennett, 1980; Kennett and Kerry, 1979; and Kerry, 1981). After lengthy discussion, Kerry (1981) finally chose this form to calculate dispersion values. However, by using a different partition of layer stacking, he was able to find an interesting screen effect of a low velocity zone at depth.

We will not expand equation (IV-3-6) to calculate seismograms. Only the concept of reflection and transmission coefficients or equation (IV-3-2) will be used in the following development for the reflection suppression technique.

Reflectivity Method

The reflectivity method is an important application of the Haskell matrix (Fuchs, 1968; Fuchs and Müller, 1971; Kind and Müller, 1975; Müller and Kind, 1976; and Kind, 1976, 1978, 1979), hitherto mostly used for body wave computation for an explosive type of source. This method involves a double integration with respect to real wavenumber and real frequency, but over a small range of interest such as those with real
number of incident angle. Such a numerical integration corresponds only to our real branch line integral. The integration could cover the whole range of response including the surface-wave poles by adding a small complex part to the velocity in each layer, accounting for anelasticity, which would move poles off the positive k-axis (Kind, 1979). However, one has to sample the integrands very closely over a much larger range of angle of incidence, and the computation time increases substantially. The reason for dense sampling is similar to that which we have discussed in section 4.1, i.e., the influence of leaky or normal modes on the integration along the real wavenumber axis. In principle, the reflectivity method is not suitable for the computation of normal modes.

Consider the potential-constant vector \mathbf{K} just beneath the free surface. If there is no reflection at the free surface, we can simply make $D_i = \emptyset$, and the free surface displacement is just $\mathbf{w}_i = E_{i1} U_i$, where E_{i1} is, for P-SV, the (1,1) component of the 2 by 2 partition of the Haskell E matrix of the top layer, and for SH, a scalar. Fuchs (1968) used this form to treat the free surface in the original theory of the reflectivity method. However, if we take into account the free surface effect, but do not allow the wave to be reflected back into the earth, then from equation (II-1-15),
\[
\begin{bmatrix}
W_1 \\
0
\end{bmatrix} =
\begin{bmatrix}
E_{11} & E_{12} \\
E_{21} & E_{22}
\end{bmatrix}
\begin{bmatrix}
U \\
D
\end{bmatrix},
\]

and the solution is

\[
W_1 = (E_{11} - E_{12}E_{22}E_{21})U_1 = F_1 U_1.
\] (IV-3-7)

This is the form Fuchs and Müller (1971) used. For SH such a modification just doubles the amplitude, and for P-SV some conversions between P and SV take place but without much effect.

For a reflecting and transmitting interface, we can simply set \(r_U \) and \(r_D \) equal to zero to suppress its 'reflectivity'. From equation (IV-3-2) the reflection-and-transmission matrix \(F \) becomes

\[
F_n = E_{n-1}^{-1}E_n =
\begin{bmatrix}
t_U' & 0 \\
0 & t_D
\end{bmatrix}_n.
\]

Furthermore under this condition, (IV-3-3) provides that

\[
t_U' = F_{11}.
\]

Because of the reciprocity relation, Kennett et al (1978) and Fraiser (1970) found that

\[
t_D = t_U' \times (\text{normalization factors}).
\]

In our system, the normalization factors, as discussed in deriving equation (II-1-12), enter the result as

\[
t_D =
\begin{bmatrix}
t_{pp} & t_{sp} \\
t_{ps} & t_{ss}
\end{bmatrix}
=
\begin{bmatrix}
t_{pp}a & t_{pp}b \\
t_{sp}c & t_{ss}d
\end{bmatrix}
\]
with

\[a = \frac{\nu_a/\rho'}{\nu_a/\rho'}, \quad b = \frac{\nu_s k^2/\rho'}{\nu_a/\rho'}, \quad c = \frac{\nu_a/\rho'}{\nu_s k^2/\rho}, \quad d = \frac{\nu_s/\rho'}{\nu_s/\rho} \]

where primes denote the quantities just above the interface and the unprimed quantities are just beneath the interface. The matrix \(F \) takes the form:

\[
F = \begin{bmatrix}
F_{11} & F_{12} & 0 & 0 \\
F_{21} & F_{22} & 0 & 0 \\
0 & 0 & \frac{F_{22}}{\Delta} & -\frac{F_{21}}{\Delta} \\
0 & 0 & -\frac{F_{12}}{\Delta} & \frac{F_{11}}{\Delta}
\end{bmatrix}
\]

where

\[
\Delta = F_{12}^{12}.
\]

Now let us stack a whole set of layers together.

Use equation (II-2-5)

\[
K_N = XS + RB_1 = XS + (RE_1)(E_1^{-1}B_1) = XS + QK_1,
\]

where

\[
Q = RE_1 = XZE_1 = XP = E_N^{-1}E_{N-1}\Lambda_{N-1}E_{N-1}^{-1}\cdots\Lambda_1
\]

\[
P = E_m\Lambda_mE_{m-1}^{-1}\cdots\Lambda_1.
\]

Following the same procedures between equation (II-2-6) and (II-2-8); we have

\[
U_1 = \begin{bmatrix}
-S_{iX} |_{ij} P_{j2} \\
-S_{iX} |_{ij} P_{j1}
\end{bmatrix} / Q |_{ij}^{12}
\]
and the free surface displacements are

\[
\begin{bmatrix}
U_{r_1} \\
U_{s_1}
\end{bmatrix} = F_1 \begin{bmatrix}
-S_t X \|_{ij}^{12} P_{j} \\
S_s X \|_{ij}^{12} P_{j1}
\end{bmatrix} \sqrt{Q_{ij}^{1/2}}
\]

(IV-3-9)

where

\[
F_1 = E_{11} - E_{12} E_{22}^{-1} E_{21} = \begin{bmatrix}
-\frac{2 \gamma \nu_a \nu_g}{k} & -2 k \nu_g (\gamma - 1) \\
2 \nu_a (\gamma - 1) & 2 \gamma \nu_a \nu_g
\end{bmatrix} \rho_1 \left(\frac{\gamma \nu_a \nu_g}{k^2} - (\gamma - 1)^2 \right).
\]

To calculate \(Q \), the form (IV-3-8) is used if the reflection is to be suppressed. If it is not to be suppressed, the layer matrix \(a \) can be used. In the transmission zone of the reflectivity method, all of the reflections are suppressed, and in the reflection zone, the normal case is retained. Hence, \(Q \) in the reflectivity method is

\[
Q = E_{N-1}^{-1} a_{N-1} \cdots a_n \Lambda_{n-1} F_{n-1} \cdots \Lambda_2 F_2 \Lambda_1.
\]

Some aspects of our system for the reflectivity method are interesting to point out:

(1) It is just a simplified case for our system but is a generalization of the reflectivity method.

(2) The conversion of waves during passage through the interface is involved. If such a conversion is not of interest, we need just set the off-diagonal components in the matrix \(F \) (equation IV-3-8) to zero. This is the approach used in the usual re-
reflectivity method.

(3) Any kind of point source, namely explosion, double couple, or other, is permitted, since the source term S in equation (IV-3-9) is left in a general form.

(4) All benefits we have discussed for our system are also applied to this new reflectivity method.

Synthetic Seismogram

Several synthetic seismograms were made to illustrate the layer reflection suppression technique by applying the integration method of chapter II. Figure 31 shows a simple test using the SCM model and an explosive source at a depth 10 km. Figure 31a is the radial component complete seismogram which is used to compare to Figure 31b, in which the free-surface reflection is 'suppressed'. As expected, Figure 31b just exhibits some easily identified arrivals such as P_n, S_n, P, P_P, P_S which are reflected or refracted back from the crust-mantle boundary. All other multiple phases, as well as surface waves are eliminated. Figure 32 shows the similar comparison for the z component. Since a compressional type of source is used, there are no obvious direct shear signals.

For the test of reflection suppression in lower boundaries, an intermediate layer with $\alpha = 6.70$ km/sec $\beta = 3.87$ km/sec, and $\rho = 3.0$ gm/cm3 is inserted between
Figure 3.1: Radial component complete seismograms. The SCM model and an explosive source at 10 km depth are used. A distance range of 25-500 km is presented. Multiple reflections and surface waves are well-developed, especially for large distances.
Figure 31b. Results using the same source and model of Figure 31a, but the reflectivity of the free surface is suppressed. Some identified arrivals from the crust-mantle boundary are indicated.
Figure 32. Results for the same source and model of Figure 31, but for the vertical component.
Figure 32. (cont'd)
depths 20 km and 40 km in SCM model. Several seismograms at epicentral distances of 200 km and 300 km, due to a strike-slip source, are displayed in Figure 33, where (a) is for the SCM model, (b) is for the modified SCM model and (c) is for the modified SCM model with reflection-deprived second layer boundary. Receivers are located at an azimuth of the 0 degrees from the strike of fault. Because of the small velocity contrast across the reflection-deprived boundary, there is not much difference between (b) and (c) for the R component. However for the SH component (Figure 34), the effect is much more apparent. This means that the transverse shear wave is more sensitive to changes in reflection and transmission response than compression and SV waves. This finding might be significant for the development of shear wave exploration techniques. Seismograms (a) and (c) in Figures 33 and 34 are not comparable except for arrival time. Hence the choice of correct model in seismogram simulation is important.

If the free surface reflection of the modified SCM model is further suppressed, the seismogram from a dislocation source will be deprived of most of its wave energy, and numerical noise becomes apparent. We do not plot this result; instead, an explosive source is used for the example. Figure 35 shows the seismograms at 100, 200, 300 km epicentral distances for the modified SCM model. The top traces are complete seismograms and
Figure 33. The effect of reflection suppression. The displays are for the radial component due to a strike-slip source buried at 10 km depth, and for stations at distances of 200 and 300 km. In each set, (a) is for the two-layer SCM model; (b) is for the three-layer modified SCM model; and (c) is for the modified SCM model with the reflections from the secondary interface suppressed.
Figure 34. Results using the same source and model of Figure 33, but for the tangential component.
Figure 35. (a) Vertical component complete seismograms due to an explosive source buried at 10 km depth for the modified SCM model. (b) is the seismogram for the same model but with the reflections from the free surface and secondary interface suppressed. Compare (b) with Figure 32b.
the bottom traces are for reflections only from the crust-mantle boundary. The surface waves are all cancelled. Only those phases shown in Figure 32b remain.
CHAPTER V

SOURCE AND INSTRUMENT

For the completeness of the system developed in this dissertation, two factors, namely source and receiver, should also be included. The literature discussing sources is vast, and we will touch on only the major points needed to synthesize seismograms. For modeling the instrument, a method from Mitchell and Landisman (1969) is revised to more efficiently retrieve the instrument response parameters. These parameters are included in the final stage to make up the synthetic seismograms.

5.1 Source Considerations

The source factor can be included in the solutions by simply adding a singularity to the wave equation. Since the equivalence between body force expression and the discontinuity of displacement and strain at the source location was demonstrated (Burridge and Knopoff, 1964), the development of source theory has become much easier by the use of Green's functions. A Green's function is a solution of a differential equation involving the source singularity, which is independent of the form of the source function and is determined
only by the differential equation and the boundary conditions. One useful application of the Green's function is that the solutions from an arbitrary source, for example a single force \(f \), can be set up by convolving the Green's function and this source function:

\[
u_i = C_{ij} \ast f_j.
\]

If the source becomes more complicated, such as second order sources (couple or dipole), more derivatives with respect to the direction are involved:

\[
u_i = -u_{i,k} n_k,
\]

where \(n_k \) represents the direction. These extra directional dependences can be properly described by a moment tensor \(M \):

\[
u_i = C_{ij,k} \ast M_{jk}.
\]

A detailed discussion of the concept of a moment tensor is given in Aki and Richards (1980, chapters 3 and 4). In a cylindrical coordinate system, the Green's function of the wave equation includes the kernels in three directions, i.e., \(r \), \(z \), and \(\psi \). Hence the Green's function itself also contains the directivity terms \(\psi \). Usually the Green's function is not easy to find. For the purpose of extracting the source dependent terms, a whole space solution from Stoke's formula (Aki and Richards 1980, equation 4.23), which has been extensively discussed in Love (1944), is expanded to a form
in which it is easy to separate the Green's function and moment tensor.

One of the merits of wave integral theory is that the solutions can be represented in a suitable canonical form. That is, in a form in which the parameters of interest are taken into account at discrete points, so that the parameter input at the end of the computation chain can be varied without having to repeat the previous computations. Hence, it is desirable to factor out the directivity dependence terms, or equivalently the radiation pattern, from the source representation and calculate only some fundamental source type solutions. These solutions are combined with the directional dependences in the last stage to form the final solution. Equation (II-2-15) is such an example where three fundamental types of solutions, i.e., SS, DS, and DD, are prepared before any orientation of double couple source is considered.

Since it is not easy to isolate directivity dependences from source expressions in the forms of the moment tensor, we choose the other approach from Haskell (1963). Using a direct and clear style, Haskell (1963, 1964) listed five source types, i.e., single force, single dipole, single couple, double couple, and compression source, in terms of a discontinuity in his vector \(\mathbf{K} = [A^+A^-, A^-A^+, B^-B^+, B^+B^-]^T \). A matrix \(\mathbf{F} \) of Wang
and Herrmann (1980) has been used to transform Haskell's K vector to the form $[A'', B'', A', B']^T$ and in section 2.2 we further used a matrix E to convert this form to a vector representing the discontinuity in the motion-stress vector (equation II-2-2). Using Σ^H to represent the terms from Haskell (1964), Σ to represent a discontinuity in potential-constant vector, and S to represent a discontinuity in motion-stress vector, there exists the following relations:

$$S = E \Sigma$$

$$\Sigma = F \Sigma^H,$$

where

$$F = \frac{1}{2} \begin{bmatrix}
-1 & -1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
-1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix}.$$

These relations can be used to relate the different source expressions listed below.

Choose the coordinate system (x, y, z) as (1) $x =$ north (2) $y =$ east (3) $z =$ downward into the earth, and f for the force acting at the source and n the normal to the fault plane, as defined in Haskell (1963). For an order one source, the only form is the single force. The solution can be expressed by

$$u = f_3 S^0 Y_0 + (f_1 \cos \vartheta + f_2 \sin \vartheta) S^1 Y_1.$$
\[4\pi\omega^2 S^0 = [0, 0, 0, -2k, 0]^T \]
\[4\pi\omega^2 S^1 = [0, 0, 0, -2k, 0]^T \]

where \(f = [f_1, f_2, f_3] \) and \(\theta \) is the receiver azimuth measured from the north direction clockwise. \(Y_n \) represents \(U_z J_n \) for z component, and \(U_r, \psi J_{n-1} \) for \(r, \psi \) components as in equation (II-2-14).

For sources of order two, we find five fundamental forms are necessary, by examining the Haskell's (1964) source functions. They are

\[4\pi\omega^2 S^0 = [0, 0, 0, 0, k^2]^T \]
\[4\pi\omega^2 S^0 = [0, 2k^2/\rho, 0, 4k^2\rho^2/\alpha^2]^T \]
\[4\pi\omega^2 S^1 = [0, 0, 2k^2, 0]^T \]
\[4\pi\omega^2 S^1 = [-2k^2/\rho, 0, 0, 0]^T \]
\[4\pi\omega^2 S^2 = [0, 0, 0, k^2]^T \]

The solutions for different source types are obtained after combining part or all of these fundamental forms. Such as,

dipole without moment:
\[
\mathbf{u} = [(1-3f_3^2) S^0 + f_3^2 S^0] Y_0 \\
+ [f_1 f_2 \cos \theta + f_2 f_3 \sin \theta] S^1 Y_1 \\
+ [(f_3^2 - f_1^2) \cos 2\theta - 2f_1 f_3 \sin 2\theta] S^2 Y_2
\]

single couple:
\[
\mathbf{u} = [-3f_3 n_3 S^0 + f_3 n_3 S^0] Y_0 \\
+ [((f_1 n_3 - f_3 n_1) \cos \theta + (f_2 n_3 - f_3 n_2) \sin \theta) S^1 \\
+ (f_1 n_3 \cos \theta + f_2 n_3 \sin \theta) S^1] Y_1
\]
double couple without moment:

\[u = \left[-6f_3n_3 \cos 2\phi + 2f_3n_3 \sin 2\phi \right] S^0 Y_0 \]

\[+ \left[(f_1n_3+f_2n_1) \cos \phi + (f_2n_3+f_3n_2) \sin \phi \right] S^1 Y_1 \]

\[+ \left[2(f_2n_3-f_1n_1) \cos 2\phi - 2(f_1n_2+f_2n_1) \sin 2\phi \right] S^2 Y_2 \]

center of compression:

\[u = S^0 Y_0 . \]

Note that for far-field solutions, \(S^0 Y_0 \) and \(S^2 Y_2 \) differ only by a constant phase term. Hence, for far-field double-couple dislocation sources, only three independent solutions are required, and the explosion solution is just one of them.

The fundamental types as expressed in terms of \(\Sigma \) have the forms:

\[4\pi \omega^2 \Sigma^0 = \left[\begin{array}{ccc} k^3/2 \nu_\alpha & -k/2 & -k^3/2 \nu_\alpha & -k/2 \\ \end{array} \right]^T \]

\[4\pi \omega^2 \Sigma^0 = \left[\begin{array}{ccc} k \nu_\alpha & 0 & -k^2/\nu_\alpha & 0 \\ \end{array} \right]^T \]

\[4\pi \omega^2 \Sigma^1 = \left[\begin{array}{ccc} -k^2 & k^2/\nu_\beta & -k^2 & -k^2/\nu_\beta \\ \end{array} \right]^T \]

\[4\pi \omega^2 \Sigma^1 = \left[\begin{array}{ccc} 2k^2 & -(\nu_\beta+k^2/\nu_\beta) & 2k^2 & (\nu_\beta+k^2/\nu_\beta) \\ \end{array} \right]^T \]

\[4\pi \omega^2 \Sigma^2 = \left[\begin{array}{ccc} k^3/2 \nu_\alpha & -k/2 & -k^3/2 \nu_\alpha & -k/2 \\ \end{array} \right]^T \]

for second order sources, and

\[4\pi \omega^2 \Sigma^0 = \left[\begin{array}{ccc} k & -k/\nu_\beta & k & k/\nu_\beta \\ \end{array} \right]^T \]

\[4\pi \omega^2 \Sigma^0 = \left[\begin{array}{ccc} -k^2/\nu_\alpha & 1 & k^2/\nu_\alpha & 1 \\ \end{array} \right]^T \]
for a single-force type of source.

Similar relations can be derived for SH components. The results are

\[u = \left[2(f_1 \sin \vartheta - f_2 \cos \vartheta) \right] S^1 Y_1 \]
\[4\pi \omega^2 S^1 = \begin{bmatrix} 0, k \omega^2 \end{bmatrix}^T \]

for a single-force source. For second order sources, the following are defined:

dipole without moment:

\[u = \left[(f_2 n_3 \cos \vartheta - f_1 n_3 \sin \vartheta) \right] S^1 Y_1 \]
\[+ \left[(f_1 f_2 \vartheta - 2f_1 f_2 \cos 2\vartheta) \right] S^2 Y_2 \]

single couple:

\[u = \left[f_1 n_2 - f_2 n_1 \right] S^0 Y_0 \]
\[+ \left[f_2 n_2 \cos \vartheta - f_1 n_2 \sin \vartheta \right] S^1 Y_1 \]
\[+ \left[(f_1 n_1 - f_2 n_2) \sin 2\vartheta - (f_1 n_2 + f_2 n_1) \cos 2\vartheta \right] S^2 Y_2 \]

double-couple without moment:

\[u = \left[(f_2 n_3 + f_3 n_2) \cos \vartheta - (f_1 n_3 + f_3 n_1) \sin \vartheta \right] S^1 Y_1 \]
\[+ 2 \left[(f_1 n_1 - f_2 n_2) \sin 2\vartheta - (f_1 n_2 + f_2 n_1) \cos 2\vartheta \right] S^2 Y_2 \]

where

\[4\pi \omega^2 S^0 = \begin{bmatrix} 0, k^2 \omega^2 \end{bmatrix}^T \]
\[4\pi \omega^2 S^1 = \begin{bmatrix} 2kk^3 \rho, 0 \end{bmatrix}^T \]
\[4\pi \omega^2 S^2 = \begin{bmatrix} 0, k^2 \omega^2 \end{bmatrix}^T . \]

5.2 Instrument Response Parameters by Least-Square Inversion

Mitchell and Landisman (1969) described a method for determining the instrumental constants of an
electromagnetic seismograph from a digitized calibration pulse. They applied a least-square technique to fit the pulse by varying four instrumental constants: period of seismometer (Ts) and galvanometer (Tg), and damping of seismometer (hs) and galvanometer (hg). A Fourier transformation was used to calculate the synthetic pulse from a known relationship between the constants in the frequency domain before comparison to the observed calibration pulse. Jarosch and Curtis (1973) simplified this method by deriving explicit equations for the pulse in the time domain, and included the scale factor as a free parameter to be determined. Mitronovas (1976) added another parameter, the original time, in the least-square fitting procedures to improve the error involved in specifying the onset time in pulse digitization.

This section will develop a similar method, but now, fitting the response parameters (to be defined in equation (V-2-1)) rather than the instrument constants Ts, hs, etc. It is important to realize that these parameters are the ones which determine the effects of the seismograph on the seismogram, not the instrument constants, although, theoretically both are mutually related. The seismograph is considered to be a 'black box'. Only linear response of the system is assumed; nothing about the instrument itself need be known. Such a method makes it possible to fit the calibration
pulse of any instrument in the time domain, especially those for which suitable formula to relate the instrument constants and the system response do not exist. There are several factors influencing the results of the time domain inversion method, such as the relation of the trial values to the actual, precision of the reference pulse, and errors in digitization. If these factors are highly controlled, the new method will be of practical use especially for the short-period instruments.

Most instruments in the current seismic detecting stations usually can be considered as a linear and stable system. A well-known response function approximating this system is: (Luh, 1977)

\[bF(s) = \frac{b s^m}{\sum_{j=1}^{n+1} a_j s^{j-1}} \]

(V-2-1)

where \(s \) is the Laplace transform variable, \(b \) the scale factor, and the \(a_j \)'s are assigned as the instrument response parameters. \(b \) and \(a_j \)'s are all real positive coefficients with \(a_{n+1} = 1, \ a_j \neq 0 \). These parameters represent the system, and are those to be determined by the least-square inversion. \(m, n \) are chosen as integers representing the slopes near both ends of the amplitude response bands. The function to be fitted is given by

\[z(t) = b f(t, a_n, a_{n-1}, \ldots, a_1), \]
where \(f(t) \) is the time domain counterpart of \(F(s) \). Perturbing this function, the error will be

\[
e_i = bf_i + b \sum_{j=1}^{n} \frac{\partial f_i}{\partial a_j} \delta a_j + f_i \delta b - z_i ,
\]

where \(i \) indicates the data point on the time axis, and \(f_i = f(t_i) \) . For a least-squares fit, we want the sum of the squares of the errors or residuals (SSR) to be a minimum, i.e., \(E = \sum e_i^2 \) to be minimum and, hence,

\[
\frac{\partial E}{\partial (\delta b)} = \frac{\partial E}{\partial (\delta a_j)} = 0 \quad j = 1, \ldots, n .
\]

Writing

\[
e_i = z_i / b - f_i
\]

the normal equations are

\[
\begin{bmatrix}
\sum (\frac{\partial f_i}{\partial a_1})^2 & \ldots & \sum \frac{\partial f_i}{\partial a_1} \frac{\partial f_i}{\partial a_n} & \sum \frac{\partial f_i}{\partial a_1} f_i \\
\vdots & \ddots & \vdots & \vdots \\
\sum \frac{\partial f_i}{\partial a_n} \frac{\partial f_i}{\partial a_1} & \ldots & \sum (\frac{\partial f_i}{\partial a_n})^2 & \sum \frac{\partial f_i}{\partial a_n} f_i \\
\sum \frac{\partial f_i}{\partial f_i} f_i & \sum f_i \frac{\partial f_i}{\partial a_n} & \sum f_i^2 & \sum \frac{\partial f_i}{\partial a_1} f_i
\end{bmatrix}
\begin{bmatrix}
\delta a_1 \\
\vdots \\
\delta a_n \\
\delta b
\end{bmatrix}
=
\begin{bmatrix}
\sum e_i \frac{\partial f_i}{\partial a_1} \\
\vdots \\
\sum e_i \frac{\partial f_i}{\partial a_n} \\
\sum e_i f_i
\end{bmatrix}
\]

(V-2-2)

Following Jarosch and Curtis (1973), we take \((a + \delta a) \) as the new value \(a' \), but use

\[
b' = b \exp(\delta b / b)
\]

(V-2-3)
for the new scale factor, to force its fast convergence to exact value. However in practice, because of the linear dependence of \(b \) on the \(a \)'s in the low frequency range (note that \(b \) and \(a \)'s are terms of the numerator and denominator, respectively, in the response function \(V-2-1 \)), the inclusion of \(b \) gives a constraint between \(b \) and \(a \)'s, which sometimes causes the divergence of this method. Hence, an independent determination of \(b \) by other methods such as amplitude response analysis is recommended. The least-squares inversion is used to determine the \(a \)'s only. In such a case the required modification of the above matrix equation is just to remove the \(n+1 \)'th row and column.

Using the Laplace transformation pairs:

\[
\frac{1}{s+a} \rightarrow e^{-at} \quad \frac{1}{(s+a)^2} \rightarrow t e^{-at},
\]

(V-2-4)

it is easy to find \(f(t) \) by factoring the response function \(F(s) \) and taking the inverse Laplace transform:

\[
F(s) = \frac{s^m}{s^n + a_n s^{n-1} + \cdots + a_2 s + a_1} = \frac{c_1}{s-d_1} + \frac{c_2}{s-d_2} + \cdots + \frac{c_n}{s-d_n}
\]

(V-2-5)

\[
\rightarrow f(t) = c_1 e^{d_1 t} + c_2 e^{d_2 t} + \cdots + c_n e^{d_n t} = \sum_{i=1}^{n} c_i e^{d_i t},
\]

where

\[
c_i = \frac{a_i^m}{\prod_{k=1, k \neq i}^{n} (d_i - d_k)}.
\]
The roots a_i and coefficients c_i might be complex numbers. It is noted that in this expansion no double roots are permitted. These double roots might happen when parts of the instrument are set at critical damping. However, we find that a small coupling $\sigma^2 > 0.0001$ will push the imaginary part of the roots to be nonzero. Since the roots are always in conjugate pairs, the values of the c's are determined by $Re(a_i)$ and $|d_i|$. Hence, a small disturbance in the imaginary part, which can be added arbitrarily or with the inclusion of coupling factors, will not affect the result much, but will prevent the problem of a double root.

The time functions, $\frac{\partial f(t)}{\partial a_j}$ are more difficult to find. To avoid using numerical differencing, an analytic form can be derived as follows:

$$\frac{\partial F(s)}{\partial a_j} = \frac{(-1)s^{i-1+m}}{(s^n + a_{n}s^{n-1} + \cdots + a_2s + a_1)^2}$$

$$= \frac{(-1)s^{i-1+m}}{(s-d_1)^2(s-d_2)^2\cdots(s-d_n)^2}$$

$$= -\left[\frac{p_{ij}}{(s-d_1)^2} + \frac{q_{ij}}{s-d_1} + \frac{p_{2j}}{(s-d_2)^2} + \frac{q_{2j}}{s-d_2} + \cdots + \frac{p_{nj}}{(s-d_n)^2} + \frac{q_{nj}}{s-d_n} \right]$$

where

$$p_{ij} = \frac{d_i^{j-1+m}}{\prod_{k=1, k \neq i}^{n} (d_i - d_k)^2} = d_i^{j-1-m}c_i^2 \quad i,j = 1,...,n.$$

The expression for q_{ij} needs more derivations. Set
\[H(s) = \prod_{k=1}^{n} (s - d_k)^2 \]

\(q_{ij} \) can be evaluated by

\[
q_{ij} = \left[\frac{s^{j-1+m}}{(s-d_i)H(s)} - \frac{p_{ij}}{H(s)} \right]_{s \to d_i} = \frac{1}{(s-d_i)} \left[\frac{s^{j-1+m}}{H(s)} - \frac{d_i^{j-1+m}}{H(d_i)} \right]_{s \to d_i} = \frac{\partial}{\partial s} \left[\frac{s^{j-1+m}}{H(s)} \right]_{s \to d_i} = (j-1+m) \frac{s^{j-2+m}}{H(s)} \frac{1}{H(s)} \left(\sum_{k=1}^{n} \frac{1}{s-d_k} \right)_{s=d_i} = p_{ij} \left[(j-1+m) d_i^{-1} - 2 \left(\sum_{k=1}^{n} \frac{1}{d_i - d_k} \right) \right]
\]

Hence from the Laplace transform \((V-2-4)\), the time domain derivative \(\frac{\partial f(t)}{\partial \alpha_j} \) has the form:

\[
\frac{\partial f(t)}{\partial \alpha_j} = -\sum_{i=1}^{n} \left(p_{ij} t e^{d_i t} + q_{ij} e^{d_i t} \right)
\]

where

\[
p_{ij} = d_i^{j-1-m} c_i^2
\]

\[
q_{ij} = p_{ij} \left[(j-1+m) d_i^{-1} - 2 \left(\sum_{k=1}^{n} \frac{1}{d_i - d_k} \right) \right]
\]

\[d_i^{-1} = 0 \]

We find that the derivatives of \(f(t) \) have the close forms in the time domain. This is difficult to attain by varying the instrumental constants, as in common least-square calibration pulse inversion methods.

Since the differences in order of values of elements in the inversion matrix \((equation \ V-2-2)\) are usually about ten to twenty, a scaling constant sometimes
is needed to prevent numerical overflow or underflow. It is made by simply changing the transformation factor \(s \) to \(\rho s' \) and the parameters found will be scale adjusted \(b' = \rho^{m-n} b, a_j' = \rho^{j-n} a_j \). The time axis in this case is reduced by \(1/\rho \) because of the corresponding scale change in the frequency.

To test the new method, an example from Mitronovas (1976) is chosen. The results are shown in Table 2. We first compute a synthetic pulse by the equation (e) of Jarosch and Curtis (1973) for the instrument with seismometer overdamped and galvanometer underdamped, then normalize to the maximum values indicated, and round off to nearest integer values to simulate differences in the digitization accuracy. A set of \(a \) values of the instrument parameters are then obtained using the new inversion technique. Table 2 also lists the values using the method of Mitchell and Landisman (1969) as a comparison. There does not seem to be any significant difference between these methods, although the new method seems a little better in accuracy for such a synthetic case. This test confirms the success of the new method.

Figures 36 and 37 show the application to real data for the LPZ WWSSN instrument at FVM station. Figure 36 displays the digitized calibration pulse and its amplitude spectrum. Using this pulse as an input, we
<table>
<thead>
<tr>
<th>Maximum Amplitude</th>
<th>$a_1(10^3)$</th>
<th>a_2</th>
<th>$a_3(10^{-1})$</th>
<th>$a_4(10^{-3})$</th>
<th>SSR@</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.1066312</td>
<td>0.2915167</td>
<td>0.2415525</td>
<td>0.7110602</td>
<td>9.60</td>
</tr>
<tr>
<td>200</td>
<td>0.1066272</td>
<td>0.2915026</td>
<td>0.2415318</td>
<td>0.7110564</td>
<td>9.06</td>
</tr>
<tr>
<td>400</td>
<td>0.1060013</td>
<td>0.2893678</td>
<td>0.2398869</td>
<td>0.7069588</td>
<td>11.95</td>
</tr>
<tr>
<td>600</td>
<td>0.1059998</td>
<td>0.2893564</td>
<td>0.2398676</td>
<td>0.7069502</td>
<td>11.94</td>
</tr>
<tr>
<td>800</td>
<td>0.1035844</td>
<td>0.2840534</td>
<td>0.2350874</td>
<td>0.6935693</td>
<td>17.25</td>
</tr>
<tr>
<td>8000</td>
<td>0.1031514</td>
<td>0.2830207</td>
<td>0.2342968</td>
<td>0.6912327</td>
<td>14.80</td>
</tr>
<tr>
<td></td>
<td>0.1034220</td>
<td>0.2835561</td>
<td>0.2347712</td>
<td>0.6924602</td>
<td>27.77</td>
</tr>
<tr>
<td></td>
<td>0.1034212</td>
<td>0.2835407</td>
<td>0.2347397</td>
<td>0.6924603</td>
<td>16.30</td>
</tr>
</tbody>
</table>

*In each case the upper values are solutions based on the method of Mitchell and Landisman (1969), and the lower values are solutions based on the present method.

@Sum of squares of residuals between the reference and the calculated pulse.
Figure 36. The calibration pulse and its amplitude spectrum for the WWSSN LPZ instrument at the station FVM.
Figure 37. The impulse-response pulse and its amplitude and phase spectra of a simulated instrument obtained by applying the inversion technique to the calibration pulse of Figure 36.
determine the instrument response parameters by the present inversion method. Figure 37 shows the impulse response pulse of this simulating instrument, and its amplitude and phase responses. It is found that, except for high frequency noise, the new method can adequately model an instrument even if we lack knowledge of the instrument constants. Furthermore, the α parameters obtained can be easily incorporated in the program to describe the instrument effect. In the next section we will discuss such an application in the time domain.

5.3 Simulating the Instrument by IIR

With the response parameters determined, we can impose the instrument response (V-2-1) upon the input data by direct multiplication in the frequency domain, and then take an inverse FFT to synthesize the time series. However, if the generated seismogram is already a time history, a time domain operator representing the instrument would be more convenient to use. In this section an infinite impulse response filter (IIR) will be designed to make the instrument response superposition in the time domain by a recursive operation. The basic theory will be the classical Z transformation which has long been used to treat digital signals (Robinson and Treitel, 1980).

First let us consider one of the filters in
equation (V-2-5):

\[F(s) = \frac{1}{s-d}. \]

The relationships among Fourier, Laplace, and Z transformations for this filter are easy to find,

\[e^{dt}U(t) \rightarrow \frac{1}{i\omega - d} \]
\[\rightarrow \frac{1}{s-d} \]
\[\rightarrow \frac{1}{1-e^{dt}Z^{-1}}, \quad \text{(V-3-1)} \]

where \(U(t) \) is the Heaviside step function. Because of the causality of the system, the poles in equation (V-3-1) should be located in the left half of the complex s-plane (Papoulis, 1962), or equivalently, inside the unit circle of the complex Z-plane. If we use the following definition for the Z-transform:

\[F(Z) = \sum_{n=0}^{\infty} f(n)Z^{-n} \]

the two-term filter will be stable for such a system, since if expanded in an infinite polynomial of \(Z^{-1} \), the coefficients are all bounded. This stable property is necessary for any IIR to simulate the instrument response. Before we design such a filter, we must be certain to check that all of the poles of the Laplace transformation have a negative real part.

From equation (V-2-5), the instrument response can
be written as

$$F(s) = \sum_{i=1}^{n} \frac{c_i}{s - d_i}.$$ \hspace{1cm} (V-3-2)

The corresponding Z-transform will be

$$F(Z) = \sum_{i=1}^{n} \frac{c_i}{1 - e^{d_i \Delta t} Z^{-1}}.$$ \hspace{1cm} (V-3-3)

This formula represents n number of two-term filters operating in parallel. We are not going to sum them up as a single filter (Seidl, 1980)

$$F(Z) = \frac{a_0 + a_1 Z^{-1} + \cdots + a_{n-1} Z^{-(n-1)}}{1 + b_1 Z^{-1} + \cdots + b_n Z^{-n}},$$

because the numerical error makes the determination of a's and b's unsatisfactory. Besides, this form is not easy to apply (Kulhanek, 1979).

It is known that the multiplication of Z^{-1} means a shift of the time sequence by one sampling period. Applying the filter (V-3-3) to the input data, x_k, we have the output y_k:

$$y_k = F(Z) x_k$$

$$= \left(\sum_{i=1}^{n} \frac{c_i}{1 - e^{d_i \Delta t} Z^{-1}} \right) x_k$$

$$= \sum_{i=1}^{n} \left(\frac{c_i}{1 - e^{d_i \Delta t} Z^{-1}} x_k \right)$$

$$= \sum_{i=1}^{n} y_k^{(i)}$$

where

$$y_k^{(i)} = c_i x_k + e^{d_i \Delta t} y_k^{(i-1)}.$$
k is the sampling point of the sequence, and i represents a different two-term recursive filter. This is the recursive formula describing the time domain operation.

Figure 38 gives the impulse response pulse and its spectrum for an LRSM 6284-13 seismograph. The impulse response waveform is obtained by passing an impulse signal through a Z-transform IIR filter representing the instrument. Different amplitude response curves come from different time sampling intervals, which are 1.0, 0.5, and 0.0625 second for curves from top to bottom. A theoretical response curve, which falls in the position of the curve with \(\Delta t = 0.0625 \), is also shown for comparison. Some restriction should be considered before using recursive filters. For the Fourier transformation, the sampling along the frequency axis, \(\Delta f \), gives the periodicity in the time domain, and causes the aliasing effect of the time series (Brigham, 1974). Equivalently, the time sampling \(\Delta t \) of the Z-transform causes the aliasing effect, but now in the frequency domain. Figure 38 shows the effect of aliasing at the ends of the frequency response curves for different sampling rates. Naturally smaller \(\Delta t \) values give better results. The reason for such an effect comes from \(Z = e^{i\omega t} \) which is a harmonic function with a period of \(2\pi \). To keep \(\omega \Delta t = 2\pi \) smaller \(\Delta t \) gives higher Nyquist frequency, i.e., shifts the aliasing to
Figure 38. Simulation of an LRSM 6284-13 seismograph using the Z-transform method. Three response curves correspond to different sampling rates dt of 1.0, 0.5 and 0.0625 sec.
high frequencies.

Another way to alleviate the aliasing problem is to use the bilinear Z-transform. By substituting

\[s = \frac{2 \ 1 - Z^{-1}}{\Delta t \ 1 + Z^{-1}} \]

in equation (V-3-2), it is easy to find the recursive relation of a two-term filter for the bilinear Z-transform:

\[y_k^{(t)} = \frac{c_i}{2/\Delta t - d_i} (x_k + x_{k-1}) + \frac{2/\Delta t + d_i}{2/\Delta t - d_i} y_{k-1} \]

The bilinear Z-transform is a low frequency approximation (Oppenheim and Schafer, 1975, p.208). The distortion of the frequency axis at high frequencies offsets the true response. As shown in Figure 39, which describes the response of a short period WWSSN instrument, the bilinear Z-transform simulates the response well at low frequencies, but is poor for high frequencies. To obtain good results, a small \(\Delta t \) is again required. On the other hand, the filter response is found to be zero at the Nyquist frequency, which avoids any Gibb's phenomena in the time domain. A special frequency warping is used in practice to design the digital filter from its analytic form.

Using the time domain operation, we designed several IIR filters to model some currently used
Figure 39. Simulation of a WWSSN SP instrument using the bilinear Z-transform method. Different response curves correspond to different sampling rates of 0.15, 0.05, 0.01 and 0.005 second.
instruments. Figure 40 illustrates one of the results. The seismograms plotted correspond to the time histories before and after the addition of a WWSSN SP instrument for two cases. The instrument response curve is the one given in Figure 39. It can be seen that the waveforms are totally altered. Low frequency signals are filtered out, and the remaining waveforms represent more likely the high frequency, higher mode Lg phases.
Figure 40. Seismograms showing the effect of the instrument. The two displays are for the vertical and tangential components, respectively. The CUS model and a distance of 2000 km are used. (a) is the ground displacement; and (b) is the seismogram after passing through a short-period instrument. The instrument response is that shown in Figure 39.
CHAPTER VI

COMPARISONS

To employ the synthetic seismogram method in actual applications, the validity of theory and numerical procedures should be checked. In this chapter, several comparisons of the wave integral method with totally different methods are presented. These examples illustrate the flexibility and reliability of the present method, and lend confidence to the new system.

Comparison to Generalized Ray Theory

First, the free surface displacements due to a double-couple source in a uniform half-space generated by the integral method are checked against the complete solutions from the Cagniard-de Hoop method (Johnson, 1974). Figures 41 and 42 show the computed radial components of ground velocity time histories at distances of 10, 25, 50, and 75 km for the vertical strike-slip and vertical dip-slip sources, respectively. Sections a in these figures come from a Cagniard-de Hoop ray summation and sections b from the integral method. The velocity structure has \(P \) velocity = 6.15 km/sec, \(S \) velocity = 3.55 km/sec, density = 2.8 gm/cm\(^3\). The depth of the point dislocation is 10 km. A seismic moment of
Figure 41. Comparison of Cagniard-de Hoop and wave theory solutions for a vertical strike-slip source at a depth of 10 km in a half-space with parameters of the first layer of SCM model. (a) Cagniard-de Hoop solution. (b) The complete wave theory solution. (c) The wave theory solution containing only the near-field and far-field P-SV terms. (d) The wave theory solution including only the far-field P-SV term.
Figure 42. Results for the same model of Figure 41, but for the radial component due to a vertical dip-slip source.
1.0×10^{20} dyne-cm and a parabolic source time function with $\tau = 0.5$ sec are applied.

The agreement between the records of these two methods is excellent. The comparisons are of near-perfect precision for both fault slip prescriptions. This convinces us that the method of wave integrals is highly reliable. Figures 41 and 42 also show the effect of near-field terms (equation II-2-14) on the complete solutions. Sections c in these figures include the contributions of far-field and near-field P-SV terms (first two terms in equation II-2-14), where a noncausal, nonpropagating arrival exists as indicated by Herrmann (1978a), especially for the vertical dip-slip source. The records in sections d correspond to the solution using only the far-field term. From these figures, we can see that an apparent Rayleigh phase (fundamental mode only for half-space model) emerges from the P phase group as the distance increases. Since a clear distinction between the S arrival and surface wave phases is not possible, the separation between these two main phases on seismograms is not obvious.

Comparison to Finite-Element Method

The second example (Figure 43, 44) shows the accuracy of the present solution for a horizontally layered media. The compared solutions are obtained using the finite element method, which are adopted directly from
Figure 43. Comparison of wave integral solution with the finite element solution for the radial and tangential components due to a vertical strike-slip dislocation buried at a depth of 1 km in the two layers overlying half-space model of Table 3.
Figure 44. Results using the source and model of Figure 43, but for a source buried at the depth of 5 km.
Apsel (1979). The model consists of two layers overlying a half-space, as illustrated in Table 3. A vertical strike-slip dislocation source is considered and the source time function is a ramp of one second duration. The receivers with an azimuth of 22.5 degrees from the strike of the fault are located at the distances indicated at the ends of each traces. A low-pass filter with corner frequency 0.5 Hz is applied to make the seismogram more visible. The results of the present method are computed up to 4 Hz before passing through the filter.

The comparison results are shown in Figure 43 for a source at 1 km depth, and in Figure 44 for a source at 5 km. The components displayed are also indicated. The agreement in these figures is remarkable, especially in light of the vast differences between the two techniques. The slight deviation comes from the numerical errors of both methods and from slightly different low-pass filters used. However, the overall pattern still exhibits great consistency, especially for deeper sources, which is sufficient to confirm the success of the wave integral method.

Comparison to Modal Summation Method

In the previous examples we showed the comparisons with known complete solutions. The solutions include near-field as well as far-field terms, and the
TABLE 3
Two Layers Overlying Half-space Model

<table>
<thead>
<tr>
<th>Thickness (km)</th>
<th>P vel (km/sec)</th>
<th>S vel (km/sec)</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3.0</td>
<td>1.73</td>
<td>1.67</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>2.887</td>
<td>2.89</td>
</tr>
<tr>
<td></td>
<td>6.0</td>
<td>3.46</td>
<td>3.46</td>
</tr>
</tbody>
</table>
integration is taken for different integral parts to create all kinds of signals. In the next example, several synthetic seismograms from Swanger and Boore (1978) and Heaton and Helmberger (1976,1977) are chosen to check against our pole contribution solutions, namely surface wave, as presented in chapter III. However, a solution from the locked mode approximation method is also included in an attempt to fit body wave signals.

Using the surface-wave modal superposition method of Harkrider (1964,1970), Swanger and Boore (1978) simulated ground displacement records from earthquakes in the Imperial Valley of California. Since the sediments in this valley form a prominent wave guide, surface waves are thought to be dominant. Heaton and Helmberger (1976,1977) generated several synthetic seismograms using the generalized ray method for this area. They have used enough rays in their summation so that their synthetics can be considered to be a near-complete solution. The effort of these studies was directed to find a suitable source model by time domain waveform fitting. However, the synthetic waveforms created provide us with a check of our eigenfunction programs. Figures 45 and 46 are the results showing the comparison of these different methods.

Using the El Centro model listed in Table 4, we
TABLE 4

Earth Models

<table>
<thead>
<tr>
<th>Thickness (km)</th>
<th>P vel (km/sec)</th>
<th>S vel (km/sec)</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El Centro Structure

<table>
<thead>
<tr>
<th>2.9</th>
<th>-</th>
<th>1.50</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>3.30</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Imperial Valley Structure

<table>
<thead>
<tr>
<th>0.95</th>
<th>2.0</th>
<th>0.88</th>
<th>1.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.15</td>
<td>2.6</td>
<td>1.50</td>
<td>2.35</td>
</tr>
<tr>
<td>3.8</td>
<td>4.2</td>
<td>2.40</td>
<td>2.6</td>
</tr>
<tr>
<td>-</td>
<td>6.4</td>
<td>3.70</td>
<td>2.8</td>
</tr>
</tbody>
</table>
Figure 45. Comparison of Love wave synthetic ground displacements with Swanger and Boore's modal summation method (solid line in a) as well as Heaton and Helmburger's ray summation method (dashed line in a) of the 1968 Borrego Mountain earthquake. A vertical strike-slip source at 6 km depth and a symmetric triangular source time function of 1 second duration are used. The epicentral distance is 60 km and the azimuth is 8 degrees from the strike of the fault. The model used is the El Centro structure listed in Table 4. (b) is the result of eigenfunction programs but including only the first three modes which Swanger and Boore used. (c) is the result including all modes. (d) shows the synthetics from the locked mode approximation with a rigid layer at 200 km deep. Note that (d) successfully models the first arrival of ray theory solution.
Figure 46. Same comparison as for Figure 45 but for the 1976 Brawley earthquake. The Imperial Valley structure (Table 4) of Heaton and Helmberger (1978) is used. The source is a vertical strike-slip point buried at 6.9 km, and the source time function is a 1.5 sec duration triangle. The top trace gives the real data (Heaton and Helmberger, 1978). Our solution (b), which is the summation of first five modes, shows a better fit of the first P arrival at 12 second than Swanger and Boore (1979). Again, the locked mode approximation (d) gives a good match to the ray theory solution in the front part of the record, but not in the rest.
generated surface wave seismograms after summing the first three modes ((b) in Figure 45) or all the modes ((c) in Figure 45) by eigenfunction programs. The match of these seismograms to Swanger and Boore's result (solid trace in 45a) is obvious. The agreement is superb and the phase coherence is nearly perfect. Furthermore, the seismogram from the locked mode approximation ((d) in Figure 45) fits the first P arrival of Heaton and Helmberger's solution (dashed trace in Figure 45a) quite well, although the later part of the trace seems not affected by the presence of a rigid cap layer.

Similar conclusions can be drawn for the comparison using the Imperial Valley model of Table 4. As shown in Figure 46, the result (b) of the present method seems to be a better fit comparison of the direct P arrival to ray theory solution than Swanger and Boore obtained. The reason might be a longer time window we have used to avoid the time aliasing. The locked mode approximation, again, shows a good match to the ray theory solution in the front part of the trace. These results serve to further validate the present method, despite the fact that various assumptions are inherent in the other methods. In addition, the comparison of (b) and (c) in Figures 45 or 46 also reveals that the number of modes Swanger and Boore used to make up their seismograms was sufficient.
CHAPTER VII

SUMMARY AND CONCLUSIONS

A detailed and complete derivation of wave integral theory for studying wave propagation in plane multi-layered media has been presented. The three-dimensional wave propagation problem is formulated and solved in the wavenumber-frequency domain. The layer responses at any wavenumber and frequency are given in terms of Haskell's layer matrices and the corresponding compound forms. The formalism presented was shown to be stable and accurate for computations. A contour integration is taken over horizontal wavenumber so as to automatically include all kinds of waves. A fast Fourier transform then gives the final time history.

The technique is not new. However, after a close step-by-step development, several insights were revealed. The most important was the finding of symmetry properties of the layer matrix and its compound counterparts. These properties enable us to build up the relation of the present method with eigenfunction theory and most of other currently used wave integral methods.

Eigenfunction solutions as expressed in analytic forms have the advantage of computational accuracy and efficiency. The special cases of high frequencies and
complicated models can be handled without difficulty. New procedures were developed to find dispersion values. The eigenfunctions, energy integrals, and all other excited variables of surface waves could be evaluated with sufficient precision. Furthermore, the theoretical development also provided a rigorous basis for classical eigenfunction theory. This in turn opened a new, and potentially powerful method, which can be used to extract more information about the wave propagation through the earth.

The contour integration over the real branch cut is a difficult part of simulating body wave-like signals. The variation of the integrand along the real-k axis reflects the influence of leaky modes. After an intensive study of this effect, we were able to design a numerical integration procedure for this integration path. We also found that body waves and surface waves cannot be separated from each other. They are interconnected.

To test the versatility of the eigenfunction program developed, the locked mode approximation was introduced to simulate the signals from the branch cut contribution. Except for the computational speed, the test was highly successful. This method is worthy of further investigation.

One significant value of the present study is its
ability to be extended to other methods. The reflection and reflectivity methods can be easily derived using the new system. As a result, the reflection and transmission properties of a layer boundary can be easily decomposed. With an arbitrary choice of reflection and/or transmission at interfaces, theoretical seismograms consisting of signals from a particular portion of the layered structure were obtained.

Source functions characterized by any first or second order point source were considered. A set of five fundamental forms was formed to represent all kinds of signals possibly excited in the earth. This expression, which isolates the direction-dependence in the final solution, is specially useful for focal mechanism studies.

A new way to find the instrument response, using least-squares inversion of calibration pulse waveforms, was developed. The method found the parameters which directly represent the instrument responses, even though the instrument-related constants are not given directly. These inversion procedures were performed in the time domain, and thus are easy to use. Finally, a digital z-transform technique, which was used to introduce the instrument effect in the time domain, was also discussed.

To verify the theory and numerical extension, a
set of three validation studies was provided. The results of comparison to other known complete solutions serve to lend confidence in our method.

Because the models treated are plane stratified media, the present method can describe the wave propagation in the earth up to an epicentral distance, say, of 3000 km. Beyond this distance, the earth flattening correction from Biswas and Knopoff (1970) or Chapman (1973) should be considered. Furthermore, the dispersion curves for the models with an apparent low velocity zone sometimes become extremely complicated. Special care is needed to handle these particular cases.

An overall view of this wave theory system shows its completeness and ease of adaptation. With the advent of future computers, the method will become more and more important. It is expected that the present development and associated computer programs will prove increasingly useful in various areas of theoretical seismology and earthquake engineering.
APPENDIX A

Layer Matrix

The elements of layer matrix α are

\[
\alpha_{11} = \gamma \cosh \nu_\alpha z - (\gamma - 1) \cosh \nu_\beta z
\]

\[
\alpha_{12} = k (\gamma - 1) \frac{\sinh \nu_\alpha z}{\nu_\alpha} - \frac{\gamma}{k} \nu_\beta \sinh \nu_\beta z
\]

\[
\alpha_{13} = \frac{k}{\rho} \cosh \nu_\alpha z - \frac{k}{\rho} \cosh \nu_\beta z
\]

\[
\alpha_{14} = -\frac{k^2}{\rho} \frac{\sinh \nu_\alpha z}{\nu_\alpha} + \frac{1}{\rho} \nu_\beta \sinh \nu_\beta z
\]

\[
\alpha_{21} = -\frac{\gamma}{k} \nu_\alpha \sinh \nu_\alpha z + k (\gamma - 1) \frac{\sinh \nu_\beta z}{\nu_\beta}
\]

\[
\alpha_{22} = -(\gamma - 1) \cosh \nu_\alpha z + \gamma \cosh \nu_\beta z
\]

\[
\alpha_{23} = -\frac{\nu_\alpha}{\rho} \sinh \nu_\alpha z + \frac{k^2}{\rho} \frac{\sinh \nu_\beta z}{\nu_\beta}
\]

\[
\alpha_{31} = -\rho \frac{\gamma (\gamma - 1)}{k} \cosh \nu_\alpha z + \rho \frac{\gamma (\gamma - 1)}{k} \cosh \nu_\beta z
\]

\[
\alpha_{32} = -\rho (\gamma - 1)^2 \frac{\sinh \nu_\alpha z}{\nu_\alpha} + \rho \frac{\gamma^2}{k^2} \nu_\beta \sinh \nu_\beta z
\]

\[
\alpha_{41} = -\rho \frac{\gamma^2}{k^2} \nu_\alpha \sinh \nu_\alpha z + \rho (\gamma - 1)^2 \frac{\sinh \nu_\beta z}{\nu_\beta}
\]

\[
\alpha_{55} = \cosh \nu_\beta z
\]

\[
\alpha_{55} = \mu \nu_\beta \sinh \nu_\beta z
\]

\[
\alpha_{56} = \frac{\sinh \nu_\beta z}{\mu \nu_\beta}
\]

- 199 -
The other elements are found by

\[a_{ij} = a_{5-j,5-i} \quad \Rightarrow \quad \sigma_{ij} = a_{12i} \]

for \(i, j = 1, \ldots, 4, \) and

\[a_{ij} = a_{11-j,11-i} \]

for \(i, j = 5, 6. \)
APPENDIX B

Compound Matrix

The compound matrix \(E^{-1} \) used in the main text is

\[
E_{\alpha}^{-1} |_{ij}^{12} = \frac{1}{4k \nu_{\alpha N} \nu_{\beta N}} \left[E^{-1} |_{i2}^{12}, E^{-1} |_{i3}^{12}, E^{-1} |_{i4}^{12}, E^{-1} |_{i23}^{12}, E^{-1} |_{i24}^{12}, E^{-1} |_{i34}^{12} \right]_{N}
\]

where

\[
E^{-1} |_{i2}^{12} = \rho^2 \left[-\frac{\gamma^2}{k^2} \nu_a \nu_\beta + (\gamma - 1)^2 \right]
\]

\[
E^{-1} |_{i3}^{12} = -\rho \nu_a
\]

\[
E^{-1} |_{i4}^{12} = \rho \left[\frac{\gamma^2}{k^2} \nu_a \nu_\beta - (\gamma - 1) k \right]
\]

\[
E^{-1} |_{i23}^{12} = E^{-1} |_{i4}^{12}
\]

\[
E^{-1} |_{i24}^{12} = -\rho \nu_\beta
\]

\[
E^{-1} |_{i34}^{12} = \nu_a \nu_\beta - k^2.
\]

The compound matrix of layer matrix \(\alpha \) is a 6x6 matrix whose components are

\[
\alpha |_{i2}^{12} = CPCQ + 1 - \alpha |_{i4}^{14}
\]

\[
\alpha |_{i3}^{12} = (-CQX + k^2 CPY) / \rho
\]

\[
\alpha |_{i4}^{12} = [(1 - CPCQ)(2\gamma - 1) + \frac{kXZ}{k^2} + (\gamma - 1) k^2 WY] k / \rho.
\]

- 201 -
\[a_{12}^{10} = a_{14}^{12} \]

\[a_{12}^{10} = (k^2 CQW - CPZ) \rho \]

\[a_{34}^{12} = [2(1 - CPCQ) k^2 + XZ + k^4 WY] / \rho^2 \]

\[a_{12}^{10} = \rho [-(\gamma - 1)^2 CQW + \frac{\gamma^2}{k^2} CPZ] \]

\[a_{13}^{10} = CPCQ \]

\[a_{13}^{10} = (\gamma - 1) k CQW - \frac{\gamma}{k} CPZ \]

\[a_{13}^{10} = a_{14}^{10} \]

\[a_{24}^{13} = WZ \]

\[a_{12}^{14} = -\rho [(1-CPCQ) \frac{\gamma}{k} (\gamma - 1)(2\gamma - 1) + \frac{\gamma^2}{k^2} XZ + (\gamma - 1)^2 k WY] \]

\[a_{13}^{14} = k (\gamma - 1) CPY - \frac{\gamma}{k} CQX \]

\[a_{14}^{14} = 1 + 2(1-CPCQ) \gamma (\gamma - 1) + \frac{\gamma^2}{k^2} XZ + (\gamma - 1)^2 k^2 WY \]

\[a_{23}^{14} = a_{14}^{14} - 1 \]

\[a_{12}^{23} = a_{12}^{12} \]

\[a_{13}^{23} = a_{14}^{13} \]

\[a_{23}^{14} = a_{23}^{14} \]

\[a_{12}^{24} = \rho \left[CQX \frac{\gamma^2}{k^2} - CPY (\gamma - 1)^2 \right] \]

\[a_{13}^{24} = XY \]
\[a_{12} = \rho \left[2(1 - CPCQ) \frac{k^2}{\gamma - 1} \gamma^2 \frac{\gamma}{k^4} XZ + (\gamma - 1)^4 WY \right]. \]

The other components can be found by

\[a_{ij} = a_{kl} \gamma_{i-j, l-k} \]

where

\[\gamma = \frac{2k^2}{k^2 \beta} \]

\[CPCQ = \cosh \nu_a z \cdot \cosh \nu_{\beta} z \]

\[CPY = \cosh \nu_a z \cdot Y \]

\[CPZ = \cosh \nu_a z \cdot Z \]

\[CQW = \cosh \nu_{\beta} z \cdot W \]

\[CQX = \cosh \nu_{\beta} z \cdot X \]

\[XY = X \cdot Y \]

\[XZ = X \cdot Z \]

\[WY = W \cdot Y \]

\[WZ = W \cdot Z \]

with

\[W = \frac{\sinh \nu_a z}{\nu_a} \]

\[X = \nu_a \cdot \sinh \nu_a z \]
\[\gamma = \frac{\sinh \nu_p z}{\nu_p} \]

\[Z = \nu_p \sinh \nu_p z \]
APPENDIX C

Symmetry of Compound Matrix

Because of the particular symmetry existing in the layer matrix \(a \), and those existing between \(a, E \) and their inverses respectively, we can reveal some interesting properties of a compound matrix obtained from these two kinds of matrices. In this appendix, these properties will be developed in somewhat rigorous mathematical terms for the compound matrices of order two which are used here. The equivalence of the third and fourth components of some of Haskell's compound matrices will consequently become apparent. Some of the properties derived in this appendix were used directly in the main text.

The special types of symmetry properties for the compound matrix can be summarized by two definitions:

(1) If two compound matrices \(A, B \) satisfy

\[
A \mid \frac{ij}{kl} = pB \mid \frac{k\bar{i}}{l\bar{j}} ,
\]

where \(p \) is a constant coefficient

and \(ij \leftrightarrow \bar{ij} : \)

\[
12 \leftrightarrow 34 \quad 13 \leftrightarrow 24 \quad 14 \leftrightarrow 23 \\
23 \leftrightarrow 14 \quad 24 \leftrightarrow 13 \quad 34 \leftrightarrow 12 ,
\]

then \(A \) and \(B \) are called 'skew-symmetric'.

- 205 -
(2) If two compound matrices \(A, B \) satisfy
\[
A \mid_{\tilde{\xi}}^{\tilde{\eta}} = pB \mid_{\tilde{\xi}'}^{\tilde{\eta}'} \mid_{\tilde{\xi}''}^{\tilde{\eta}''},
\]
then \(A \) and \(B \) are called '5-complemental'.

When \(B = A \) and \(p = 1 \), such symmetric properties are called 'self skew-symmetric' or 'self 5-complemental'. When \(B = A' \) and \(p = (-1)^{l+j+k+l} q \), where \(q \) is a constant determined from \(A \), such symmetric properties are called 'inverse skew-symmetric' or 'inverse 5-complemental'. 'Self skew-symmetry' is just a property indicating the symmetry of a compound matrix about its own skew diagonal axis if it is expanded in 6 by 6 form.

The compound matrix \(a \mid_{\tilde{\xi}}^{\tilde{\eta}} \) defined in Appendix B is found to be self skew-symmetric as well as self 5-complemental. The 5-complemental property actually comes from the skew-symmetry of the corresponding simple matrix \(a_{ij} \), i.e., \(a_{ij} = a_{5-j, 5-i} \). Now we can see that the third and fourth components of \(a \mid_{\tilde{\xi}}^{\tilde{\eta}} \) must be equivalent in some manner. For example, the self skew-symmetry of \(a \mid_{14}^{12} \) is \(a \mid_{33}^{33} \) and its self 5-complement is \(a \mid_{44}^{44} \). Hence
\[
a \mid_{14}^{12} = a \mid_{33}^{33} = a \mid_{44}^{44} = a \mid_{66}^{66},
\]
where the last equality comes from the self skew-symmetry of \(a \mid_{44}^{44} \). Besides this, the compound matrix \(a \) is also inverse skew-symmetric as well as
inverse 5-complementeral with coefficient \(p = (-1)^{i+j+k+l} \). Hence we have

\[
\alpha^{-1} B = (-1)^{i+j+k+l} \alpha \begin{pmatrix} \delta_{ij} \delta_{kl} \\
\delta_{ij} & \delta_{kl}
\end{pmatrix} = (-1)^{i+j+k+l} \alpha \begin{pmatrix} \delta_{ij} & \delta_{jk} \\
\delta_{kl} & \delta_{kl}
\end{pmatrix} = (-1)^{i+j+k+l} \alpha \begin{pmatrix} \delta_{ij} \\
\delta_{ij}
\end{pmatrix}.
\]

The compound matrix \(\alpha \) has extremely good symmetry properties.

Similarly, we find that matrix \(E \) defined in equation (II-l-13) is inverse skew-symmetric with \(p = (-1)^{i+j+k+l} q \) and \(q = 4k^2 \nu_\alpha \nu_\beta / \rho^2 \). But it possesses neither the properties of self symmetry nor the property of inverse 5-complementeral. With further investigation, this compound matrix is found to be inverse 5-complementeral only for some of its components, which are \(ij=12, 34 \), \(kl=13, 24 \) for \(E^{-1} B \), and \(ij=13, 24 \), \(kl=12, 34 \) for \(E B \) with \(p \) equal to \((-1)^{i+j+k+l} \) times \(q \) or \(1/q \) respectively. Other such properties occur for \(ij=14, 23 \) with \(p=-q \) for \(E^{-1} B \) and \(kl=14, 23 \) with \(p=-1/q \) for \(EB \). For example, \(E^{-1} B \) and \(E B \) are both inverse 5-complementeral. Since these two are also inverse skew-symmetric, their third and fourth components are equivalent, i.e., \(E^{-1} B = E^{-1} B = E B = E B \).

With the properties of compound \(\alpha, E \) and \(E^{-1} \) revealed, it is not difficult to find that Haskell's matrices \(R \) and \(X \) which are composed of \(E^{-1} \) and \(\alpha \)'s, behave as \(E^{-1} \), and \(Z \) which is composed of \(\alpha \)'s, behaves as \(\alpha \). In summary,
(1) R or X are inverse skew-symmetric.

(2) $R |_{kl} R |_{kl} R |_{kl} R |_{kl} R |_{kl} R |_{kl} R |_{kl}$ and $R^{-1} |_{kl} R^{-1} |_{kl} R^{-1} |_{kl} R^{-1} |_{kl}$

$R^{-1} |_{kl} R^{-1} |_{kl}$ are inverse 5-complemental (or X).

(3) Z is self skew-symmetric and 5-complemental.

(4) Z is inverse skew-symmetric and 5-complemental.
APPENDIX D

Perturbation of Surface Wave Energy Integrals

In this appendix, we will evaluate $\frac{\partial}{\partial k} R_{\frac{12}{12}}$ by using the variational principles. First, the eigenfunctions are perturbed by varying the wavenumber k about its stationary value. In such a perturbation state, the stresses at the free surface are small but not zero, and still satisfy

$$K_{\omega} = R B_1$$

i.e.

$$A' = \begin{bmatrix} 0 \\ 0 \\ A' \\ B' \end{bmatrix} = \begin{bmatrix} R_{11} & R_{12} & R_{13} & R_{14} \\ R_{21} & R_{22} & R_{23} & R_{24} \\ R_{31} & R_{32} & R_{33} & R_{34} \\ R_{41} & R_{42} & R_{43} & R_{44} \end{bmatrix} \begin{bmatrix} \varepsilon \\ 1 \\ T_{z_1} \\ T_{r_1} \end{bmatrix},$$

where the vectors K_{ω} and B_1 have been normalized by U_{z_1}.

The first two rows give

$$T_{z_1} = -[\varepsilon R_{12} + R_{12}] / R_{12}$$
$$T_{r_1} = [\varepsilon R_{12} + R_{12}] / R_{12}$$

(D-1)

Note that ε is not the same ellipticity as defined in equation (III-1-4), since the system is no longer in an eigen state. If the system is really being characteristically excited, then $T_{z_1} = T_{r_1} = 0$ and we have the same ellipticities as those in equation (III-1-4).
Return to the differential equation (II-1-11)

\[\frac{d T_z}{d z} = -\rho U_z + k T_r \]
\[\frac{d T_r}{d z} = (\rho - \xi \frac{k^2}{\omega^2}) U_r - k \sigma T_z \] (D-2)
\[\frac{d U_z}{d z} = -k \sigma U_r + \frac{\omega^2}{\lambda} \sigma T_z \]
\[\frac{d U_r}{d z} = k U_z - \frac{\omega^2}{\mu} T_r \]

where

\[\xi = \frac{4\mu (\lambda + \mu)}{\lambda + 2\mu} \]
\[\sigma = \frac{\lambda}{\lambda + 2\mu} \]

Multiply the first equation of (D-2) by \(U_z \) and integrate it with respect to \(z \) from 0 to infinity:

\[U_z T_z \bigg|_0^\infty = \int_0^\infty [-\rho U_z^2 + k U_z T_r + T_z \frac{d U_z}{d z}] \, dz \]
\[= \int_0^\infty [-\rho U_z^2 + k U_z T_r - k \sigma U_r T_z + \frac{\omega^2}{\lambda} \sigma T_z^2] \, dz \]

Replacing the integrals by the summation over layers represented by \(I_i \)'s,

\[-U_{z_1} T_{z_1} = \sum_n \rho_n (I_{22})_n + k (I_{24})_n - k \sigma_n (I_{13})_n + \omega^2 \frac{\sigma_n}{\lambda_n} (I_{33})_n \] (D-3)

where because of the conservation of energy, the radiation condition requires that \(U_{z_1} \) and \(T_{z_1} \) vanish at great depth. Similarly, the second equation in (D-2) can be integrated to become

\[-U_{r_1} T_{r_1} = \sum_n (\rho_n - \xi_n \frac{k^2}{\omega^2}) (I_{11})_n - k \sigma_n (I_{13})_n + k (I_{24})_n - \frac{\omega^2}{\mu_n} (I_{44})_n \] (D-4)
Multiply equations (D-3) and (D-4) by ω^2 and mutually subtract,

$$-\omega^2 \left(U_{r_1} T_{r_1} - U_{z_1} T_{z_1} \right)$$

$$= \sum_n \left[(\rho_n - \xi_n \frac{k^2}{\omega^2}) (I_{11})_n + \rho_n (I_{22})_n - \omega^2 \frac{\sigma_n}{\lambda_n} (I_{33})_n - \frac{\omega^2}{\mu_n} (I_{44})_n \right] \omega^2.$$

In this equation, the terms on the right are nothing but the Lagrangian of Rayleigh waves as given by equation (III-1-13),

$$-\omega^2 (U_{r_1} T_{r_1} - U_{z_1} T_{z_1}) = L_R = \omega^2 I_0 - k^2 I_1 - 2k I_2 - I_3. \quad (D-5)$$

Since all of the eigenfunctions are normalized (recall our definition of the energy integrals in equation III-1-10), $U_{z_1} = 1$ and $U_{r_1} = \epsilon$. The terms inside the parentheses on the left side of equation (D-5) can be further expanded after substitution from equation (D-1),

$$U_{r_1} T_{r_1} - U_{z_1} T_{z_1}$$

$$= \epsilon T_{r_1} - T_{z_1},$$

$$= \left[\epsilon (\epsilon R |_{1/2} + R |_{1/2}) + (\epsilon R |_{3/4} + R |_{3/4}) \right] / R |_{1/2}$$

$$= \left[\epsilon^2 R |_{1/2} + 2\epsilon R |_{3/4} + R |_{3/4} \right] \left(R |_{1/2} + R |_{3/4} \right), \quad (D-6)$$

where we have used

$$R |_{1/4} = R |_{3/8}.$$

Since

$$R |_{1/2} R |_{1/2} + R |_{1/2} R |_{3/2} = R |_{1/4} R |_{1/4} + R |_{1/4} R |_{3/4},$$
equation (D-6) becomes

\[\varepsilon T_{x_1} - T_{z_1} = \frac{R \mid_{12}}{R \mid_{13}} + \frac{[\varepsilon R \mid_{13} + R \mid_{23}]^2}{R \mid_{34} R \mid_{13}}. \]

Substitute into equation (D-5),

\[-\omega^2 \left[\frac{R \mid_{12}}{R \mid_{13}} + \frac{[\varepsilon R \mid_{13} + R \mid_{23}]^2}{R \mid_{34} R \mid_{13}} \right] = \omega^2 \beta - k^2 I_1 - 2k I_2 - I_3. \]

Because the system slightly departs from the eigen state, it follows that a perturbation in \(k \) results in

\[-\omega^2 \frac{\partial}{\partial k} R \mid_{12} = -2k I_1 - 2 I_2, \]

where we have set \(R \mid_{12} \approx 0 \) and consequently \(\varepsilon \) is very close to the value defined in equation (III-1-4), hence only the dominant term \(\frac{\partial}{\partial k} R \mid_{12} \) is left. The group velocity as expressed in terms of integrals (Jeffreys, 1961) has the form

\[U = \frac{I_1 + I_2/k}{I_0}. \]

The result, i.e., the amplitude factor in terms of energy integrals, is obtained

\[\frac{R \mid_{12}}{\frac{\partial}{\partial k} R \mid_{12}} \omega^2 = \frac{k}{2(I_1 + I_2/k)} = \frac{1}{2cU I_0}. \quad (D-7) \]

For the Love waves, the derivation is similar.

Start with the differential equation
\[\frac{d}{dz} T_\varphi = \left(\mu k^2 - \rho \omega^2 \right) U_\varphi. \]

Multiplying both sides by \(U_\varphi \) and integrating, yields

\[-T_{\varphi_1} = -\omega^2 I_0 + k^2 I_1 + I_2. \] \hspace{1cm} (D-8)

Then from

\[K_N = R B_1 \]
\[= R \left[1, T_{\varphi_1} \right]^T, \]

the perturbed stress \(T_{\varphi_1} \) is

\[T_{\varphi_1} = -R_{55}/R_{66}. \]

Equation (D-8) becomes

\[\frac{R_{55}}{R_{66}} = -\omega^2 I_0 + k^2 I_1 + I_2. \]

Again, the right side is the Love wave Lagrangian. After taking the derivative with respect to \(k \), and putting \(R_{55} \sim 0 \) we have

\[\frac{k R_{55}}{\partial k} \frac{R_{55}}{R_{66}} = \frac{1}{2 I_1} = \frac{1}{2 c U I_0}, \]

where the Love group velocity is just

\[U = \frac{I_1}{c I_0}. \] \hspace{1cm} (D-10)
which is obtained by simply perturbing the Love wave Lagrangian.
APPENDIX E

Description of the Eigenfunction programs

To implement the eigenfunction theory as developed in chapter III, several FORTRAN computer programs have been set up using a DEC PDP 11/70 minicomputer in the department of Earth and Atmospheric Sciences, Saint Louis University. This appendix gives a brief description of these programs in order to facilitate their utilization and maintenance.

Because of the restriction of core size (about 60K bytes), we divided the computation into five separate programs which communicate via intermediate data files. The data files are stored in a high speed, large volume disc. The designation skeleton is inherited from Herrmann (1974, 1978b), although the theoretical and numerical techniques are modified. These programs are suited, especially, to short periods (less than 1 second) and complicated structures. Figure 47 shows this sequence of programs and their input/output. Table 5 lists the information to be used when running these programs.

(1) surface81: This program searches for dispersion values over the range of phase velocity between $0.8 \beta_{\text{min}}$ and β_N for some fixed set of periods. It is suggested that these periods had better be arranged in
Figure 47. Flow chart of eigenfunction programs.
TABLE 5

Information for Synthesizing Seismograms

I. Sampling Information:
1. sampling rate, dt (sec): __________
2. total sampling point: __________
3. frequency range (Hz): __________

II. Wave Type:
1. Rayleigh or Love? __________
2. component (Z,R,T,NS,EW)? __________
3. waveform (disp.,vel.,accel.)? __________

III. Source Model:
1. source depth (Km): __________
2. seismic moment (dyne-cm): __________
3. source mechanism (dip,slip,strike): __________
4. source time function: __________

IV. Earth model:
1. velocity model:

2. Q model:

V. Receiver:
1. receiver position (r,Az): __________
2. original time shift (t0): __________
3. instrument (LP,SP,model): __________
equally spaced frequency (inverse of period) so that a FFT can be used to transform spectral responses to time domain without using any sort of interpolation. The other input parameters are the structure which consists of the thickness of each layer, P-wave velocity, S-wave velocity and density. The number of layers and modes can be as large as 500.

As pointed out in section 2.4, the search of poles is easier to carry out in the wavenumber-frequency plane than in the phase velocity-period plane. The reason is that equation (II-4-6) can give reasonably estimated steps to progress for a particular mode during the pole searching in the k-w plane. Figure 48 describes such a searching procedure. Note that the jump steps are frequency, wavenumber and mode dependence. In some cases, however, the dispersion values vary quite abruptly near the various P and S-wave layer velocities as illustrated in Figures 49 and 50. These figures display the dispersion curves of the CUS model at the high frequency range. The sharp bends and kinks result in very irregular pole spacing at a given frequency, which causes difficulty in pole searching. To overcome this, two more constraints to the values provided by equation (II-4-6) are needed:

\[\Delta k_{\text{min}} = \frac{k_{\text{max}} - k_{\text{min}}}{200 + 200 \cdot \text{frequency}} \]
\[\Delta k_{\text{max}} = 0.8 \cdot (k_{\text{mode}=m} - k_{\text{mode}=m-1}) \text{ at previous freq} \]

These serve as the lower and higher bounds for the
JUMPING METHOD

First jump: \(\frac{\Delta \omega}{c} \)

Second jump: \(k \frac{\Delta c}{c} \)

which is restricted by

\[\Delta k_{\text{min}} < k \frac{\Delta c}{c} < \Delta k_{\text{max}} \]

\[\Delta k_{\text{min}} = (k_{\text{max}} - k_{\text{min}}) / (200 + 200 \cdot \text{frequency}) \]

\[\Delta k_{\text{max}} = 0.8 \cdot (k |_{\text{mode} = m} - k |_{\text{mode} = m-1}) |_{\text{use previous freq}} \]

Figure 48. Jumping method for searching poles.
Figure 49. Phase velocity dispersion curves for the CUS model at short period range.
Figure 50. An expansion of Figure 49 for period between 3.8 and 3.9 km/sec.
value of $\frac{k}{c} \Delta c$ from equation (II-4-6), i.e., if $\frac{k}{c} \Delta c$ is greater than Δk_{max} or smaller than Δk_{min}, Δk_{max} or Δk_{min} will be used to make several small jumps after the first jump $\frac{\Delta \omega}{c}$. This algorithm has been proved to be very efficient. For most models the pole is usually bracketed after not more than three or four searching jumps. The result can be displayed and checked by a plotting program 'dpsrf81'. All of the calculations in this program are performed in double precision.

(2) reigen81 (leigen81): This program computes the eigenfunctions and energy integrals which in turn give the group velocity, amplitude factor and attenuation coefficient. Reigen81 is for the P-SV case and leigen81 for SH. To save data file space, only the eigenfunction values at the source depth are stored. The source depth can be entered as several different values, and the output data for different source depths are stored in different output files. A Q model is input at this stage. The attenuation coefficients are determined using the perturbation theory of Anderson et al (1965). It is not difficult to incorporate any sort of frequency dependent Q by slightly modifying the subroutine 'gamma' in this program (Mitchell, 1980, 1981). The partial derivatives of phase velocity at different layer boundaries can also be stored for further study. To check the result, one can either print out the value of the Lagrangian for each dispersion pair or use the
program 'dpegn81' to plot group velocity, amplitude factor, etc. For good results, the curves plotted should be smooth, such as those shown in Figure 51. All of the calculations in these programs are done in double precision.

(3) wig81: This program computes the spectra for stations at a given set of epicentral distances. A particular source time function needs be specified here. In order to be able to treat long duration time series, a separate program 'bigfft' which executes FFT is involved. These two independent programs are connected by a 'system call'. Using this, the longest time series which can be created is 8192 points long, which is the largest dimension allowed in program 'bigfft'. In other programs only a vector with length of at most 1024 points is permitted. A linear interpolation is applied to generate enough data for spectra before taking the inverse Fourier transform, if necessary. The spectral data corresponding to different fundamental source types as listed in section 5.1 are generated and stored. The contributions from different modes can be separated as those used for higher mode study (Cheng and Mitchell, 1981).

(4) gle81 (spec81): The program 'gle81' reads the spectra data created in the previous program and generates the seismograms for each component at each
Figure 51. Group velocity dispersion curves for the CUS model. Note that the low order higher modes have group velocities around 3.5 km/sec.
receiver location after calling 'bigfft' to take inverse FFT. The seismogram is then displayed by a plotter. The program 'spec81' just reads and plots the spectra data. The focal mechanisms, as well as the receiver azimuths, are entered to take into account the directivity dependence. Several instrument responses, long and short periods, are included to take into account the instrument effect.
BIBLIOGRAPHY

Fuchs, K. (1971). The method of stationary phase applied to the reflection of spherical waves from transition zones with arbitrary depth dependent elastic moduli and density, J. Geophys. 37, 89-117.

Chien-Ying Wang was born on May 24, 1951 in Tainan, Taiwan, Republic of China. He attended the National Central University, Chung-Li, Taiwan, from 1969 to 1973, and received his B.S. degree in Physics in 1973. After two years of military duty, he then became a graduate student at the Oceanography Institute of National Taiwan University, Taiwan, and received an M.S. degree in Geophysics in 1977. During the years 1977 to 1981 he has been a graduate student and research assistant in the Department of Earth and Atmospheric Sciences of Saint Louis University, St. Louis, Missouri.
COMPUTER PROGRAMS

The computer programs listed here represent substantial improvements to those given by Herrmann (1978b). All programs are written in FORTRAN 77 and are run on a PDP 11/70 under the UNIX* operating system. This system makes use of the separate Instruction and Data space feature of the PDP 11/70 processor. Thus even though the PDP 11/70 is a 16 bit minicomputer, the text and data spaces can each be as large as 64 K bytes. However, because of the size limitations of even this machine, one program of Herrmann (1978b), wiggle, was split into two programs, wig8l and gle8l. Double precision is used, which means that a floating point number uses 64 bits, or has about 16 significant figures.

The only non-standard usage is the

call system ('bigfft', kturn)

Under UNIX, this permits one program to initiate another program and waits until that program completes before proceeding. The program bigfft performs a Fast Fourier Transform of length 2n by performing a Fast Fourier Transform of length n using the constraint that the time series is purely real. The analog of "call system" may not exist on other computers, but then those computers may be more than 16 bit machines and hence the subterfuge used here may be removed by replacing the sequence of writing, reading and closing temporary files with array access and the "call system" by a

*UNIX is a trademark of Bell Laboratories.
"call bigfft" where "bigfft" is now a subroutine rather than a separate program.

The plotting programs make use of subroutine calls to a CALCOMP* plotter. These are

CALL PLOTS (0, 0, LDEV)
open plotter
CALL PLOT (X, Y, ±IPEN)
mov e plotter to X,Y with pen up (IPEN=±3) or pen down (IPEN=±2) and reset origin at new position if IPEN=negative
CALL FACTOR (FACT)
multiply all movements by FACT
CALL NEWPEN (INP)
use pen INP
CALL SYMBOL (X, Y, HEIGHT, ICHAR, ANGLE, + NCHAR)
write plot symbol with pen up/down, ICODE=±1/±1 during move
CALL SYMBOL (X, Y, HEIGHT, INTEQ, ANGLE, -ICODE)
text array plot symbol INTEQ
CALL NUMBER (X, Y, HEIGHT, FLOATNUMB, ANGLE, ±INDEC)
write number at X, Y define FIRSTV ARRAY (NPTS+1)
CALL SCALE (ARRAY, AXLEN, NPTS, ±INC)
DELTAV ARRAY (NPTS + INC + INC +1)
define
CALL AXIS (X, Y, TITLE, ±NCHAR, AXLEN, ANGLE, FIRSTV, DELTAV)
plot axis with label FIRSTV and DELTAV must be defined for each array
CALL LINE (XARRAY, YARRAY, NPTS, INC, LINTYP, INTEQ)
draw line with/without symbol at each point

*CALCOMP is a trademark.
Eigenfunction Programs

1. surface81 1
2. dpsrf81 19
3. reigen81 24
4. leigen81 43
5. dpegn81 52
6. deriv81 57
7. wig81 59
8. gle81 72
9. spec81 86
10. bigfft 100
program surface81.f

f77 -i -I2 surface81.f -o surface81

This program calculates the dispersion values for any layered model, any frequency, and any mode.

This program will accept one liquid layer at the surface. In such case ellipticity of Rayleigh wave is that at the top of solid array. Love wave communications ignore liquid layer.

All processes are performed in the wavenumber-frequency domain.

Input:

1. mmax, mode (eg. 2, 1000)
 -mmax: >0 number of layers including halfspace
 <0 end program
 =0 use previous model with new options
 -mode: number of modes for which dispersion curves are desired. (1000 is the maximum)

2. d(i), a(i), b(i), rho(i) (eg. 40.0, 6.15, 3.55, 2.8
 i=1,mmax
 8.09, 4.67, 3.3)
 -d(i): layer thickness (km)
 -a(i): P wave velocity (km/sec)
 -b(i): S wave velocity (km/sec)
 -rho(i): density (gm/cm3)

3. igphl, igphr, icut, idispl,idispr, ipunch
 (eg. 1, 1, 1, 1, 1, 1, 3, 0)
 -igphl =1 Love wave period equation plot
 =0 not plot
 -igphr =1 Rayleigh wave period equation plot
 =0 not plot
 -icut =1 find the cutoff periods of Love and Rayleigh waves.
 =0 not
 -idispl =1 find the dispersion values and amplitude factor for Love wave
 =0 not
 -idispr =1 find the dispersion values, amplitude factor and ellipticity for Rayleigh wave
 =0 not
 -ipunch =1 store and print the output of dispersion values.
=0 store the dispersion values only
=-1 print the dispersion values only

4. if igph1 or igphr =1
 kk, c1, c2, dc
 t(i) i=1, kk
 (eg. 10, 3, 5, 8, 1, 0, 1
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
 -kk: number of periods along abscissa
 -c1: lower phase velocity limit
 -c2: upper phase velocity limit
 -dc: phase velocity increment
 -t(i): periods for which period equation is computed

5. if icut =1
 kmax, t1, dt, c1
 (eg. 4, 18.0, -0.2, 4.67)
 -kmax: number of cutoff periods to be found for c1
 -t1: initial period of search
 -dt: period increment (can be negative)
 -c1: phase velocity for which kmax cutoffs are desired

6. if idispl or idispr =1
 kmax, t1, dt, c1
 if t1=0.0
 t(i) i=1, kmax
 (eg. 10, 0, 0, 0, 0, 3, 5, 0, 005
 1, 1.25, 1.5, 1.75, 2.0, 2.25, 2 5, 2.75, 3.0, 3.5)
 -kmax: number of periods for which phase velocity
 to be found
 -t1: =0.0 the array t(i) i=1, kmax are read in
 >0.0 initial period
 -dt: period increment t(i)=t1+(i-1)*dt will
 be generated
 -c1: initial phase velocity guess. better =0.8*b(1).
 -t(i) (only when t1=0.0)
 kmax array of periods at which dispersion are
 calculated.

7. if ipunch >=0
 name of Love wave output file (if idispl =1)
 name of Rayleigh wave output file (if idispr =1)

8. stop the program (use -1.0)
 or go back to 1 for other models.

cc
50 FORMAT(1H , 7X , 'Thick p-vel s-vel density'//)
two pi = 2. * 3. 141592653
100 WRITE (6, *) 'Enter mmax(layers), mode(modes)'
 READ (5, *) mmax, mode
 mmax = number of layers to be read in, including
 the halfspace.
 mode = number of modes for which dispersion curves are
 desired can be as large as 1000.
 IF (mmax) 400, 300, 200
200 CONTINUE
 1 = mmax - 1
 D = thickness of layer in kilometers
 a = compressional wave velocity in km/sec
 b = transverse wave velocity in km/sec
 rho = density in gm/cc
 WRITE (6, *) 'Enter d, a, b, rho'
 DO 220 I = 1, 1
 READ (5, *) d(i), a(i), b(i), rho(i)
 CONTINUE
220 CONTINUE
 READ (5, *) a(mmax), b(mmax), rho(mmax)
 WRITE (6, 30)
 WRITE (6, 40)
 WRITE (6, 50)
 llw = 1
 IF (b(i) .LE. 0.0) llw = 2
 DO 240 I = 1, 1
 240 WRITE (6, 10) d(i), a(i), b(i), rho(i)
 WRITE (6, 20) a(mmax), b(mmax), rho(mmax)
300 CONTINUE
 D(mmax) = 0.0
 WRITE (6, *) 'igphl, igphr, icut, idispl,idispr, ipunch'
 IGPHL GT 0 calls love wave dispersion plot
 IGPHR GT 0 calls rayleigh wave dispersion plot
 ICUT GT 0 calls search for love and rayleigh higher
 C
 IDISPL GT 0 love wave dispersion curve
 IDISPR GT 0 rayleigh wave dispersion curve
 IPUNCH EQ 1 store and print the dispersion values
 EQ 0 store the dispersion values only
 EQ -1 print the dispersion values only
 READ (5, *) IGPHL, IGPHR, Icut, IDISPL, IDISPR, IPUNCH
 IF (IGPHL GT 0 .OR. IGPHR GT 0) CALL GPHDIS(IGPHL, IGPHR)
 IF (ICUT GT 0) CALL CUTOFF
 IF (IDISPL GT 0 .OR. IDISPR GT 0) CALL DISPER(IDISPL, IDISPR)
 GO TO 100
400 CONTINUE
 STOP
 END
C
C
C
C
C
SUBROUTINE GPHDIS(IGPHL, IGPHR)
DOUBLEPRECISION WYNO, OMEGA

- 3 -
common d(500), a(500), b(500), rho(500), mmax, ipunch
common t(4096), c(500), mode, llw, twopi
character*1 num(10), ks(60), kx(60)
data num/ 'i', '2', '3', '4', '5', '6', '7', '8', '9', '0' /
This subroutine graphically displays the sign of the
love or rayleigh wave period equation in the c-t plane.
The dispersion curve is the line of zeros.
gphdis reads in up tp 59 different periods to form
abscissa of plot.
The ordinate varies from c1 to c2 in increments of dc
kk is the number of abscissa values
ck is less than c2
dc is positive
10 format('""
20 format(5x,'period for abscissa of following graph'//)
30 format(1x,12(i3,f7.2))
40 format(19x,'plot of love function'//)
50 format(19x,'plot of rayleigh function'//)
60 format(2x,f8.4,59(a1,a1))
 write(6,*),'gphdis=kk,cmin,cmax,dc'
 read(5,*), kk, c1, c2, dc
 write(6,*),'enter periods'
 read(5,*), (t(i), i=1, kk)
 if(kk.gt.59) kk = 59
 if(dc.lt.0.0) dc = -dc
 if(c1.lt.c2) go to 100
 dum = c1
c1 = c2
c2 = dum
100 continue
 write(6,10)
 write(6,20)
 write(6,30) (i, t(i), i=1, kk)
 do 700 ifunc = 1, 2
 if(dc.eq.0.0) go to 700
 go to (200, 300), ifunc
200 if(igphl.le.0) go to 700
 write(6,10)
 write(6,40)
 go to 400
300 if(igphr.le.0) go to 700
 write(6,10)
 write(6,50)
400 cc = c2
500 do 600 i=1, kk
 omega=dble(twopi)/db1e(t(i))
 wvno=omega/db1e(cc)
 del = dltar(wvno,omega,ifunc)
 l = mmax
 110 = 1/10
 1 = 1 - 110*10
 ky(i)=num(1)
 ks(i)='+'
if(del.1t.0.0) ks(i)=', '
 if(del.1t.0.0) kx(i)=', '

600 continue
write(6,60) cc,(ks(1),kx(1),l=1,kk)
cc = cc - dc
if(cc.ge.c1) go to 500

700 continue
return
end

subroutine cutoff
double precision wvno,omega,cc
common d(500),a(500),b(500),rho(500),mmax,ipunch
common t(4096),c(500),mode,llw,twopi
kmax = number of cutoff periods to be found for phase
velocity c1.
t1 = initial period in search
dt = period increment negative if starting at high
period and going toward shorter period
c1 = phase velocity for which kmax cutoffs are being found
this routine finds both love and rayleigh cutoffs

10 format('/f//')
20 format('/16x,'higher mode cutoff periods'/17x,'/2(11x,'period',10x,'
2 'ph vel')/'))
30 format(1h,7x,10.4,6x,10.4,7x,10.4,6x,10.4)
write(6,10)'cutoff-enter kmax,t1,dt,c1'
read(5,*) kmax,t1,dt,c1
cc=double(c1)
write(6,10)
write(6,20)
tt=t1
do 700 ifunc=1,2
do 600 j=1,kmax
tcut=0.0
t1=tt
omega=double(twopi)/double(t1)
wvno=omega/cc
del1=dlar(wvno,omega,ifunc)

100 continue
 t2 = t1 + dt
 if(t2.le.0.0) go to 700
 omega=double(twopi)/double(t2)
wvno=omega/cc
del2=dlar(wvno,omega,ifunc)
 if(sign(1.,del1).ne.sign(1.,del2)) go to 200
 t1 = t2
del1 = del2
 go to 100
200 if(abs(t1 - t2) - 0.0001) 500,500,300
300 t3 = (t1 + t2) * 0.5
omega = dble(two pi) / dble(t3)
wno = omega / cc
del3 = dltar(wno, omega, ifunc)
if(sign(1., del1). ne. sign(1., del3)) go to 400
t1 = t3
del1 = del3
go to 200
400 t2 = t3
del2 = del3
go to 200
500 continue
tcut = 0.5*(t1 + t2)
if(t2. le. 0.0) go to 700
kk = j
if(ifunc.eq.1) t(j) = tcut
if(ifunc.eq.2) t(j+500) = tcut
600 continue
700 continue
write(6, 30) (t(j), c1, t(j+500), c1, j=1, kk)
return
end

subroutine disper(idispl,idispr)
double precision omega0, omega1
double precision eroot(500), cphase(500)
common d(500), a(500), b(500), rho(500), mmax, ipunch
common t(4096), c(500), mode, llw, twopi
common stor/ eroot(500), cphase(500), nlost, index, nroot1
character*25 names

the root determination section is one of interval halving
once a zero crossing has been found.

the number of modes is allowed to be as large as 500,
and the number of periods as 4096.

t1 = initial starting period
kmax = number of periods for which phase velocity is to
be determined
if t1 = 0 program reads in array of t(i) periods instead
of computing them
dt = period increment. next period t2 = t1 + dt
cl = initial phase velocity guess. make sure it is
outside desired range.

5 format(a)
10 format(1x, 'improper initial value no zero found ')
write(6, *) 'enter kmax, t1, dt, cl ; t1<0 to read in array'
read(5, *) kmax, t1, dt, cmin
if(t1.gt.0.0) go to 100
write(6, *) 'disper-enter kmax periods'
read(5, *) (t(j), j=1, kmax)
go to 200
100 t(1) = t1
 do 150 i = 2, kmax
150 t(i) = t(i-1) + dt
200 continue
 if(ipunch.lt.0) go to 400
 if(idispl.le.0) go to 300
 write(6,*), 'enter name of Love wave output file:
 read(5,5) names
 open(1, file=names, status='new', form='unformatted')
 rewind 1
300 continue
 if(idispr.le.0) go to 400
 write(6,*), 'enter name of Rayleigh wave output file:
 read(5,5) names
 open(2, file=names, status='new', form='unformatted')
 rewind 2
400 continue
 open(3, file='tmpsr.f', status='scratch', form='unformatted')
 do 2000 ifunc=1, 2
 ii = ifunc
 nlost = 0
 index = 0
 do 500 i = 1, 500
 c(i) = 0.0
 eroot(i) = 0.0
 cphase(i) = 0.0
500 continue
 rewind 3
 if(ifunc.eq.1 .and. idispl.le.0) go to 2000
 if(ifunc.eq.2 .and. idispr.le.0) go to 2000
 nroot1 = 1000
 do 1800 k = 1, kmax
 t1 = t(k)
 omega1 = dble(two pi)/dble(t1)
 if(k.gt.1) omega0 = dble(two pi)/dble(t(k-1))
 index = index + 1
 c xxxxxx
 kmode = 0
 call poles(ii, omega0, omega1, cmin)
 kmode = nroot1
 c xxxxxx
 if(k.eq.1 .and. kmode.eq.0) write(6,10)
 if(k.eq.1 .and. kmode.eq.0) go to 2000
 if(k.eq.1) lmode = kmode
 write(3) ifunc, kmode, t1
 do 1750 i = 1, kmode
 cc = omega1/eroot(i)
 write(3) cc
1750 continue
 i = -1
 tmp = 0.0
 if(k.eq.kmax) write(3) i, i, tmp
1800 continue
call output(ifunc, lmode)
if(ipunch.lt.0) go to 2000
write(ifunc) mmax
do 1810 i=1, mmax
write(ifunc) d(i), a(i), b(i), rho(i)
1810 continue
write(ifunc) kmax
rewind 3
1850 continue
read(3) ifun, kmode, t1
write(ifunc) ifun, kmode, t1
if(ifun.le.0) go to 1900
do 1860 i=1, kmode
read(3) c0
write(ifunc) c0
1860 continue
go to 1850
1900 continue
close(ifunc)
2000 continue
close(3, status='delete')
return
end

c

c
subroutine output(ifunc, lmode)
common d(500), a(500), b(500), rho(500), mmax, ipunch
c
common t(4096), c(500), mode, llw, twopi
10 format(/'15x, 'Love wave mode #', i3//21x,
1 ' period phase vel'
20 format(1h, 12x, i3, 1x, f15.10, 2x, f15.10)
30 format(/'14x, 'Rayleigh wave mode #', i3//21x,
1 ' period phase vel'
50 format('颇'
write(6, 50)
write(6, i*) ' number of modes at the lowest period = ',
* 1mode
nm=0
c1=b(mmax)
100 continue
nm=nm+1
if(nm.gt.1mode) go to 600
if(ipunch.ne.0. and. ifunc.eq.1) write(6, 10) nm
if(ipunch.ne.0. and. ifunc.eq.2) write(6, 30) nm
rewind 3
nt=0
do 200 i=1, 500
(c(i)=0.0
200 continue
kk=0
250 continue
read(3) ifun, kmode, t0
if(ifun) 450, 300, 300
300 continue
nt=nt+1
do 400 i=1, kmode
read(3) c0
if(i.ne.nm) go to 400
C(nt)=c0
kk=nt
400 continue
 go to 290
450 continue
if(ipunch .eq. 0) go to 100
write(6, 20) (i, t(i), c(i), i=1, kk)
go to 100
600 continue
return
end

subroutine poles(ifunc, omega0, omega, cmin)
double precision eroot(500), cphase(500)
double precision omega0, omega, dk, domega, dk0, tadd
double precision wvmn, wvmx, c1, c2, c3, c4, s, t, vphase, dc
double precision wvm(500), c10
common d(500), a(500), b(500), rho(500), mmax, ipunch
common perd(4096), c(500), mode, llw, twopi
common/stor/ eroot(500), cphase(500), nlost, index, nroot1
this routine finds the roots of period equation using
regular halving method to initialize the first two
frequencies, then followed by jumping method.

epi = 1.e-8
freq = omega/twopi
wvmx = omega/dble(cmin)
wvmn = omega/dble(b(mmax))

2000 continue
mmax=200 + (freq*200)
dk = (wvmx-wvmn)/mmax
if(nlost.eq.1001) go to 2000
if(index .gt. 2) go to 3000

find the poles using the regular halving method
mmax is chosen for a 40 km crustal model. for shallower
search for roots of period equation
if(index .gt. 2) write(6, *) 'at period=', twopi/omega,
 return halving method,'
do 80 i=llw, mmax
wvm(i)=omega/dble(b(i))
80 continue
nroot = 0
c2 = wvmx
de12 = dltar(c2, omega, ifunc)
- 9 -
1yr=11w
jj=1
do 500 i=1,nmx
jj=jj-1
if(jj.ne.0) go to 500
c10 = wvmx-i*dk
if(i.eq.nmx) c10=wvmn+0.01*dk
jj = 1
kk = 1
if(c10.gt.wvm(lyr)) go to 90

kk and jj represent a denser seraching when phase velocity
= S wave velocity. Their values can be changed as kk=3*lyr

jj=8.
kk = 10.0*(a(lyr+1)/a(lyr))+0.5*lyr
lyr = lyr+1
jj = 5
90 continue
dk0 = dk/float(kk)
do 400 j=1,jj
do 400 k=1,kk
if(nroot.eq.mode) go to 510
jk = kk*(j-1)+k
c1 = c10+dk-dk0*float(jk)
if(c1.lt.wvmn) go to 510
del1 = dltar(c1,omega,ifunc)
if(sign(1.0,del1)*sign(1.0,del2).ge.0.0) go to 350
nroot = nroot + 1
c4 = c2
del14 = del12
do 200 ii=1,15
c3 = 0.5*(c1+c4)
del13 = dltar(c3,omega,ifunc)
if(sign(1.0,del13)*sign(1.0,del13).ge.0.0) go to 100
del14 = del13
c4 = c3
go to 150
100 del1 = del13
c1 = c3
150 continue
if(abs(c4-c1).lt.epi) go to 250
200 continue
250 continue
c3 = 0.5*(c1+c4)
if(index.eq.1) cphase(nroot)=omega/c3
if(nlost.eq.1) cphase(nroot)=omega/c3
eroot(nroot) = c3
350 c2 = c1
del12 = del11
400 continue
500 continue
510 continue
nlost=nlost+1000
go to 1250
the jumping method.
if this method fails, the control will return
to the regular halving method.

nroot = 0
if(nroot1.eq.0) go to 1250
dk0=0.25*dk
domega = omega0-omega
eroot(nroot1+1)=wvmn
if(nroot1.eq.mode) eroot(nroot1+1)=eroot(nroot1)-5.*dk
nlost = 0
do 1200 i=1,nroot1
 s = eroot(i)
 vphase = omega0/s
 t = -domega/vphase
 dc = vphase-cphase(i)
 tadd = -dc*s/vphase
 dc = s-eroot(i+1)
 c1 = dabs(tadd)/tadd
 if(i.eq.1) go to 520
 if(dabs(tadd),lt,dk0) tadd=c1*dk0
 if(dabs(tadd),gt,dc) tadd=c1*0.5*dc

520 continue
 c2 = s+t
 nctrl = 5
 itrig = 0
 if(i.gt.1.and.c2.ge.eroot(i-1)) itrig=1
 if(itrig.eq.0) go to 530
 if(dabs(tadd),lt,dk0) tadd=c1*dk0
 if roots are duplicated, a correction might be done here.
 c2 = eroot(i-1)-0.1*abs(dc)
 nctrl = 10
530 continue
 c1 = c2+tadd
 ihalf = 20
 ncont = 0
550 if(c2.le.wvmn) go to 1250
 del2 = dltar(c2,omega,ifunc)
 ntest = 0
600 if(c1.le.wvmn) go to 800
 del1 = dltar(c1,omega,ifunc)
 if(sign(1.0,del1)*sign(1.0,del2),le,0.0) go to 850
 ntest = ntest+1
 if(nctrl.ge.nctrl) go to 650
 del2 = del1
c2 = c1
c1 = c1+tadd
 go to 600
650 ncont = ncont+1
 go to (700,720,750),ncont
700 continue
This is another kind of jumping procedure, which is
a remedy when the first jumping method fails.

```c
ihalf = 20
tadd = -dc/20. d+00
c2 = s+t
ncotr1 = 60
if(i.eq.1) nctr1 = 15
if(itrig . eq. 1) c2 = eroot(i-1) - 0.7*dk
go to 740
```

720 continue
if(itrig . eq. 1) go to 750
if(i . eq. mode) go to 1200

This is the third kind of jumping procedure.

```c
tadd = 0.25*t
c2 = s+tadd
if(i . eq. 1) go to 730
if(c2 . lt. eroot(i-1)) go to 730
tadd = -abs(s+t-eroot(i-1))/4.
c2 = eroot(i-1)+tadd
```

730 continue
ncotr1 = 3
ihalf = 100
740 c1 = c2+tadd
go to 550
750 nlost = nlost+1

If all jumping methods fail, it goes back to the regular halving method.
go to 2000

```c
800 c1 = wvmn+0.01*dk
del1 = dltar(c1, omega, ifunc)
if(sign(1.0, del1)*sign(1.0, del12), 1e. 0, 0) go to 850
go to 1250
```

850 c4 = c2
del14 = del12
do 1000 ii=1, ihalf
c3 = 0.5*(c1+c4)
del13 = dltar(c3, omega, ifunc)
if(sign(1.0, del1)*sign(1.0, del13), ge. 0.0) go to 900
del14 = del13
c4 = c3
go to 950
900 del11 = del13
c1 = c3
950 continue
if(abs(c4-c1).lt.epi) go to 1050
1000 continue
1050 continue
c3 = 0.5*(c1+c4)
nroot = nroot+1
eroot(nroot) = c3
cphase(nroot) = vphase
1200 continue
1250 continue
if(nroot.gt.nroot1) nroot=nroot1
nroot1=nroot
return
end

function dltar(uwono,omega,kk)
double precision uwono,omega
common d(500),a(500),b(500),rho(500),mmax,ipunch
common t(4096),c(500),mode,llw,twopi

go to (10,20),kk
love wave period equation
10 dltar = dltar1(uwono,omega)
return
rayleigh wave period equation
20 dltar = dltar4(uwono,omega)
return
end

function dltar1(uwono,omega)
double precision xnor,ynor,uwono,omega
double precision uwono2,xkb,rb,e1,e2,xmu,q,rho1,beta1
double precision sinq,cosq,y,z,exqp,exqm,e10,e20
haskell-thompson love wave formulation from halfspace
to surface.
common d(500),a(500),b(500),rho(500),mmax,ipunch
common d1(4096),d2(500),mode,llw,twopi
uwono2=uwono*uwono
beta1=doubleValue(b(mmax))
rho1=doubleValue(rho(mmax))
xkb=omega/beta1
rb = dsqrt(dabs(uwono2-xkb*xkb))
e1=rho1*rb
e2=1.d+00/(beta1*beta1)
mm1 = mmax - 1
do 600 m=mm1,llw,-1
beta1=doubleValue(b(m))
rho1=doubleValue(rho(m))
xmu=rho1*beta1*beta1
xkb=omega/beta1
rb = dsqrt(dabs(uwono2-xkb*xkb))
q = doubleValue(d(m))*rb
if(uwono-xkb) 100,200,300
100 sinq = dsin(q)
y = sinq/rb
z = -rb*sinq

cosq = dcos(q)
go to 500
200 cosq=1.0d+00
y=doubleValue(d(m))
z=0. Od+00
go to 500

300 continue
if(q, gt. 40.) go to 400
exqp=dexp(q)
exqm=1./exqp
sinq = (exqp-exqm)/2.
y = sinq/rb
z = sinq*rb
cosq = (exqp + exqm)/2.
go to 500

400 continue
y = 0. 5d+00/rb
z = 0. 5d+00*rb
cosq = 0. 5d+00

500 continue
e10=e1*cosq+e2*xmu*z
e20=e1*y/xmu+e2*cosq
xnor=dabs(e10)
ynor=dabs(e20)
if(ynor, gt. xnor) xnor=ynor
if(xnor, lt. 1. d-30) xnor=1. Od+00
e1=e10/xnor
e2=e20/xnor

600 continue
dltar1=e1
return
end

c

function dltar4(wvno, omga)
double precision e(5), ee(5), ca(5, 5)
double precision wvno, omga, omg, wvno2, rho1
double precision xa, xb, ra, rb, t, gam, gammk, gammi
double precision ex, p, q, dpth, w, w0, cosp, cr
double precision a0, cpcq, cpy, cpz, cqw, cqw, cqx, xy, xz, wy, wz
commom d(500), a(500), b(5000), rho(500), mmax, ipunch
commom per(4096), c(500), mode, llw, twopi
commom/ovflw/ a0, cpcq, cpy, cpz, cqw, cqw, cqx, xy, xz, wy, wz
omga=omga
if(omga, lt. 1. Od-5) omga=1. Od-5
wvno2=wvno*wvno
xa=omga/dble(a(mmax))
xb=omga/dble(b(mmax))
ra=dsqrt(dabs(wvno2-xa*xka))
rb=dsqrt(dabs(wvno2-xb*xb))
t = dble(b(mmax))/omga
gammk = 2.*t*t
gam = gammk*wvno2
gammi = gam - 1.
rho1=dble(rho(mmax))
e(1)=rho1*rho1*(gammi*gam-gammk*ra*rb)
e(2) = - rho1 * ra
e(3) = rho1 * (gamma1 - gamma * ra * rb)
e(4) = rho1 * rb
e(5) = wvno2 - ra * rb

matrix multiplication from bottom layer upward

mmm1 = mmax - 1
do 500 m = mmm1, 11w, -1
xka = omega / dble(a(m))
xkb = omega / dble(b(m))
t = dble(b(m)) / omega
gamma2 = 2. * t * t
gamma = gamma * wvno2
ra = dsqrt(dabs(wvno2 - xka * xka))
rb = dsqrt(dabs(wvno2 - xkb * xkb))
dpth = dble(d(m))
rho1 = dble(rho(m))
p = ra * dpth
q = rb * dpth
beta = b(m)
call var(p, q, ra, rb, wvno, xka, xkb, dpth, w, cosp, exa, beta)
call dka(ca, wvno2, gam, gamma, rho1)
do 200 i = 1, 5
cr = 0.0d + 00
do 100 j = 1, 5
cr = cr + e(j) * ca(j, i)
100 continue
ee(i) = cr
200 continue
call norme(ee, exa)
do 300 i = 1, 5
e(i) = ee(i)
300 continue
500 continue
w0 = 0.0
if(11w .eq. 1) go to 600
xka = omega / dble(a(1))
ra = dsqrt(dabs(wvno2 - xka * xka))
dpth = dble(d(1))
rho1 = dble(rho(1))
p = ra * dpth
beta = b(1)
call var(p, q, ra, rb, wvno, xka, xkb, dpth, w, cosp, exa, beta)
w0 = - rho1 * w / cosp
600 continue
dltar4 = e(1) + w0 * e(2)
return
end

 subroutine var(p, q, ra, rb, wvno, xka, xkb, dpth, w, cosp, exa, beta)
double precision p, q, ra, rb, wvno, xka, xkb, dpth
double precision w, x, y, z, cosp, cosq, sinp, sinq
double precision exa, expp, expm, exqp, exqm
double precision a0, cpcq, cpq, cpz, cqw, cqx, xy, xz, wy, wz
common/ovrflu/ a0, cpcq, cpq, cpz, cqw, cqx, xy, xz, wy, wz
exa=0. 0d+00
a0=1. 0d+00
if(wvwo-xka) 100, 200, 300
100 sinp=dsin(p)
w=sinp/ra
x=-ra*sinp
cosp=dcos(p)
go to 500
200 cosp=1. 0d+00
w=depth
x=0. 0d+00
go to 500
300 if(p .gt. 40. 0) go to 400
expp=dexp(p)
expm=1. /expp
sinp=(expp-expm)*0. 5d+00
cosp=(expp+expm)*0. 5d+00
w=sinp/ra
x=ra*sinp
go to 500
400 exa=p
x=ra*0. 5d+00
w=0. 5d+00/ra
cosp=0. 5d+00
a0=0. 0d+00
if(exa .lt. 70. 0) a0=1. /dexp(exa)
500 continue
if(beta .lt. 1. e-5) return
if(wvwo-xkb) 600, 700, 800
600 sinq=dsin(q)
z=-rb*sinq
y=sinq/rb
cosq=dcos(q)
go to 1000
700 cosq=1. 0d+00
y=depth
z=0. 0d+00
go to 1000
800 if(q .gt. 50. 0) go to 900
exqp=dexp(q)
exqm=1. /exqp
sinq=(exqp-exqm)*0. 5d+00
cosq=(exqp+exqm)*0. 5d+00
y=sinq/rb
z=rb*sinq
go to 1000
900 y=0. 5d+00/rb
z=0. 5d+00*rb
cosq=0. 5d+00
exa=exa+q
a0=0.0d+00
if(exa.lt.70.0d+00) a0=1./dexp(exa)
1000 continue
cpcq=cosp*cosq
cpy=cosp*y
cpz=cosp*z
xy=x*y
xz=x*z
wy=w*y
wz=w*z
cqw=cosq*w
cqx=cosq*x
return
end

subroutine normc(ee,ex)
This routine is an important step to control over- or underflow.
The Haskell or Dunkin vectors are normalized before the layer matrix stacking.
Note that some precision will be lost during normalization.
double precision ee(5), ex, t1, t2
ex = 0.0d+00
t1 = 0.0d+00
do 10 i = 1,5
if(dabs(ee(i)).gt.t1) t1 = dabs(ee(i))
10 continue
if(t1*1.0d-30) t1=1.0d+00
do 20 i = 1,5
t2=ee(i)
t2=t2/t1
ee(i)=t2
20 continue
ex=dlog(t1)
return
end

subroutine dna2d(ca, wvno2, gam, gammk, rho)
double precision ca(5,5), wvno2, gam, gammk, rho
double precision gamm1, twgm1, gmgmk, gmgm1, gmisq, rho2, t
double precision a0, cpcq, cpy, cpz, cqw, cqx, xy, xz, wy, wz, a0pq
common/ ovrf1w / a0, cpcq, cpy, cpz, cqw, cqx, xy, xz, wy, wz

gamm1 = gam-1.
twgm1=gam+gamm1
gmgmk=gam*gammk
gmgm1=gam*gamm1
gmisq=gamm1*gamm1
rho2=rho*rho
aOpq = a0 - cpcq
ca(1, 1) = cpcq - 2. * gmgm1*a0pq - gmgmk*xz - wvno2*gm1sq*wy
ca(1, 2) = (wvno2*cpx*y - cqy)/rho
ca(1, 3) = -(twgm1*a0pq + gmgmk*xz + wvno2*gm1sq*wy)/rho
ca(1, 4) = (cpx - wvno2*cqw)/rho
ca(1, 5) = -(2. * wvno2*a0pq + xz + wvno2*gm1sq*wy)/rho2
ca(2, 1) = (gmgmk*cpx - gm1sq*cqw)*rho
ca(2, 2) = cpcq
ca(2, 3) = gmgmk*cpx - gammk1*cqw
ca(2, 4) = wz
ca(2, 5) = ca(1, 4)
ca(4, 1) = (gm1sq*cpx - gmgmk*cqw)*rho
ca(4, 2) = xy
ca(4, 3) = gammk1*cpx - gammk1*cqw
ca(4, 4) = ca(2, 2)
ca(4, 5) = ca(1, 2)
ca(5, 1) = -(2. * gmgmk*gm1sq*a0pq - gmgmk*gmgmk*xz + gm1sq*gm1sq*wy)/rho2
ca(5, 2) = ca(4, 1)
ca(5, 3) = -(gammk1*gammm1*twgm1*a0pq + gam*gammk1*gammk1*xz + gammk1*gm1sq*wy)*rho
ca(5, 4) = ca(2, 1)
ca(5, 5) = ca(1, 1)
t = -2. * wvno2
ca(3, 1) = t*ca(5, 3)
ca(3, 2) = t*ca(4, 3)
ca(3, 3) = a0 + 2. *(cpcq - ca(1, 1))
ca(3, 4) = t*ca(2, 3)
ca(3, 5) = t*ca(1, 3)
return
end

plot dispersion curve
get data from surface81

dimension t(2048), v(2048), mode(500)
dimension d(500), a(500), b(500), rho(500)
character*20 names
character*4 yorn

format(a)

15 format(4f12.5)
pi=2.*3.141592653
write(6,*) ',
write(6,*) 'Rayleigh(1) or Love(2):,'
read(5,*) lrr
write(6,*) ',
write(6,*) 'enter the input file name (from surface81):'
read(5,3) names
open(1, file=names, status='old', form='unformatted')
write(6,*) *

* 'how many modes and which modes wanted? (3,1,3,5)'
write(6,*) '(if all modes wanted, answer 1,0)'
read(5,*) nmode, (mode(i), i=1,nmode)
if(mode(1).ne.0) go to 40
nmode=500
do 30 i=1,500
mode(i)=i
30 continue

40 continue
write(6,*) 'plot C-perd(1) C-freq(2) K-C(3) C-K(4)'
write(6,*) ',
K-freq(5) freq-K(6):'
read(5,*) ipy
call plots(0,0,7)
write(6,*) 'enter ipen: '
read(5,*) ipen
call newpen(ipen)
yorn='y'
call plot(2.5,2.1,-3)
write(6,*) ',
write(6,*) 'model: '
do 600 kk=1,nmode
rewind 1
read(1) nmax
do 50 ii=1,nmax
read(1) d(ii), a(ii), b(ii), rho(ii)
50 continue
if(kk.eq.1) write(6,15) (d(i), a(i), b(i), rho(i), i=1,nmax)
read(1) nper
100 continue
ident=mode(kk)
nt=0
itrig=0
200 continue
 read(1) ifunc, kmode, t1
 if(ifunc.1t.0) go to 400
 if(kmode.1e.0) go to 200
 nt=nt+1
 do 300 i=1, kmode
 read(1) c0
 wvnoo=2. *3. 141592653/(c0*t1)
 if(i.ne.ident) go to 300
 itrig=1
 nn=nt
 t(nn)=t1
 v(nn)=c0
300 continue
 go to 200
400 continue
 if(itrig.eq.0. and. nmode.eq.500) go to 600
 do 500 i=1, nn
 go to (500, 482, 487, 488, 489, 486), ipg
 482 t(i)=1./t(i)
 go to 500
 485 t(i)=1./t(i)
 v(i)=pi*t(i)/v(i)
 go to 500
 486 tmp=1./t(i)
 t(i)=pi*tmp/v(i)
 v(i)=tmp
 go to 500
 487 tmp=v(i)
 v(i)=pi/(t(i)*v(i))
 t(i)=tmp
 go to 500
 488 t(i)=pi/(t(i)*v(i))
500 continue
 call disp(yorn, itrig, kk, ipg, ident, nn, t, v)
600 continue
 call plot(0.0, 8.0, 999)
 close(1)
 close(2)
 write(&,*) 'job finished'
 stop
end

subroutine disp(yorn, itrig, kk, ipg, ident, nn, x, y)
 dimension x(1), y(1)
 character*4 yorn, nory
 character*11 alpha(2:6), alp, bet
 data alpha/
 ' C (km/sec)', ' T (sec)', ' C (km/sec)', ' F (Hz)' /
 ' K (rad/km)', ' C (km/sec)', ' K (rad/km)' /
 ' K (rad/km)', ' F (Hz)', ' F (Hz)', ' K (rad/km)' /
 if(itrig.eq.0)
* write(6,*), 'mode ', 'ident,' is not generated."
if(itrig.eq.0) return
alp=alpha(1,ipg)
bet=alpha(2,ipg)
if(yorn.eq.'n') go to 100
yorn='n'
xlen=6.0
ylen=4.5
xmin=1.e+37
xmax=-1.e+37
ymin=1.e+37
ymax=-1.e+37
do 80 i=1,nn
if(x(i).ge.xmax) xmax=x(i)
if(x(i).le.xmin) xmin=x(i)
if(y(i).ge.ymax) ymax=y(i)
if(y(i).le.ymin) ymin=y(i)
80 continue
write(6,*), 'ymin=', ymin, 'ymax=', ymax
if(ipg.ge.9) write(6,*), ' - y value in log scale'
write(6,*), 'xmin=', xmin, 'xmax=', xmax
write(6,*),
write(6,*), 'enter ymin, ymax, yinc, xmin, xmax, xinc'
if(ipg.ge.9) write(6,*), ' - y should be integer.'
read(5,*) y0,y1,yinc,x0,x1,xinc
xinut=(x1-x0)/xlen
yinut=(y1-y0)/ylen
100 continue
if(kk.ne.1) go to 500
write(6,*), 'plot axis? (y/n)'
read(5,5) nory
format(a)
write(6,*),
write(6,*), 'wait. It is processing.'
if(nory.ne.'y') go to 500
call plot(xlen,0.0,2)
call plot(xlen,ylen,2)
call plot(0.0,ylen,2)
call plot(0.0,0.0,2)
call plot(0.0,-0.05,2)
if(x0.lt.0.0) xshif=-0.25
if(x0.ge.0.0) xshif=-0.13
if(x0.ge.10.0) xshif=-0.23
if(xinc.ge.0.1) call number(xshif,-0.17,0.1,x0,0.0,1)
if(xinc.lt.0.1) * call number(xshif-0.04,-0.16,0.09,x0,0.0,2)
grid=xinc/xinut
x1=1.
200 xx=x1*grid
if(abs(xx).gt.xlen+0.02) go to 250
call plot(xx,0.0,3)
call plot(yy,-0.05,2)
xsym=x0+xinc*xi
if (xsym. lt. 0.0) xshif=-0.25
if (xsym. ge. 0.0) xshif=-0.13
if (xsym. ge. 10.0) xshif=-0.23
if (xsym. ge. 100.0) xshif=-0.33
if (yinc. ge. 0.1)
 *call number(xx+xshif, -0.17, 0.1, xsym, 0.0, 1)
 if (xinc. lt. 0.1)
 *call number(xx+xshif, -0.04, -0.16, 0.09, xsym, 0.0, 2)
x = x + 1.
go to 200
250 continue
call symbol(2.5, -0.4, 0.16, bet, 0.0, 11)
call plot(0.0, 0.0, 0.3)
call plot(-0.05, 0.0, 2)
if (ipg. ge. 9) go to 260
if (y0.1t. 0.0) xshif=-0.45
if (y0. ge. 0.0) xshif=-0.35
if (y0. ge. 10.0) xshif=-0.45
if (yinc. ge. 0.1)
*call number(xshif, -0.05, 0.1, y0, 0, 0, 1)
if (yinc. lt. 0.1)
*call number(xshif--0.03, -0.05, 0.09, y0, 0, 0, 2)
go to 270
260 continue
call number(-0.34, -0.06, 0.1, 10.0, 0.0, -1)
call number(-0.16, 0.02, 0.06, y0, 0, 0, -1)
270 continue
grid=yinc/yinut
xi=1.
300 xx=x + grid
if (abs(xx). gt. ylen+0.02) go to 400
call plot(0.0, xx, 3)
call plot(-0.05, xx, 2)
call plot(0.0, xx, 3)
sym=y0+yinc*xi
if (ipg. ge. 9) go to 310
if (xsym. lt. 0.0) xshif=-0.45
if (xsym. ge. 0.0) xshif=-0.35
if (xsym. ge. 10.0) xshif=-0.45
if (xsym. ge. 100.0) xshif=-0.55
if (yinc. ge. 0.1)
*call number(xshif, xx-0.05, 0.1, xsym, 0.0, 1)
if (yinc. lt. 0.1)
*call number(xshif-0.04, xx-0.05, 0.09, xsym, 0.0, 2)
go to 320
310 continue
call number(-0.34, xx-0.06, 0.1, 10.0, 0.0, -1)
call number(-0.16, xx+0.02, 0.06, xsym, 0.0, -1)
320 continue
xi = x + 1.
go to 300
400 continue
call symbol(-0.55, 1.5, 0.16, alp, 90.0, 11)
500 continue
do 550 i=1,nn
if(y(i).gt.y1) y(i)=y1
if(x(i).gt.x1) x(i)=x1
if(y(i).lt.y0) y(i)=y0
if(x(i).lt.x0) x(i)=x0
550 continue
x(nn+1)=x0
x(nn+2)=xinut
y(nn+1)=y0
y(nn+2)=yinut
call line(x,y,nn,i,0,0)
return
end

This program calculates the eigenfunctions of a Rayleigh wave for any plane multi-layered model. Body wave Q model can be included.

The propagator-matrix, instead of numerical-integration method is used, in which the Haskell rather than Harkrider formalisms are concered.

Such a revision was developed to cover a large range of frequencies, say 200 Hz, and to improve the calculation efficiency. The layer thickness is not limited.

For the sake of space saving, only the values of eigenfunctions at the source depths are stored. However, several files with different source depths can be set up.

-- Oct 10, 1981

double precision sumi0, sumi1, sumi2, sumi3

dimension nos(100), dphe(100), dpheq(100), qa(100), qb(100)

dimension depth(100)

common/model/
 d(100), a(100), b(100), rho(100), qa(100),
 qb(100), xmu(100), xlam(100), mmax, 11
*
common/eigfun/
 ur(100), uz(100), tz(100), tr(100), uu0(4),
 dcaa(100), dcb(100), dccr(100)
*
common/sumi/
 sumi0, sumi1, sumi2, sumi3, flagr, are, ugr

character*4 di
character*50 names

format(a)

format(/2x,'M',4x,'DPTH',2x,' D ',3x,' A ',3x,' B ',
 3x,' RHO ',3x,' QA ',4x,' GB ',4x,' MU ',3x,'LMDA')

format(i3,1x,5f7.2,2f8.2,2f7.2)

format(3x,'-source is on the top of this layer. ',
 'source depth=',6.2)

format(i3,1x,f7.2,7x,3f7.2,2f8.2,2f7.2)

format(3x,'-source is inside the half space. ',
 'source depth=',6.2)

form at('at the source depth = ',f6.2,' km')
write(6,*)

* 'enter the input file name: (from surface81)'
read(5,5) names
open(1, file=names, status='old', form='unformatted')
rewind 1
open(3, file='tmp.1', status='scratch', form='unformatted')
rewind 3

enter source depths and Q-model:
write(6,*) 'enter the source depths:'
write(6,*)
* 'no. of source depths, srcdph(1), srcdph(2), ...'
write(6,*)
* *** if no of source depths is negative, no output ***
write(6,*) 'files will be generated.'
This can be used as dividing layers.
read(5,*) kks, (dphs(i), i=1, iabs(kks))
ks=abs(kks)
write(6,*) 'enter Q-model here(1), from a file(2),'
write(6,*) 'or NOT considered(3):'
read(5,*) kk
kq=1
go to (100, 110, 170), kk
100 continue
write(6,*)
* 'enter d(i),qa(i),qb(i) use d(i)=0.0 for halfspace'
icode=5
go to 120
110 continue
write(6,*) 'enter the name of the file storing Q-model:'
read(5,5) names
open(2, file=names, status='old', form='formatted')
rewind 2
icode=2
120 continue
i=1
base=0.0
140 continue
read(icode,*) dq0, qa(i), qb(i)
if(dq0 .le. 0.0) go to 150
base=base+dq0
dphq(i)=base
i=i+1
go to 140
150 kq=i
do 160 i=1, 100
qa1(i)=qa(kq)
qb1(i)=qb(kq)
160 continue
170 continue
write(6,*) 'store the derivatives? (y/n):'
read(5,5) dd
if(dd .eq. 'n') go to 175
write(6,*) 'enter the output file name for derivatives:'
read(5,5) names
open(9, file=names, status='new', form='unformatted')
rewind 9
175 continue
do 180 i=1, 100
depth(i)=100000000.0
180 continue
obtain the earth model:

```
read(1) mmax
write(6,10)
base=0.0
depth(1)=0.0
do 190 i=1,mmax
read(1) d(i),a(i),b(i),rho(i)
base=base+d(i)
depth(i+1)=base
xmu(i)=rho(i)*b(i)*b(i)
xlam(i)=rho(i)*(a(i)*a(i)-2.*b(i)*b(i))
190 continue
```

insert the Q-model into the velocity model.
insert the source depth as an interface of layers.

```
kqs=kq+kq-1
do 300 k0=1,kqs
dph0=dphq(k0)
is=k0-kq+1
if(k0.ge.kq) dph0=dphs(is)
do 200 i=1,mmax
k=i
if(dph0.eq.depth(i)) go to 250
if(dph0.gt.depth(i).and.dph0.lt.depth(i+1)) go to 210
200 continue
210 k1=k+1
dphk1=depth(k1)
do 220 i=mmax,k,-1
i1=i+1
d(i1)=d(i)
a(i1)=a(i)
b(i1)=b(i)
rho(i1)=rho(i)
xmu(i1)=xmu(i)
xlam(i1)=xlam(i)
depth(i1)=depth(i)
if(k0.ge.kq) qa1(i1)=qa1(i)
if(k0.ge.kq) qb1(i1)=qb1(i)
220 continue
d(k)=dph0-depth(k)
d(k1)=dphk1-dph0
depth(k1)=depth(k)+d(k)
mmax=mmax+1
if(k0.ge.kq) go to 240
if(k0.eq.1) ns=1
do 230 j=ns,k
qa1(j)=qa(k0)
qb1(j)=qb(k0)
230 continue
240 ns=k1
```
go to 280
continue
if(k0.ge.kq) go to 270
if(k0.eq.1) ns=1
do 260 i=ns,k-1
qa1(i)=qa(k0)
qb1(i)=qb(k0)
260 continue
ns=k
280 nos(is)=ns
300 continue
j=1
do 310 i=1,mmax-1
write(6,20) i, depth(i), d(i), a(i), b(i), rho(i), qa1(i),
* qb1(i), xmu(i), xlam(i)
if(i.ne.nos(j)) go to 310
write(6,30) dphs(j)
310 continue
i=mmax
write(6,40)
* i, depth(i), a(i), b(i), rho(i), qa1(i), qb1(i), xmu(i), xlam(i)
if(nos(j).eq.mmax) write(6,50) dphs(j)
if(dd.eq.'y')
* write(9) mmax, (a(i), b(i), rho(i), i=1, mmax)
write(6,9) 'wait,' nl=1
if(b(1).le.0.0) nl=2
read(1) nper
400 continue

read in the dispersion values.
read(1) ifunc, mode, t
write(3) ifunc, mode, t
if(dd.eq.'y') write(9) ifunc, mode, t
if(ifunc.lt.0) go to 700
if(mode.le.0) go to 400

omega=6.2831853/t
wvno=omega/c
call svfunc(omega, wvno)
call energy(omega, wvno)
omega2=omega*omega
wvomg2=wvno*omega2
do 450 i=11, mmax
ur(i)=ur(i)*wvno
tz(i)=tz(i)*omega2
\[\text{tr}(i) = \text{tr}(i) \times wvomg2 \]

450 continue

if (kk ne 3) call gammap(omega, wvno, gamma)
if (dd eq 'n') go to 510

continue

output the derivatives.

xi0 = sumi0
xi1 = sumi1
xi2 = sumi2
xi3 = sumi3

write(9) uu0(1), uu0(3), c, ugr, xi0, xi1, xi2, xi3, are, flagr

500 continue

do 500 i = 1, mmax
write(9) depth(i), ur(i), uz(i), tz(i), tr(i),
+ dca(i), dcb(i), dcd(i)

510 continue

do 560 i = 1, ks
j = nos(i)
urs = ur(j)
uzs = uz(j)
durs = -wvno*uzs + tr(j)/xmu(j)
duzs = (wvno*lam(j)*urs + tz(j))/(lam(j) + 2.*xmu(j))
uro = ur(j)

output

write(3) wvno, ur0, are, ugr, gamma
write(3) urs, durs, uzs, duzs

560 continue

600 continue

go to 400

700 continue

output the eigenfunction files for different source depths.

800 continue

if (kk ne 0) go to 950

do 900 i = 1, ks
rewind 3
write(6, *)
* 'enter the name of output file storing the eigenfunctions'
write(6, 60) dphs(i)
read(5, 5) names
open(4, file=names, status='new', form='unformatted')
rewind 4
write(4)
* mmax, (d(j), a(j), b(j), rho(j), qal(j), qbi(j), j=1, mmax)
write(4) nper, dphs(i)

850 continue

read(3) ifunc, mode, t
write(4) ifunc, mode, t
if (ifunc lt 0) go to 870
if (mode eq 0) go to 800

do 860 k = 1, mode

do 850 j = 1, ks
read(3) qa(j), qb(j), dphq(j), depth(j), dcaa(j)
read(3) ur(j), tr(j), uz(j), tz(j)
850 continue
write(4) qa(i), qb(i), dphq(i), depth(i), dcaa(i)
write(4) ur(i), tr(i), uz(i), tz(i)
860 continue
go to 800
870 continue
close(4)
900 continue
close(1)
close(2)
close(3, status='delete')
write(6, *) '
write(6, *) 'reigen81 finished'
write(6, *) '
stop
end

--

subroutine gammap(omega, wvno, gamma)
This routine finds the attenuation gamma value of
surface wave.

common/model/ d(100), a(100), b(100), rho(100), qa1(100),
* qb1(100), xmu(100), xlam(100), mmax, 11
common/eigfun/ ur(100), uz(100), tz(100), tr(100), uu0(4),
* dcaa(100), dcb(100), dcdr(100)

x=0.0
100 do 100 i=11, mmax
 x=x+dcaa(i)*a(i)/qa1(i)+dcb(i)*b(i)/qb1(i)
continue
c=omega/wvno
gamma=0.5*wvno*x/c
return
end

--

subroutine svfunc(omega, wvno)
This routine combines the Haskell vector from sub down and
Dunkin vector from sub up to form the eigenfunctions.

double precision exe(100), exa(100), ext, fact
common/model/ d(100), a(100), b(100), rho(100), qa1(100),
* qb1(100), xmu(100), xlam(100), mmax, 11
common/eigfun/ ur(100), uz(100), tz(100), tr(100), uu0(4),
* dcaa(100), dcb(100), dcdr(100)
common/dunk/ uu(100, 5), exe, exa
common/hask/ vv(100, 4)
common/water/ water0, ktrig
ktrig=1
call up(omega, wvno, fr)
ktrig=0
call down(omega, wvno)
wvno2=wvno*wvno
omega2=omega*omega
f5=uu(11, 4)

uu0(1)=wvno*uu(11, 3)/f5
uu0(2)=1.0

uu0(3)=tz is actually the period equation.

uu0(3)=fr

uu0(4)=tr should be zero.

uu0(4)=fr

ur(11)=uu(11, 3)/f5
uz(11)=1.0

ztz(11)=-water0
tr(11)=0.0

do 200 i=11+1, mmax
 i1=i-1
 uu1 =
 * vv(i1, 2)*uu(i, 1)+vv(i1, 3)*uu(i, 2) +vv(i1, 4)*uu(i, 3)

 uu2 =
 * -vv(i1, 1)*uu(i, 1)-vv(i1, 3)*uu(i, 3)+wvno2+vv(i1, 4)*uu(i, 4)

 uu3 =
 * -vv(i1, 1)*uu(i, 2)+vv(i1, 2)*uu(i, 3)+wvno2+vv(i1, 4)*uu(i, 5)

 uu4 =
 * -vv(i1, 1)*uu(i, 3)-vv(i1, 2)*uu(i, 4) -vv(i1, 3)*uu(i, 5)

 ext=0.0
 do 100 k=11, i1
 ext=ext+exa(k)-exe(k)
 100 continue
 fact=0.0
 if(ext.gt.-80.0) fact=dexp(ext)
 ur(i)=uu1*fact/f5
 uz(i)=uu2*fact/f5
 zt(i)=uu3*fact/f5
 tr(i)=uu4*fact/f5

200 continue
return
end

c

c subroutine up(omega, wvno, fr)
c This routine finds the values of the Dunkin vectors at
c each layer boundaries from bottom layer upward.
c
dimension ee0(5)
double precision ex(e100), new(e100), ex1, ex2, p, q, rab, dept
double precision w, wh, wcosd2, wsd2
common/model/ d(e100), a(e100), b(e100), rho(e100), qai(e100),
* qi1(e100), xmu(e100), xlam(e100), mmax, il
common/dunk/ uu(e100, 5), exe, exa

common/save/ dd(5,5), aa(4,4), ex1, ex2
common/aamatrix/ uu(100), xx(100), yy(100), zz(100),
 * cospp(100), cosqq(100)
common/water/ water0, ktrig
common/english/ wd, wra, wcosd2, wsin2d
uwvno2=uwvno*uwvno
xxa=omega/a(max)
xxb=omega/b(max)
ra=sqrt(abs(uwvno2-xka*xka))
rb=sqrt(abs(uwvno2-xkb*xkb))
t = b(max)/omega
gammk = 2.*t*t
gamg = gammk*uwvno2
gambar = gam - 1.
if(uwvno.lt.xka) write(6,*) ' imaginary numa'
if(uwvno.lt.xka) write(6,*) ' imaginary numb'
uu(max,1)=uwvno2-ra*rb
uu(max,2)=-rho(max)*rb
uu(max,3)=rho(max)*gammk*ram*rb
uu(max,4)=rho(max)*rm
uu(max,5)=rho(max)*gam1*gam1-gam*gambar*ram*rb

 matrix multiplication from bottom layer upward
mm1=maxx-1
 do 400 k=mm1,11,-1
 k1=k+1
dpth=d(k)
xka = omega/a(k)
xkb = omega/b(k)
t = b(k)/omega
gammk = 2.*t*t
gamg = gammk*uwvno2
gambar = gam - 1.
ra=abs(uwvno2-xka*xka)
rab=dlbl(ra)
rab=dslr(ta)
depth=dlbl(dpth)
p=rab*dep
ta=snl(ta)
rb=abs(uwvno2-xkb*xb)
rab=dlbl(rb)
rab=dslr(ta)
q=rab*dep
tb=snl(ta)
call var(k, p, q, ra, rb, uwvno, xka, xkb, dpth)
call dka(uwvno2, gam, gammk, rho(k))
exa(k)=ex2
do 200 i=1,5
 cc=0.0
 do 100 j=1,5
 cc=cc+dd(i, j)*uu(k1, j)
 100 continue
 ee0(i)=cc
200 continue
 call normc(ee0, rab)
exe(k)=ex1+rab
do 300 i=1,5
 uu(k,i)=ee0(i)
300 continue
400 continue
water0=0.0
if(11.eq.1) go to 500
xka=omega/a(1)
ra=abs(uwvno2-xka*xka)
rab=dble(ra)
rab=dsqrt(rab)
wra=rab
depth=dble(d(1))
p=rab*dept
ra=sngl(rab)
call var(100,p,0.0,ra,0.0,uwvno,xka,0.0,d(1))
c
water0=rho(1)*uw(100)/cospp(100)
if(ktrim.eq.0) go to 500

c prepare for subroutine wenerg which takes the energy
c integral over water layer.
q=2.*ex2
rab=0.0
if(q.gt.-80.0.and.q.lt.80.0) rab=1./dexp(q)
wd=rab*dept
wcosd2=2.*cospp(100)*cospp(100)
p=2.*p
ra=2.*wra
call var(100,p,0.0,ra,0.0,uwvno,xka,0.0,d(1))
q=ex2-q
rab=0.0
if(q.gt.-80.) rab=dexp(q)
wsin2d=rab*uw(100)
if(uwvno.lt.xka) wra=-wra
500 continue
fr=uu(11,5)+water0*uu(11,4)
return
end

c subroutine down(omega,uwvno)

c This routine finds the values of the Haskell vectors at
c each layer boundaries from top layer downward.
c
dimension aa0(5)
double precision exe(100),exa(100),ex1,ex2
common/model/
 d(100),a(100),b(100),rho(100),qa(100),
 qb1(100),xmu(100),xlam(100),mm(100),
common/dunk/
 uu(100,5),exe,exa
common/hask/
 vv(100,4)
common/save/
 dd(5,5),aa(4,4),ex1,ex2
common/aamatrix/
 uw(100),xx(100),yy(100),zz(100),
cospp(100), cosqq(100)

wvno2 = wvno * wvno

100 continue

v<11, j> = 0.0

continue

v<11, 4> = 1.0

aa0(5) = 0.0

mmx1 = mmmax - 1

continue

do 500 k = 11, mmx1

k1 = k - 1

if (k, eq, 11) k1 = 11

t = b(k) / omega

gammk = 2. * t * t

gam = gammk * wvno2

w = w<11, k>

x = x(k)

y = y<11, k>

z = z<11, k>

cosp = cospp(k)

cosq = cosqq(k)

call hsk<11, x, y, z, cosp, cosq, wvno2, gam, gammk, rho(k)>

continue

cc = 0.0

cc = cc + vv(k1, i) * aa(i, j)

continue

aa0(j) = cc

continue

call normc(aa0, ex2)

exa(k) = exa(k) + ex2

continue

vv(k, i) = aa0(i)

continue

500 return

end

*

subroutine var(m, pp, qq, ra, rb, wvno, xka, xkb, dpth)

This routine calculates the values of exp(p), exp(q).

Since exp(88) ~ 10. ** 38, the exponential power terms p, q

must be controlled to prevent possible overflow.

double precision exa, ex, pp, qq, qpp, qmp

double precision expm, expm, expq, expq, sinp, cosp, sinq, cosq

common/save/ dd(5, 5), aa(4, 4), exa, ex

common/aamatrix/ w0(100), x0(100), y0(100), zo(100),

common/ovrflow/ ao, cpcq, cpq, cpz, cqw, cq<11, x, y, z, w, w

ex = 0.0

ao = 1.0

if(wvno - xka) 100, 200, 300
100 sinp=dsin(pp)
 w=sinp/doubleValue(ra)
 x=-doubleValue(ra)*sinp
 cosp=dcos(pp)
 go to 500
200 cosp=1.0d+0
 w=depth
 x=0.0
 go to 500
300 if(pp.gt.40.0) go to 400
 expp=dexp(pp)
 expm=1.0/exppp
 sinp=(expp-expm)*0.5
 cosp=(expp+expm)*0.5
 w=sinp/doubleValue(ra)
 x=doubleValue(ra)*sinp
 go to 500
400 exp=exp
 x=ra*0.5
 w=0.5/ra
 cosp=0.5
 a0=0.0
 if(ex.lt.75.0) a0=1./dexp(ex)
500 continue
 if(m.eq.100) go to 1100
 if(wvono-rkb) 600, 700, 800
600 sinq=dsin(qq)
 z=-doubleValue(rb)*sinq
 y=sinq/doubleValue(rb)
 cosp=dcos(qq)
 go to 900
700 cosp=1.0d+0
 y=depth
 z=0.0
 go to 900
800 if(qq.gt.40.0) go to 1000
 expq=dexp(qq)
 expm=1.0/expq
 sinq=(expq-expm)*0.5
 cosp=(expq+expm)*0.5
 y=sinq/doubleValue(rb)
 z=doubleValue(rb)*sinq
900 cpcq=cosp*cosp
 cpy=cosp*y
 cpz=cosp*z
 cqw=cosp*w
 cqx=cosp*x
 xy=x*y
 xz=x*z
 wy=w*y
 wz=w*z
 cosp=a0*cosp
 z=a0*z
y = a0 * y
exa = ex
go to 1100
1000
qpp = q + pp
qmp = q - pp
exqp = 0
if(abs(qmp), lt, 60.)
exqm = 0
if(qpp, lt, 60.)
exqm = 1 / dexp(qpp)
sinq = (exqp - exqm) * 0.5
cosq = (exqp + exqm) * 0.5
y = sinq / dble(rb)
z = dble(rb) * sinq
zz = rb * 0.5
yy = 0.5 / rb
cosq = 0.5
exa = ex + qq
a0 = 0
if(exa, lt, 75.0)
a0 = 1 / dexp(exa)
cpcq = cosp * ccosq
cpyq = cosp * yy
cpq = cosp * zz
xy = x * yy
xz = x * zz
wz = w * zz
cqw = ccosq * z
cqy = ccosq * x
1100
continue
w0(m) = w
x0(m) = x
y0(m) = y
z0(m) = z
cosp0(m) = cosp
cosq0(m) = cosq
return
end

--- 35 ---

subroutine normc(ee, ex)
This routine is an important step to control over- or underflow.
The Haskell or Dunkin vectors are normalized before the layer matrix stacking.
Note that some precision will be lost during normalization.
dimension ee(5)
double precision ex, t1, t2
t0 = 0.0
do 10 i = 1, 5
if(abs(ee(i)).gt.t0)
t0 = abs(ee(i))
10 continue
\begin{verbatim}
ti=double(t0)
if(ti.1t.1.d-30) ti=1.d+00

do 20 i=1,5
 ti=double(ee(i))
 t2=t2/t1
eee(i)=single(t2)
 20 continue
end

subroutine hska(w,x,y,z,cosp,cosq,wvno2,gam,gammk,rho)
double precision ex1,ex2
common/save/dd(5,5),aa(4,4),ex1,ex2
gamm1 = gam-1.
temp = x-wvno2*y
aa(2,3) = temp/rho
temp = temp*gammk
aa(4,3) = temp+y
aa(4,1) = -(gamm1*y+gam*aa(4,3))*rho
aa(2,1) = -wvno2*aa(4,3)
temp = cosq-cosp
aa(1,3) = temp/rho
aa(2,4) = -wvno2*aa(1,3)
aa(4,2) = rho*gammk*gamm1*temp
aa(3,1) = -wvno2*aa(4,2)
temp = temp*gamm
aa(1,1) = cosq-temp
aa(2,2) = cosp+temp
aa(3,3) = aa(2,2)
aa(4,4) = aa(1,1)
temp = z-wvno2*w
aa(1,4) = temp/rho
aa(1,2) = -w-gammk*temp
aa(3,4) = -wvno2*aa(1,2)
aa(3,2) = rho*(gam*aa(1,2)-gamm1*w)
return
end

subroutine dnka(wvno2,gam,gammk,rho)
double precision ex1,ex2
common/save/dd(5,5),aa(4,4),ex1,ex2
common/ovrfw/ a0, cpcq, cpq, cpi, cqw, cql, xy, xz, wy, wz
gamm1 = gam-1.
twgm1=gam+gamm1
gmkmk=gam*gammk
gm1=gam*gamm1
gmisq=gam1*gamm1
rho2=rho*rho
\end{verbatim}
a0pq=a0-cpcq
dd(1,1)=cpcq-2.*gammak*a0pq-gammak*xz-wvno2*gmsq*wy
dd(2,1)=gmsq*cqw-gmmdk*cpz*rho
dd(3,1)=-(gammak*gammak*twgm1*a0pq+gammak*gammak*xz+
 gammm1*gmsq*wy)*rho
dd(4,1)=-(gammak*cq-wgmsq*cpj)*r0
dd(5,1)=-2.*(gammak*gmsq*a0pq+gammak*gammak*xz+
 gmsq*gmsq*wy)*rho2
dd(1,2)=(cq-wvno2*cpj)/rho
dd(2,2)=cpcq
dd(3,2)=gammak*cq-wgammak*cpj
dd(4,2)=-xy
dd(5,2)=dd(4,1)
dd(1,4)=(wvno2*cq-w-ctz)/rho
dd(2,4)=-wz
dd(3,4)=gammak*cq-wgammak*cpz
dd(4,4)=dd(2,2)
dd(5,4)=dd(2,1)
dd(1,5)=-2.*(wvno2*a0pq+xz+wvno2*wvno2*wy)/rho2
dd(2,5)=dd(1,4)
dd(3,5)=-(twgm1*a0pq+gammak*xz+wvno2*gammm1*wy)/rho
dd(4,5)=dd(1,2)
dd(5,5)=dd(1,1)
t=-2.*wvno2
dd(1,3)=t*dd(3,5)
dd(2,3)=t*dd(3,4)
dd(3,3)=a0+2.*(cpcq-dd(1,1))
dd(4,3)=t*dd(3,2)
dd(5,3)=t*dd(3,1)
return
end

--

subroutine energy(omega,wvno)
This routine returns the energy integral by an analytic
way using the eigenfunctions found above.
double precision wvno0,omega0
double precision wvno2,omega2,wvomg2,sum,xka,xkb,ra,rb
double precision depth,daa,dbb,drho,dlam,dlam,dlmu
double precision urur,umz,uzuz,uztr,trtr,urdz,uzdur
double precision durur,duduz,dlll,dllm,dllk,dllr
double precision sumi0,sumi1,sumi2,sumi3
double complex t(4,4),tt(4,4),ff(6),pp(4)
double complex nuu,nub,c1,c2
common/coef/ t,tt,ff,pp
common/model/ d(100),a(100),b(100),rho(100),qz1(100),*
 qbl(100),xmu(100),x1am(100),nna,11
common/eigfun/ uu(100,4),u0(4),dcda(100),dcdb(100),
 *
 common/sumi/ sumi0,sumi1,sumi2,sumi3,flagr,are,ugr
wvno0=double(wvno)

 - 37 -
omega0=double(omega)
omega2=omega0*omega0
wvomo2=wvno0*omega2
wvno2=wvno0*wvno0
sumi0=0.0d+00
sumi1=0.0d+00
sumi2=0.0d+00
sumi3=0.0d+00
do 300 k=11, mmax
 k1=k+1
 kk=k
 if(k.eq.mmax) kk=101
 daa=double(a(k))
 dbb=double(b(k))
 drho=double(rho(k))
 dlam=double(xlam(k))
 dmu=double(xmu(k))
 dlamu=dlam+2.*dmu
dpth=double(d(k))
xka=omega0/daa
xbb=omega0/dbb
gammk=dbb/omega0
gammk=2.*gammk*gammk
gam=gammk*wvno2
ra=dsqrt(dabs(wvno2-xka*xka))
rb=dsqrt(dabs(wvno2-xkb*xkb))
if(ra.lt.1.d-6) ra=1.d-6
if(rb.lt.1.d-6) rb=1.d-6
nua=dcmplx(ra,0.0)
nub=dcmplx(rb,0.0)
if(wvno0.lt.xka) nua=dcmplx(0.0,ra)
if(wvno0.lt.xkb) nub=dcmplx(0.0,rb)
call tminus(nua,nub,wvno2,gam,gammk,drho)
call tplus(nua,nub,wvno2,gam,gammk,drho)
call intval(kk,nua,nub,dpth)
do 200 i=1, 2
 i2=i+2
 c1=0.0
 c2=0.0
 do 100 j=1, 4
 c1=c1+tt(i,j)*uu(k1,j)
 c2=c2+tt(i2,j)*uu(k2,j)
 100 continue
pp(i)=c1
pp(i2)=c2
200 continue
urur=sum(kk,1,1)*wvno2
urtz=sum(kk,1,3)*wvomo2
uzuz=sum(kk,2,2)
uztr=sum(kk,2,4)*wvomo2
titz=sum(kk,3,3)*omega2*omega2
tvtr=sum(kk,4,4)*wvomo2*wvomo2
urduz=(wvno0*dlam*urur+urtz)/dlamu
uzdur=-wvno0*uzuz+uzuz/dmu
durduz=wvno2*uzuz-2.*wvno0*uzuz/dmu+tr/tr/(dmu*dmu)
duzu2=(wvno2*d1am*d1am*urur+2.*wvno0*d1am*uruz+
*tr/tr)/(d1am*d1am)
sumi0=sumi0+drho*(uzuz+urur)
sumi1=sumi1+d1am*urur+dmu*uzuz
sumi2=sumi2+dmu*uzdur-dlam*urduz
sumi3=sumi3+d1am*duzduz+dmu*durur
dldl=-wvno2*urur+2.*wvno0*uzuru-2.*wvno0*uzdur-(2.*duzduz+durur)
dlmm=-wvno2*(2.*urur+uzuz)-2.*wvno0*uzdur-(2.*duzduz+durur)
dldr=omega2*(urur+uzuz)
dcda(k)=2.*drho*dab*omega0*dldl/wvno2
dcdb(k)=2.*drho*dab*omega0*(dldl-2.*dldl)/wvno2
dcdr(k)=dldr+d1am*dldl/drho+dmu*dldm/drho
dcdr(k)=d cdr(k)*omega0/wvno2

300 continue
if(b(1).le.0.0) call wenerg(wvno0)
dldk=-2.*(wvno0*sumi1+sumi2)
do 400 k=11,mmax
dcda(k)=dcda(k)/dldk
dcdb(k)=dcdb(k)/dldk
dcdr(k)=dcdr(k)/dldk
400 continue
flagr=omega2*sumi0-wvno2*sumi1-2.*wvno0*sumi2-sumi3
ugr=(wvno0*sumi1+sumi2)/(omega0*sumi0)
are=wvno0/(2.*omega0*ugr*sumi0)
return
end

function sum(kk,jj)

The analytic forms of the solution of integral:
Integral U*U dz = T-matrix * eigenvnction * integral-coefs

double precision sum
double complex tt(4,4),tt(4,4),ff(6),pp(4)
double complex sum0,sum1,sum2,sum3,sum4,sum5,sum6
common/coef/ t,tt,ff,pp
if(kk.eq.101) go to 100
sum1=tt(i,1)*tt(j,1)*pp(1)*pp(1)+tt(i,3)*tt(j,3)*pp(3)*pp(3)
sum1=sum1*ff(1)
sum2=tt(i,2)*tt(j,2)*pp(2)*pp(2)+tt(i,4)*tt(j,4)*pp(4)*pp(4)
sum2=sum2*ff(2)
sum3=(tt(i,1)*tt(j,2)+tt(i,2)*tt(j,1))*pp(1)*pp(2)
* +tt(i,3)*tt(j,4)+tt(i,4)*tt(j,3))*pp(3)*pp(4)
sum3=sum3*ff(3)
sum4=(tt(i,1)*tt(j,4)+tt(i,4)*tt(j,1))*pp(1)*pp(4)
* +tt(i,3)*tt(j,2)+tt(i,2)*tt(j,3))*pp(2)*pp(3)
sum4=sum4*ff(4)
sum5=(tt(i,1)*tt(j,3)+tt(i,3)*tt(j,1))*pp(1)*pp(3)
sum5=sum5*ff(5)

- 39 -
\textbf{sum6}=(t(i,2)*t(j,4)+t(i,4)*t(j,2))*pp(2)*pp(4)
\textbf{sum6}=\textbf{sum6}*ff(6)
\textbf{sum0}=\textbf{sum1}+\textbf{sum2}+\textbf{sum3}+\textbf{sum4}+\textbf{sum5}+\textbf{sum6}
\textbf{sum}=	extbf{real} (\textbf{sum0})
\textbf{return}

\textbf{100} \textbf{continue}
\textbf{sum1}=t(i,3)*t(j,3)*pp(3)*pp(3)*ff(1)
\textbf{sum2}=t(i,4)*t(j,4)*pp(4)*pp(4)*ff(2)
\textbf{sum3}=(t(i,3)*t(j,4)+t(i,4)*t(j,3))*pp(3)*pp(4)
\textbf{sum3}=\textbf{sum3}*ff(3)
\textbf{sum0}=\textbf{sum1}+\textbf{sum2}+\textbf{sum3}
\textbf{sum}=	extbf{real} (\textbf{sum0})
\textbf{return}
\textbf{end}

c
\textbf{c}
\textbf{c}
\textbf{c}
\textbf{c}
\textbf{c}

\textbf{subroutine intvel} (k, nu, nub, dpth)
\textbf{c}
\textbf{c}
\textbf{c}
\textbf{c}

\textbf{This routine finds the coefficients needed for integrals.}
\textbf{c}
\textbf{c}
\textbf{c}
\textbf{c}

\textbf{double precision dpth}
\textbf{double complex} \textbf{t}(4, 4), \textbf{tt}(4, 4), \textbf{ff}(6), \textbf{pp}(4)
\textbf{double complex} \textbf{nu}, \textbf{nub}, \textbf{p}, \textbf{q}, \textbf{pq}, \textbf{expp}, \textbf{exqq}
\textbf{common/} \textbf{coeff/} \textbf{t}, \textbf{tt}, \textbf{ff}, \textbf{pp}
\textbf{if}(k \textbf{.eq. } 101 \textbf{) go to } 100
\textbf{p}=\textbf{nu}*\textbf{dpth}
\textbf{q}=\textbf{nub}*\textbf{dpth}
\textbf{pq}=(\textbf{nu}+\textbf{nub})*\textbf{dpth}
\textbf{call ifpq(p, p+p, expp)}
\textbf{ff}(1)=(1.0-\textbf{expp})/(2.0*\textbf{nu})
\textbf{call ifpq(q, q+q, exqq)}
\textbf{ff}(2)=(1.0-\textbf{exqq})/(2.0*\textbf{nub})
\textbf{call ifpq(pq/2., pq, expp)}
\textbf{ff}(3)=(1.0-\textbf{expp})/(\textbf{nu}+\textbf{nub})
\textbf{call ifpq(p/2., p, expp)}
\textbf{call ifpq(q/2., q, exqq)}
\textbf{ff}(4)=(\textbf{exqq}-\textbf{expp})/(\textbf{nu}-\textbf{nub})
\textbf{ff}(5)=\textbf{dpth*expp}
\textbf{ff}(6)=\textbf{dpth*exqq}
\textbf{return}

\textbf{100} \textbf{continue}
\textbf{ff}(1)=0.5/\textbf{nu}
\textbf{ff}(2)=0.5/\textbf{nub}
\textbf{ff}(3)=1.0/(\textbf{nu}+\textbf{nub})
\textbf{return}
\textbf{end}

c
\textbf{c}
\textbf{c}
\textbf{c}
\textbf{c}

\textbf{subroutine ifpq} (p, pq, expq)
\textbf{double complex} p, pq, expq
\textbf{if} (\textbf{real(p)} .lt. 40.0) \textbf{go to } 100

- 40 -
expq = 0.0d+00
go to 200
100 continue
expq = zexp(-pq)
200 continue
return
end

subroutine tplus(nua, nub, wvno2, gam, gammk, rho)

T matrix.

do double precision gam, gammk, rho, wvno2
do double complex t(4, 4), tt(4, 4), ff(6), pp(4)
do double complex nua, nub
common/coef/ t, tt, ff, pp
 t(1, 1) = -1. / rho
 t(1, 2) = nub / rho
 t(1, 3) = t(1, 1)
 t(1, 4) = -t(1, 2)
 t(2, 1) = -nua / rho
 t(2, 2) = wvno2 / rho
 t(2, 3) = -t(2, 1)
 t(2, 4) = t(2, 2)
 t(3, 1) = 1. - gam
 t(3, 2) = gam * nub
 t(3, 3) = t(3, 1)
 t(3, 4) = -t(3, 2)
 t(4, 1) = -gammk * nua
 t(4, 2) = -t(3, 1)
 t(4, 3) = -t(4, 1)
 t(4, 4) = t(4, 2)
do 100 i = 1, 4
do 100 j = 1, 4
t(i, j) = 0.5 * t(i, j)
100 continue
return
end

subroutine tminus(nua, nub, wvno2, gam, gammk, rho)

T-inverse matrix.

do double precision gam, gam1, gammk, rho, wvno2
do double complex t(4, 4), tt(4, 4), ff(6), pp(4)
do double complex nua, nub
common/coef/ t, tt, ff, pp
 gammk = gam - 1.0
 tt(1, 1) = -rho * gam
 - 41 -
\[tt(1, 2) = \rho \cdot \gamma \cdot \mu_a \]
\[tt(1, 3) = 1.0 \]
\[tt(1, 4) = -\nu \cdot \gamma \cdot \mu_a \]
\[tt(2, 1) = -\rho \cdot \gamma \cdot \mu_b \]
\[tt(2, 2) = \rho \cdot \gamma \cdot \mu_b \]
\[tt(2, 3) = 1.0 / \mu_b \]
\[tt(2, 4) = -1.0 \]
\[tt(3, 1) = tt(1, 1) \]
\[tt(3, 2) = -tt(1, 2) \]
\[tt(3, 3) = 1.0 \]
\[tt(3, 4) = -tt(1, 4) \]
\[tt(4, 1) = -tt(2, 1) \]
\[tt(4, 2) = tt(2, 2) \]
\[tt(4, 3) = -tt(2, 3) \]
\[tt(4, 4) = -1.0 \]
return
end

c
subroutine weener(wvno)
calculate energy trapped in the top water layer.
double precision wvno, wd, wra, wra2, wcosd2, wsin2d
double precision urur, uzuz, uruzu, duzu2, wvno2, dr, dlam
double precision sumi0, sumi1, sumi2, sumi3
common/model/ d(100), a(100), b(100), rho(100), qa1(100),
* qb1(100), xmu(100), xlam(100), mmmax, 11
common/sumi/ sumi0, sumi1, sumi2, sumi3, flagr, are, ugr
common/enerw/ wd, wra, wcosd2, wsin2d
wvno2=wvno*4*wvno
wra2=wra*dabs(wra)
urur = (wv2d-wd)/(wra2*wc2)
urur = urur*wvno2
uzuz = (wv2d+wd)/wc2
uruzu = (wv2d-wd)/wc2
uruzu = uruzu*wvno
dzu2 = (wv2d-wd)*wra2/wc2
dr=dble(rho(1))
dlam=dble(xlam(1))
sumi0=sumi0+dr*(urur+uzuz)
sumi1=sumi1+dlam*urur
sumi2=sumi2-dlam*uruzu
sumi3=sumi3+dlam*dzu2
return
end

leigen81.f

f77 -i -12 leigen81.f -o leigen81

This is a new version of program leigen which calculates the eigenfunctions of Love wave for any plane layered model.

Some analytic ofms for energy integrals are used instead of taking numerical integration directly.

The I/O are mostly the same as those of program leigen, except that the eigenfunctions calculated are located at the top of each layer, not in the middle.

The Q model is taken into account.

For the sake of space saving, only the values of eigenfunction at the source depth are stored. However, several files with different source depths can be set up.

--Oct 10, 1981

dimension nos(100), dphs(100), dphq(100), qa(100), qb(100)
dimension depth(100)
common/model/ d(100), a(100), b(100), rho(100), qa1(100),
* qb1(100), xmu(100), xlam(100), mm, f, 11
common/eigfun/ ut(100), tt(100), dcdb(100), dcdt(100), uu0(4)
common/sumi/ sum0, sumi1, sumi2, flag, ale, ugr
character*1 dd
character*50 names
format(a)
format(2x, 'M', 3x, 'DPTH', 3x, ' D ', 3x, ' A ', 3x, ' B ',
* 3x, ' RHO ', 3x, ' QA ', 4x, ' GB ', 4x, ' MU ', 3x, ' LMDA ')
format(i3, ix, 3f7.2, 2f8.2, 2f7.2)
format(3x, 'source is at the top of this layer. ',
* 'source depth = ', f6.2)
format(i3, ix, f7.2, 7x, 3f7.2, 2f8.2, 2f7.2)
format(3x, 'source is inside the half space. ',
* 'source depth = ', f6.2)
format('at the source depth = ', f6.2, ' km')
write(6,*) 'enter the input file name: (from surface81)' read(5, 5) names
open(1, file=names, status='old', form='unformatted')
rewind 1
open(3, file='tmp.1', status='scratch', form='unformatted')
rewind 3

type the source depths and Q model.

write(6,*) 'enter the source depths: '
write(6,*)
* (no. of source depths, srclph(1), srclph(2),...)

- 43 -
write(6,*)
* *** if no. of source depths is negative, no output
write(6,*) ' files will be generated.***
read(5,*) kks, (dphs(i),i=1,iabs(kks))
kks=iabs(kks)
write(6,*) 'enter Q-model here(1), or from file(2) or'
write(6,*) 'NOT consider Q in this program(3):'
read(5,*) kk
kk=1
100 continue
write(6,*)
+ 'enter d(i),Qa(i),Qb(i) use d(i)=0 for halfspace'
 icode=5
go to 120
110 continue
write(6,*) 'enter the name of the file storing Q-model:'
read(5,5) names
open(2, file=names, status='old', form='formatted')
rewind 2
icod=2
120 continue
i=1
base=0.0
140 continue
read(icode,*) dqO, qa(i), qb(i)
if(dqO.le.0.0) go to 150
base=base+dqO
dphs(i)=base
i=i+1
go to 140
150 kq=i
do 160 i=1,100
 qa1(i)=qa(kq)
 qb1(i)=qb(kq)
160 continue
170 continue
write(6,*) 'Store the derivatives? (y/n)'
read(5,5) dd
if(dd.eq.'n') go to 175
write(6,*) 'enter the output file name for derivatives:'
read(5,5) names
open(9, file=names, status='new', form='unformatted')
rewind 9
175 continue
do 180 i=1,100
 depth(i)=1000000.0
180 continue
c enter the earth model.
c read(1) mmax
write(6,10)
base=0.0
depth(1)=0.0
do 190 i=1, mmax
read(i) d(i), a(i), b(i), rho(i)
base=base+d(i)
depth(i+1)=base
xmu(i)=rho(i)*b(i)*b(i)
xlam(i)=rho(i)*a(i)*a(i)-2.*b(i)*b(i)
190 continue
c
insert the Q-model into the velocity model.
c
insert the source depth at the boundary of a layer.
c
kqs=kq+k-1
do 300 k0=1, kqs
dph0=dphq(k0)
is=k0-k+1
if(k0.ge.kq) dph0=dphs(is)
do 200 i=1, mmax
k=i
if(dph0.eq.depth(i)) go to 250
if(dph0.gt.depth(i), and. dph0.lt.depth(i+1)) go to tc 210
200 continue
210 k1=k+1
dphk1=depth(k1)
do 220 i=mmax, k, -1
i1=i+1
d(i1)=d(i)
a(i1)=a(i)
b(i1)=b(i)
rho(i1)=rho(i)
xmu(i1)=xmu(i)
xlam(i1)=xlam(i)
depth(i1)=depth(i)
if(k0.ge.kq) qa1(i1)=qa1(i)
if(k0.ge.kq) qb1(i1)=qb1(i)
220 continue
d(k)=dph0-depth(k)
d(k1)=dphk1-dph0
depth(k1)=depth(k)+d(k)
mmax=mmax+1
if(k0.ge.kq) go to 240
if(k0.eq.1) ns=1
do 230 j=ns, k
qa1(j)=qa(k0)
qb1(j)=qb(k0)
230 continue
240 ns=k1
go to 280
250 continue
if(k0.ge.kq) go to 270
if(k0.eq.1) ns=1
do 260 i=ns, k-1
```
qal(i)=qa(k0)
qb1(i)=qb(k0)
260 continue
270 ns=k
280 nos(is)=ns
300 continue
   j=1
   do 310 i=1,mmax-1
      write(6,20) i,depth(i),d(i),a(i),b(i),rho(i),qal(i),qb1(i),
*        xmu(i),xlam(i)
      if(i.ne.nos(j)) go to 310
      write(6,30) dphs(j)
      j=j+1
310 continue
   i=mmax
   write(6,40) i,depth(i),
*         a(i),b(i),rho(i),qal(i),qb1(i),xmu(i),xlam(i)
   if(nos(j).eq.mmax) write(6,50) dphs(j)
   if(dd.eq.'y')
      write(9) mmax,(d(i),a(i),b(i),rho(i),i=1,mmax)
   write(6,*)
   write(6,*) 'wait. '
   11=1
   if(b(1).le.0.0) 11=2
   read(1) nper
400 continue
  c
  read in the dispersion values.
  c
   read(1) ifunc,mode,t
   write(3) ifunc,mode,t
   if(dd.eq.'y') write(9) ifunc,mode,t
   if(ifunc.lt.0) go to 700
   if(mode.le.0) go to 400
   do 600 k=1,mode
      read(1) c
  c
  main part.
  c
   omega=6.2831853/t
   wvno=omega/c
   call shfunc(omega,wvno)
   call energy(omega,wvno)
   if(kk.ne.3) call gammaq(omega,wvno, gamma)
   if(dd.eq.'n') go to 510
  c
  output the derivatives.
   write(9) dum,wv0(2),c, vgr, sumi0, sumi1, sumi2, dum, ale, flagr
   do 500 i=1,mmax
      write(9) depth(i),ut(i),tt(i),dum,dum,dum,dcdb(i),c7dcdr(i)
500 continue
510 continue
   do 560 i=1,ks
      j=nos(i)
```
uts=ut(j)
duts=tt(j)/xmu(j)
write(3) wvno, ala, ugr, gamma, uts, duts

560 continue
600 continue
go to 400
700 continue

c output the data files with different source depths.
c
if(kks, 1e.0) go to 950
do 900 i=1, kks
rewind 3
write(6,*)
* 'enter the name of output file storing the eigenfunctions'
write(6,60) dphs(i)
read(5,5) names
open(4, file=names, status='new', form='unformatted')
rewind 4
write(4)
* mmmax, (d(j), a(j), b(j), rho(j), qal(j), qbl(j), j=1, mmmax)
write(4) nper, dphs(i)
800 continue
read(3) ifunc, mode, t
write(4) ifunc, mode, t
if(ifunc. lt. 0) go to 870
if(mode. le. 0) go to 800
do 860 k=1, mode
do 850 j=1, kks
read(3) qal(j), qbl(j), dphq(j), ut(j), tt(j), dcd(j)
850 continue
write(4) qal(i), dummy, qbl(i), dphq(i), ut(i)
write(4) tt(i), dcd(i), dummy, dummy
860 continue
go to 800
870 continue
close(4)
900 continue
950 continue
close(1)
close(2)
close(3, status='delete')
write(6,*) '/
write(6,*) 'leigen81 finished'
write(6,*) '/'
stop
end

c c
subroutine gammaq(omega, wvno, gamma)
c This routine finds the attenuation gamma value.
c
common model/ d(100), a(100), b(100), rho(100), qal(100),
 * qb1(100), xmu(100), xlam(100), mmax, 11
common eigfun/ ut(100), tt(100), dcd(100), dcr(100), uuO(4)
 x=0.0
 do 100 i=11, mmax
 x=x+dcd(i)*b(i)/qb1(i)
 100 continue
 c=omega/x
 gamma=0.5*xw/no*x/c
 return
 end

subroutine shfunc(omega, wvno)
 This routine evaluates the eigenfunctions by calling sub
 up.
 double precision exl(100), ext, fact
common model/ d(100), a(100), b(100), rho(100), qal(100),
 * qb1(100), xmu(100), xlam(100), mmax, 11
common eigfun/ uu(100, 2), dcd(100), dcr(100), uuO(4)
common save/ exl
call up(omega, wvno, f1)
uuO(1)=1.0
uuO(2)=stressO is actually the value of period equation.
uuO(3) is used to print out the period equation value before
the root is refined.
uuO(4)=f1
uuO(3)=0.0
uuO(4)=0.0
ext=0.0
 do 100 k=11+i, mmax
 ext=ext+exl(k-1)
 fact=0.0
 if(ext. lt. 85.0) fact=1./dexp(ext)
uu(k, 1)=uu(k, 1)*fact/uu(11, 1)
uu(k, 2)=uu(k, 2)*fact/uu(11, 1)
 100 continue
 uu(11, 1)=1.0
 uu(11, 2)=0.0
 return
 end

subroutine up(omega, wvno, f1)
 This routine calculates the elements of Haskell matrix,
 and finds the eigenfunctions by analytic solution.
double precision exl(100), qq, rr, ss, exqm, exqp, sinq, cosq
common model/ d(100), a(100), b(100), rho(100), qal(100),

- 48 -
* common/eigfun/ u(100, 2), d(100), d(100), uu(100, 2), xmu(100), x1am(100), mmx, 11
common/save/ ex1
wvno2=wvno+wvno
xkb=omega/b(mmax)
rw=sqrt(abs(wvno2-xkb*xkb))
if(wvno.lt.xkb) write(6,'*') 'imaginary nub'
uu(mmax, 1)=1.0
uu(mmax, 2)=-xmu(mmax)*rw
mmx1=mmax-1
do 500 k=mmx1, 11, -1
 k1=k+1
dpth=d(k)
xkb=omega/b(k)
rw=abs(wvno2-xkb*xkb)
rr=dble(rw)
r=sqrt(rr)
ss=dble(dpth)
qq=rr*ss
if(wvno-xkb) 100, 200, 300
100 sinq=d*sin(qq)
cosq=d*cos(qq)
y=sinq/rr
z=-rr*sinq
qq=0.0
go to 400
200 qq=0.0
cosq=1.0d+0
y=pth
z=0.0
go to 400
300 if(qq, y, 40, 0) go to 350
 expq=1.
 expm=1./dexp(qq+qq)
 sinq=(expq-expm)*0.5
 cosq=(expq+expm)*0.5
 y=sinq/rr
 z=rr*sinq
 go to 400
350 continue
 y=0.5/rr
 z=0.5*rr
 cosq=0.5
400 continue
 amp0=cosq*xu(k1, 1)-y*xu(k1, 2)/xmu(k)
 str0=cosq*xu(k1, 2)-z*xmu(k)*u(k1, 1)
 rr=abs(amp0)
 ss=abs(str0)
 if(ss.gt.rr) rr=ss
 if(rr.lt.1.d-30) rr=1.d+00
 ex1(k)=log(rr)+qq
 uu(k, 1)=amp0/rr
 uu(k, 2)=str0/rr
continue
f1=uu(11,2)
return
end

subroutine energy(omega, wvno)
This routine calculates the values of integrals I0, I1, and I2 using analytic solutions. It is found
that such a formulation is more efficient and practical.

double precision wvno0, omega0, c, sumi0, sumi1, sumi2
double precision xkb, rb, ddb, drho, dpth, dmu, wvno2, omega2
double precision upup, dupdup, dcb, dcr
double complex nub, xnub, exqq, top, bot, f1, f2, f3
common/model/
 d(100), a(100), b(100), rho(100), qa1(100),
 qb1(100), xmu(100), xlam(100), mmx, 11
common/eigfun/
 uu(100, 2), dcdb(100), dcdr(100), uuo(4)
common/sumi/
 xi0, xi1, xi2, flagr, ale, vgr
wvno0=dble(wvno)
omega0=dble(omega)
c=omega0/wvno0
omega2=omega0*omega0
wvno2=wvno0*wvno0
sumi0=0.0d+00
sumi1=0.0d+00
sumi2=0.0d+00
do 300 k=11, mmax
 k1=k+1
 ddb=dble(b(k))
 drho=dble(rho(k))
 dpth=dble(d(k))
 dmu=dble(xmu(k))
 xkb=omega0/ddb
 rb=dsqrt(dabs(wvno2-xkb*xkb))
 if(k.eq.mmax) go to 100
 nub=dcmpxl(rb, 0.0)
 if(wvno0.1t.xkb) nub=dcmpxl(0.0, rb)
 xnub=dmu*nub
 top=uu(k,1)-uu(k,2)/xnub
 bot=uu(k,1,1)+uu(k,1,2)/xnub
 f3=nub*dpth
 exqq=0.0
 if(real(f3).lt.40) exqq=izexp(-2.*f3)
 f1=(1.0-exqq)/(2.0*nub)
 exqq=0.0
 if(real(f3).lt.80) exqq=izexp(-f3)
 f2=dpth*exqq
 f1=0.25*f1*(top*top+bot*bot)
 f2=0.5*f2*top*bot
 f3=f1+f2
upup=real(f3)
f3=xnub*xnub*(f1-f2)
dupdup=real(f3)/(dmu*dmu)
go to 200
100 continue
upup=0.5*rb*uu(mmax,1)*uu(mmax,1)
dupdup=0.5*rb*uu(mmax,1)*uu(mmax,1)
200 continue
sumi0=sumi0+drho*upup
sumi1=sumi1+dmu*upup
sumi2=sumi2+dmu*dupdup
dcr=-0.5*c*c*c*upup
dcb=0.5*c*(upup+dupdup/wvno2)
dcdb(k)=2.*drho*dbb*dcb
dcdr(k)=dcr+dbb*dbb*dcb
300 continue
do 400 k=11,mmax
dcdb(k)=dcdb(k)/sumi1
dcdr(k)=dcdr(k)/sumi1
400 continue
flagr=omega2*sumi0-wvno2*sumi1-sumi2
ugr=sumi1/(c*sumi0)
a1e=0.5/sumi1
xi0=sumi0
xi1=sumi1
xi2=sumi2
return
end

plot dispersion curve
get data from reigen81 or leigen81
dimension t(1000), v(1000), mode(500)
dimension d(500), a(500), b(500), rho(500)
character*20 names
character*4 yorn, xlog, ylog
common/ctrl1/yorn, xlog, ylog
format(a)
format(4f12.5)
format(5x, i5, 3x, e10.4, 3x, e10.4)
pi=2.*3.141592653
write(6,*), ' '
write(6,*), ' Rayleigh(1) or Love(2)?'
read(5,*), lrrr
write(6,*), ' '
if(lrrr.eq.1) write(6,*), ' '
* ' enter input file name: (from reigen81)'
if(lrrr.eq.2) write(6,*), ' '
* ' enter input file name: (from leigen81)'
read(5,5) names
open(1, file=names, status='old', form='unformatted')
write(6,*), ' '
* ' how many modes and which modes wanted? (e.g. 3, 1, 3, 5)'
write(6,*), ' (if all modes wanted, answer 1, Q)'
read(5,*), nmode, (mode(i), i=1, nmode)
if(mode(1).ne.0) go to 40
nmode=500
do 30 i=1, 500
mode(i)=i
30 continue
40 continue
write(6,*), ' plot U-perd(1) U-freq(2) C-perd(3) C-freq(4)'
write(6,*), ' K-freq(5) freq-K(6) K-C(7) C-K(8)'
write(6,*), ' Ar-perd(9) Ar-freq(10)'
write(6,*), ' gamma-perd(11) gamma-freq(12)'
write(6,*), ' Ar*atten-perd(13) Ar*atten-freq(14)'
read(5,*) ipg
write(6,*), ' plot X axis in log scale? (y/n):'
read(5,5) xlog
write(6,*), ' plot Y axis in log scale? (y/n):'
read(5,5) ylog
call plots(0.0, 7)
write(6,*), ' enter ipen:'
read(5,*) ipen
call newpen(1pen)
yorn='y'
call plot(2.5, 2.3, -3)
write(6,*), ''
write(6, *) 'model: '
do 600 kk=1, nmode
rewind 1
read(1) nmax, (di, ai, bi, rhoi, gai, gb1, i=1, nmax)
if(kk.eq.1) write(6, 15) (di, ai, bi, rhoi, i=1, nmax)
read(1) nper, dphs
kkmode=0
continue
ident=mode(kk)
nt=0
itrig=0
continue
read(1) ifunc, kmode, t1
if(ifunc.1t.0) go to 400
if(kmode.1e.0) go to 200
nt=nt+1
do 300 i=1, kmode
read(1) wvno0, ur0, are0, u0, gama0
co=pi/(t1*wvno0)
read(1) ur0, dur0, uz0, duz0
if(i.neидент) go to 300
itrig=1
nn=nt
t(nn)=t1
v(nn)=co
if(ipg.1e.2) v(nn)=u0
if(ipg.eq.9.or.ipg.eq.10) v(nn)=are0/sqrt(wvno0)
if(ipg.eq.11.or.ipg.eq.12) v(nn)=gama0
if(ipg.eq.13.or.ipg.eq.14)
* v(nn)=are0/(sqrt(wvno0)*exp(gama0*1000.0))
continue
go to 200
continue
if(itrig.eq.0.and.nmode.eq.500) go to 600
if(t(nn).gt.5000.0) nn=nn-1
do 550 i=1, nn
go to (500, 482, 500, 482, 485, 486, 487, 488, 500, 482, 500, 482, 500, 482, * 500, 482), ipg
482 t(i)=1./t(i)
go to 500
485 t(i)=1./t(i)
v(i)=pi*t(i)/v(i)
go to 500
486 tmp=1./t(i)
t(i)=pi*tmp/v(i)
v(i)=tmp
go to 500
487 tmp=v(i)
v(i)=pi/(t(i)*v(i))
t(i)=tmp
go to 500
488 t(i)=pi/(t(i)*v(i))
500 continue
if(xlog.eq.'y') t(i)=log10(t(i))
if(ylog.eq.'y') v(i)=log10(v(i))
550 continue
 call disp(itrig, kk, ipg, ident, nn, t, v)
600 continue
 call plot(0.0, 0.0, 999)
close(1)
close(2)
write(6,*) '
write(6,*) 'job finished'
write(6,*) '
stop
end

c
subroutine disp(itrig, kk, ipg, ident, nn, x, y)
dimension x(1), y(1)
character*4 yorn, nory, xlog, ylog
character*11 alpha(2, 14), alp, bet
c
commom/ ctrl1 / yorn, xlog, ylog
data alpha/
* 'U (km/sec)', 'T (sec)' , ', U (km/sec)', ',', 'f (Hz)' ,
* 'C (km/sec)', 'T (sec)' , ', C (km/sec)', ',', 'f (Hz)' ,
* 'K (rad/km)', 'f (Hz)' , ', K (rad/km)' ,
* 'K (rad/km)', 'C (km/sec)', 'C (km/sec)', 'K (rad/km)' ,
* 'Amp Factor', 'T (sec)' , ', Amp Factor', ',', 'f (Hz)' ,
* 'Gamma', 'T (sec)' , ', Gamma', ',', 'f (Hz)' ,
* 'Attenuation', 'T (sec)' , ', Attenuation', ',', 'f (Hz)' ,
if(itrig.eq.0) write(6,*) 'mode ', ident, ' is not generated.'
if(itrig.eq.0) return
alp=alpha(1, ipg)
bet=alpha(2, ipg)
if(yorn.eq.'n') go to 100
yorn='n'
xlen=6.0
ylen=4.5
xmin=1.e+37
xmax=-1.e+37
ymin=1.e+37
ymax=-1.e+37
do 80 i=1, nn
if(x(i).ge.xmax) xmax=x(i)
if(x(i).le.xmin) xmin=x(i)
if(y(i).ge.ymax) ymax=y(i)
if(y(i).le.ymin) ymin=y(i)
80 continue
write(6,*) 'ymin=', ymin, ' ymax=', ymax
if(ylog.eq.'y') write(6,*) ' -y value in log scale'
write(6,*) 'xmin=', xmin, ' xmax=', xmax
if(xlog.eq.'y') write(6,*) ' -x value in log scale'
write(6,*) '
write(6,*) 'enter ymin, ymax, yinc, xmin, xmax, xinc'
if(ylog.eq.'y') write(6,*) ' -x should be integer.'
if(ylog.eq.'y') write(6,*) ' -y should be integer.'
read(5,*) y0, y1, yinc, x0, x1, xinc
xinut=(x1-x0)/xlen
yinut=(y1-y0)/ylen
100 continue
 if(kk.ne.1) go to 500
 write(6,*) 'plot axis? (y/n)',
 read(5,5) nory
5 format(a)
 write(6,*) 'wait. It is processing. '
 if(nory.ne.'y') go to 500
 call plot(xlen,0,0,2)
 call plot(xlen,ylen,2)
 call plot(0,0,ylen,2)
 call plot(0,0,0,0,2)
 call plot(0,0,-0.05,2)
 if(xlog.eq.'y') go to 110
 if(x0.lt.0.0) xshif=-0.25
 if(x0.ge.0.0) xshif=-0.13
 if(x0.ge.10.0) xshif=-0.23
 call number(xshif,-0.17,0.1,x0,0.0,1)
 go to 120
110 call number(-0.12,-0.18,0.1,10.0,0.0,-1)
120 continue
 grid=xinc/xinut
 xi=1.
200 xx=xi*grid
 if(abs(xx).gt.xlen+0.02) go to 250
 call plot(xx,0,0,3)
 call plot(xx,-0.05,2)
 xsym=x0+xinc*xi
 if(xlog.eq.'y') go to 210
 if(xsym.lt.0.0) xshif=-0.25
 if(xsym.ge.0.0) xshif=-0.13
 if(xsym.ge.10.0) xshif=-0.23
 if(xsym.ge.100.0) xshif=-0.33
 call number(xx+xshif,-0.17,0.1,xsym,0.0,1)
 go to 220
210 continue
 call number(xx-0.12,-0.18,0.1,10.0,0.0,-1)
220 continue
 xi = xi+1.
 go to 200
250 continue
 call symbol(2.5,-0.5,0.16,bet,0.0,11)
 call plot(0,0,0,0,3)
 call plot(-0.05,0.0,2)
 if(ylog.eq.'y') go to 260
 if(y0.lt.0.0) xshif=-0.45
 if(y0.ge.0.0) xshif=-0.35
 if(y0.ge.10.0) xshif=-0.45
CALL NUMBER(XSHIFT, -0.05, 0.1, Y0, 0.0, 1)
GO TO 270
260 CONTINUE
CALL NUMBER(-0.34, -0.06, 0.1, 10.0, 0.0, -1)
CALL NUMBER(-0.16, 0.02, 0.06, Y0, 0.0, -1)
270 CONTINUE
GRID=YINC/YINUT
XI=1.
300 XX=XI*GRID
IF(ABS(XX).GT.YLEN+0.02) GO TO 400
CALL PLOT(0.0, XX, 3)
CALL PLOT(-0.05, XX, 2)
xSYM=Y0+YINC*XI
IF(YLOG.EQ.'Y') GO TO 310
IF(XSYM.LT.0.0) XSHIFT=-0.45
IF(XSYM.GE.0.0) XSHIFT=-0.35
IF(XSYM.GE.10.0) XSHIFT=-0.45
IF(XSYM.GE.100.0) XSHIFT=-0.55
CALL NUMBER(XSHIFT, XX-0.05, 0.1, XSYM, 0.0, 1)
GO TO 320
310 CONTINUE
CALL NUMBER(-0.34, XX-0.06, 0.1, 10.0, 0.0, -1)
CALL NUMBER(-0.16, XX+0.02, 0.06, XSYM, 0.0, -1)
320 CONTINUE
XI = XI+1.
GO TO 300
400 CONTINUE
CALL SYMBOL(-0.55, 1.5, 0.16, ALP, 90.0, 11)
500 CONTINUE
DO 550 I=1, NN
IF(Y(I).GT.Y1) Y(I)=Y1
IF(X(I).GT.X1) X(I)=X1
IF(Y(I).LT.Y0) Y(I)=Y0
IF(X(I).LT.X0) X(I)=X0
550 CONTINUE
X(NN+1)=X0
X(NN+2)=XINUT
Y(NN+1)=Y0
Y(NN+2)=YINUT
CALL LINE(X, Y, NN, 1, 0, 0)
RETURN
END

This program reads the eigenfunctions and derivatives at different depths from an output file of r(1)eigenB1.

```
common/model/ d(500),a(500),b(500),rho(500)
common/eigfun/ depth(500),ur(500),u(500),tz(500),tr(500),
dcda(500),dcdb(500),dcr(500)
character*50 names

5
format(a)
10 format('//22x, 'M',3x, 'D',3x, 'A',3x, 'B',5x, 'RHO')
20 format(20x,i3,1x,4f7.2)
30 format(20x,i3,8x,3f7.2)
40 format(//)
45 format('//30x,'T(SEC) = ',f7.3)/
50 format(10x,'E = ',e11.4,' C(KM/S) = ',f7.4,
*   U(energy) = ',f7.4)
51 format(7x,'C(KM/S) = ',f7.4,' U(energy) = ',f7.4,
*   ALE = ',e11.4)
55 format(10x,' IO = ',e11.4,' I1 = ',e11.4,' I2 = '
*   e11.4)
56 format(7x,' IO = ',e11.4,' I1 = ',e11.4,' I2 = '
*   e11.4,' L = ',e11.4)
60 format(10x,' I3 = ',e11.4,' ARE = ',e11.4,' L = '
*   e11.4)
70 format('// M',5x,'DEPH',5x,'UR',10x,'UZ',10x,'TZ',10x,
*   'TR',9x,'DCDA',8x,'DCDB',8x,'DCD/
71 format('// M',8x,'DEPH',6x,'DISP',8x,'STRESS',8x,
*   'DC/DB',8x,'DC/DR')
75 format(1x,i3,f10.2,7(1x,e11.4))
76 format(1x,i3,f13.2,4(2x,e11.4))
80 format('/9x,'STRESSO = ',e11.4)
write(6,*), 'Rayleigh(1) or Love(2):'
read(5,*) llrr
write(6,*), 'enter the input file name: (from r<1>eigenB1)'
read(5,5) names
open(1,file=names,status='old',form='unformatted')
rewind 1
read(1) mmax,(d(i),a(i),b(i),rho(i),i=1,mmax)
write(6,*),''
write(6,10)
do 100 i=1,mmax-1
write(6,20) i,d(i),a(i),b(i),rho(i)
do 100
write(6,30) i,a(i),b(i),rho(i)
100 continue
i=mmax
write(6,30) i,a(i),b(i),rho(i)
200 continue
read(1) ifun,mode,per
if(ifun lt.0) go to 500
if(mode le.0) go to 200
write(6,40)
```
omega=6.2831853/per
do 400 k=1,mode
read(1) e,ee,c,ugr,xi0,xi1,xi2,xi3,are,flagr
wvno=omega/c
write(6,45) per
go to (210,220),11rr
210 continue
write(6,50) e,c,ugr
write(6,55) xi0,xi1,xi2
write(6,60) xi3,are,flagr
go to 250
220 continue
write(6,51) c,ugr,are
write(6,56) xi0,xi1,xi2,flagr
250 continue
if(11rr.eq.1) write(6,70)
if(11rr.eq.2) write(6,71)
do 300 i=1,mmax
read(1) depth(i),ur(i),uz(i),tz(i),tr(i),
* dcda(i),dcdb(i),dcdr(i)
if(11rr.eq.1)
* write(6,75) i,depth(i),ur(i),uz(i),tz(i),tr(i),
* dcda(i),dcdb(i),dcdr(i)
if(11rr.eq.2)
* write(6,76) i,depth(i),ur(i),uz(i),dcdb(i),dcdr(i)
300 continue
write(6,80) ee.
400 continue
go to 200
500 continue
stop
end

This program generates ten basic types of synthetic spectrum after combining the eigenfunctions from reigen81 and/or eigen81 with the source spectrum.

The output can be a seismogram which will input to the program gle81 or a spectrum which will input to the program spec81 for plotting.

The dimension needed has been reduced to the minimum by using the system call.
The program 'bigfft' to do fast Fourier transform should exist in the present working directory.

The maximum point for time histories is 8192.
The maximum mode number at any period is 400.

dimension rr(20), tshif(20), np(20)
common/src tim/sr(500)
common/ctrl/m, sr, s, xmom, r0, t0, np0, kkr, kkl, kkf, ino
common/resp/df, bmax, mode, per1, per3(200), xx(20), yy(20)
character*50 names
format(a)
open(7, file='t1.d', status='scratch', form='unformatted')
open(8, file='t2.d', status='scratch', form='unformatted')
write(6, *)
 * 'BE SURE bigfft exist in the present directory.'
write(6, *)
write(6, *)
 * 'enter the name of input file: (from reigen81)'
write(6, *) '(if not use, answer none)'
read(5, 5) names
kkr=0
if(names.eq. 'none') go to 100
kkr=1
open(1, file=names, status='old', form='unformatted')
100 write(6, *)
 * 'enter the name of input file: (from leigen81)'
write(6, *) '(if not use, answer none)'
kkl=0
read(5, 5) names
if(names.eq. 'none') go to 120
kkl=1
open(2, file=names, status='old', form='unformatted')
120 continue
write(6, *)
 * 'seismograms(1), spectrum(2), or both(3) wanted?'
read(5, *) ityp
if(ityp.eq. 2) go to 140
write(6, *)
* 'Enter the name of output file for seismogram:'
read(5,5) names
open(3, file=names, status='new', form='unformatted')
rewind 3
140 if(ityp.eq.1) go to 160
write(6,*)
* 'Enter the name of output file for spectrum:'
read(5,5) names
open(4, file=names, status='new', form='unformatted')
rewind 4
write(6,*) 'What kind of spectrum wanted?'
write(6,*)
* 'All modes (1), fund--high modes separated (2):'
read(5,*) kkl
160 continue
write(6,*) 'Enter source seismic moment (in 1.e+20):'
read(5,*) xmom
write(6,*) 'Enter source type (step: 1 bell: 2 readin: 3):'
read(5,*) ms
write(6,*) 'Enter dt:'
read(5,*) dt
if(ms.eq.2.or.ms.eq.3) call source(ms, dt)
170 continue
write(6,*) 'Enter station locations- r, tshift, npt:'
write(6,*)
* '(use r, tshift, -npt if no interpolation wanted.)'
write(6,*) 'Use -1,0,0 to stop this sequence.'
 i=1
200 continue
read(5,*) rr(i), tshift(i), np(i)
if(rr(i).le.0.0) go to 260
if(np(i).lt.0) go to 250
npt=np(i)
npt0=1
230 continue
npt0=2*npt0
if(npt.eq.npt0) go to 250
npt1=2*npt0
if(npt.1t.npt1.and.npt.gt.npt0) go to 240
go to 230
240 continue
np(i)=npt0
write(6,*)
* 'npt is not in power of 2. Adjust to ',np(i)
250 continue
i=i+1
go to 200
260 nsta=i-1
 if(ityp.eq.1.or.ityp.eq.3) write(3) dt, nsta, kkr, kkl
 if(ityp.eq.2.or.ityp.eq.3) write(4) dt, nsta, kkr, kkl, kkf
 k=0
 zero=0.0
 open(9, file='bigfft.d', status='new', form='unformatted')
do 400 k1=1,nsta
k0=k0+1
r0=rr(k1)
t0=tshift(k1)
np0=np(k1)
in0=1
if(np0.le.0) in0=2
np0=abs(np0)
df=1./(np0*dt)
if(ms.eq.1) go to 350
generate the source spectrum.
if(k1.ne.1.and.np0.eq.np(k1-1)) go to 350
isign=-2
rewind 9
write(9) np0,dt,df,isign
do 300 i=1,np0,2
i1=i+1
if(i.le.500) write(9) src(i),src(i1)
if(i.gt.500) write(9) zero,zero
300 continue
continue
close(9)
call system('bigfft',kretn)
open(9,file='bigfft.d',status='old',form='unformatted')
350 continue
ityp=ityp+2
if(ityp.eq.3) itp=3
ino=in0
if(ityp.eq.3) ino=1
the main call.
call main(k0,k1,ityp)
if(ityp.eq.3) call main(k0,k1,4)
400 continue
continue
close(1)
close(2)
if(ityp.eq.1.or.ityp.eq.3) close(3)
if(ityp.eq.2.or.ityp.eq.3) close(4)
close(7,status='delete')
close(8,status='delete')
write(6,*), 'wigg finished'
write(6,*), 'stop
end

subroutine main(k0,k1,ityp)
dimension d(80),a(80),b(80),rho(80),qal(80),qbl(80)
common/ctrl1/ ms,er,si,xmom,r0,t0,np0,kkr,kkl,kkf,in
common/resp/ df,bmax,mode,perl,per3(200),xx(20),yy(20)
10 format(/2x,'M',5x,'D',7x,'A',7x,'B',6x,'RHQ',5x,'QA',
* 6x,'GB')

- 61 -
20 format(i3,6f8.2)
30 format('source depth =',f7.2/
* 'no. of periods generated in surface81 =',i5)
 rewind ?
 rewind 8
 k0=k0+100
 kk=kkr+kk1
do 200 k2=1,kk
 icode=k2
 if(kk.eq.1.and.kk1.eq.1) icode=2
 rewind icode
 if(k0*k2.eq.101) write(6,10)
 read(icode)
 * mmmax,(d(i),a(i),b(i),rho(i),qa1(i),qb1(i),i=1,mmmax)
 bmax=b(mmmax)
do 100 i=1,mmmax
100 if(k0*k2.eq.101)
 * write(6,20) i,d(i),a(i),b(i),rho(i),qa1(i),qb1(i)
 read(icode) nper,dpshsc
 if(k0*k2.eq.101) write(6,30) dpshsc,nper
 if(k0*k2.eq.101.or.k0*k2.eq.201) write(itp) dpshsc,nper
 if(k2.eq.1) write(itp) r0,t0,np0
 write(6,*)
 if(itp.eq.3.and.icode.eq.1)
 * write(6,*) ' RAYLEIGH seismogram for station # ',k1,
 * ' is under calculation.'
 if(itp.eq.3.and.icode.eq.2)
 * write(6,*) ' LOVE seismogram for station # ',k1,
 * ' is under calculation.'
 if(itp.eq.4.and.icode.eq.1)
 * write(6,*) ' RAYLEIGH spectrum for station # ',k1,
 * ' is under calculation.'
 if(itp.eq.4.and.icode.eq.2)
 * write(6,*) ' LOVE spectrum for station # ',k1,
 * ' is under calculation.'

the main routine.
if(ino.eq.1) call inter(itp,icode)
if(ino.eq.2) call noint(itp,icode)
200 continue

 rewind 7
 rewind 8
 go to (300,500),itp-2
300 continue
 if(kkr.eq.1) read(7) per,(xx(i),i=1,16)
 if(kk1.eq.1) read(8) per,(xx(i),i=17,20)
 write(3) (xx(i),i=1,20)
 if(per.le.0.0) go to 600
 go to 300
500 continue
 if(kkr.eq.1) read(7) per,(xx(i),i=1,16)
 if(kk1.eq.1) read(8) per,(xx(i),i=17,20)
write(4) per, (xx(i), i=1, 20)
if(kkf.eq.1. and. per.lt.0.0) return
if(kkf.eq.1) go to 500
if(kkr.eq.1) read(7) per, (xx(i), i=1, 16)
if(kkl.eq.1) read(8) per, (xx(i), i=17, 20)
write(4) per, (xx(i), i=1, 20)
if(per.le.0.0) go to 600
go to 500

600 continue
return
end

subroutine inter(itp, icode)
This routine sets the end values for interpolation.
common/dimen/ ur(200, 2), dtr(200, 2), ut(200, 2), du(200, 2),
* wvno(200, 2), wro(200, 2), are(200, 2), gamma(200, 2)
common/ctrl1/ ms, sr, si, xmom, ro, to, np0, kkr, kkl, kbf, ino
common/resp/ df, bmax, mode0, per1, per3(200),
* x(t), y(t), x1(4), y1(4)
if(ms.eq.1) go to 90
rewind ?
read(9) np, dx, df, x, y
90 continue
np2=np/2+1
icode=icode+6
read(icode) ifunc, mode2, per2
if(ifunc.lt.0) write(6, *) 'no data in the eigen file.'
do 200 j=1, mode2
read(icode) wvno(j,2), wro(j,2), are(j,2), vgr, gamma(j,2)
read(icode) ur(j,2), dtr(j,2), ut(j,2), du(j,2)
200 continue
itrig=0
 do 800 i=np2, 1, -1
 do 300 j=1, 16
 x(i)=0.0
 y(i)=0.0
 300 continue
 do 310 j=1, 4
 x(j)=0.0
 y(j)=0.0
 310 continue
 per=-1.0
 if(i.eq.1) go to 750
 if(ms.eq.1) read(9) sr, si
 per1=((i-1)*df-.per)
 if(i.eq.2) go to 320
 dper=-1.0/((i-2)*df)-per
 320 continue
 per0=per0.005*dper
 if(i.eq.np2) per0=per0+0.005*dper
 330 if(per0.1t. per2) go to 400

- 63 -
if (itrig.eq.2) go to 750
per1=per2
mode1=mode2
read (icode, end=750) ifunc, mode2, per2
itrig=1
if (ifunc.gt.0) go to 340
itrig=2
go to 330

340 continue
do 350 j=1, mode1
wvno(j,1) = wvno(j,2)
ur0(j,1) = ur0(j,2)
are(j,1) = are(j,2)
gamma(j,1) = gamma(j,2)
ur(j,1) = ur(j,2)
dur(j,1) = dur(j,2)
uz(j,1) = uz(j,2)
duz(j,1) = duz(j,2)
do 360 j=1, mode2
per3(j)=per2
read (icode) wvno(j,2), ur0(j,2), are(j,2), ugr, gamma(j,2)
read (icode) ur(j,2), dur(j,2), uz(j,2), duz(j,2)
do 360 continue

360 continue
go to 330

400 if (itrig.eq.0) go to 750
mod=mode1-mode2
mode0=mode2

700 continue
kk=itp-2
if (itp.eq.4 .and. kkf.eq.1) kk=4
go to (710, 720), icode

710 call excitr(per, kk)
if (itp.eq.4 .and. kkf.eq.2) call excitr(per, 3)
go to 750

720 call excitl(per, kk)
if (itp.eq.4 .and. kkf.eq.2) call excitl(per, 3)

750 continue
go to (760, 770), icode

760 write (7) per, xr
if (itp.eq.4 .and. kkf.eq.2) write (7) per, yr
go to 800

770 write (8) per, xl
if (itp.eq.4 .and. kkf.eq.2) write (8) per, yl

800 continue
return
end

subroutine noint(itp, icode)
common/dimen/ ur(200,2), dur(200,2), uz(200,2), duz(200,2),
* wvno(200,2), ur0(200,2), are(200,2), gamma(200,2)

- 64 -
common/ctrl/
ms, sr, si, xmom, r0, t0, np0, kkr, kkl, kkf, ino
common/resp/
df, bmax, mode, per1, per3(200),
xr(16), xl(4), yr(16), yl(4)
icode1=icode+6

300 continue
 do 310 j=1, 16
 xr(j)=0.0
 yr(j)=0.0
 310 continue
 do 320 j=1, 4
 xl(j)=0.0
 yl(j)=0.0

320 continue
 read(icode, end=900) ifunc, mode, per
 if(ifunc.le.0) per=-1.0
 if(ifunc.eq.0) go to 750
 do 330 j=1, mode
 read(icode) wvno(j, 1), ur0(j, 1), are(j, 1), vgr, gamma(j, 1)
 read(icode) ur(j, 1), dur(j, 1), uz(j, 1), duz(j, 1)
 wvno(j, 2)=wvno(j, 1)
 ur0(j, 2)=ur0(j, 1)
 are(j, 2)=are(j, 1)
 gamma(j, 2)=gamma(j, 1)
 ur(j, 2)=ur(j, 1)
 dur(j, 2)=dur(j, 1)
 uz(j, 2)=uz(j, 1)
 duz(j, 2)=duz(j, 1)
 330 continue
 if(ms.eq.1) go to 650
 np2=np0/2+1
 per1=1.0/((np2-1)*df)
 if(per1.le.per1) go to 600
 rewind 9
 read(9) npx, dtx, dfx, isign
 read(9) sr1, sil
 j=np2-2

400 continue
 if(j.eq.0) go to 600
 per2=1.0/(j*df)
 read(9) sr2, si2
 if(per2.gt.per2 and per1.le.per1) go to 500
 per1=per2
 sr2=sr1
 si2=sil
 j=j-1
 go to 400

500 sr=sr1+(per-per1)/(per2-per1)*(sr2-sr1)
 si=si1+(per-per1)/(per2-per1)*(si2-si1)
 go to 650

600 write(6, *) 'The period range of source pulse spectrum'
write(6, *) 'does not cover the period =', per
write(6, *) 'Now r=', r0, ' npt=', np0, ' dt=', dtx
write(6, *) 'and the period range is ', 1.0/((np2-1)*df),
* \(-1 \cdot i / df \)
write(6,*) 'TRY DIFFERENT npt, dt.'
stop

650 continue
kk=itp-2
if(itp.eq.4. and. kkk.eq.1) kk=4
go to (710, 720), icode

710 call excitr(per, kk)
if(itp.eq.4. and. kkk.eq.2) call excitr(per, 3)
go to 750

720 call excitl(per, kk)
if(itp.eq.4. and. kkk.eq.2) call excitl(per, 3)

750 continue
go to (760, 770), icode

760 write(7) per,xr
if(itp.eq.4. and. kkk.eq.2) write(7) per, yr
go to 800

770 write(8) per, xl
if(itp.eq.4. and. kkk.eq.2) write(8) per, yl

800 continue
go to 300

900 continue
return
end

subroutine excitr(per, ident)
This routine generates the Z and R components of
seismogram for
1: 45-deg dip-slip source 2: strike-slip source
3: dip-slip source 4: explosion source.

The number 200 in dimension declaration limits the
number of mode at a particular frequency not over 200.

dimension dk(4), dkk(4), vz(2, 4), vr(2, 4)
common/dimen/ ur(1(200, 2), dur(1(200, 2), ur1(200, 2),
* duzi(200, 2), uwi1(200, 2), ur01(200, 2),
* arei(200, 2), gamma(200, 2)
common/ctrl/ m:, sr0, si0, xmom, rx, tx, npx, kkr, kkl, kkk, ino
common/rasp/ df, bmax, mode, per1, per3(200), xz(2, 4),
* xr(2, 4), xt(2, 2), yz(2, 4), yr(2, 4), yt(2, 2)
do 90 i=1, 2
do 90 j=1, 4
vz(i, j)=0.0
vr(i, j)=0.0
90 continue
rxx=rx

spectra normalized to a distance of 1000 km.
if(ident.ge.2) rxx=1000.0
j1=1
if(ident.eq.3) j1=2
j2=mode
if(ident.eq.2) j2=1
if(j1.gt.j2) return
do 200 j=j1, j2
rat=0.0
if(no.eq.1) rat=(per-per1)/(per3(j)-per1)
wvno=wvno1(j,1) + (wvno1(j,2)-wvno1(j,1))*rat
atn=gamma(j,1)*rx
fact1=0.0
if(atn.1t.80.0) fact1=1./exp(atn)
atn=gamma(j,2)*rx
fact2=0.0
if(atn.1t.80.0) fact2=1./exp(atn)
omega=6.2831853/per
v1 = are1(j,1)/sqrt(wvno1(j,1)*rxx)
v2 = are1(j,2)/sqrt(wvno1(j,2)*rxx)
w1 = du1(j,1)+0.5*wvno1(j,1)*ur1(j,1)
w1 = w1*v1*fact1
u1 = w1*ur01(j,1)
w2 = du1(j,2)+0.5*wvno1(j,2)*ur1(j,2)
w2 = w2*v2*fact2
u2 = w2*ur01(j,2)
dk(1) = w1+(w2-w1)*rat
dkk(1)= u1+(u2-u1)*rat
w1 = wvno1(j,1)*ur1(j,1)
w1 = w1*v1*fact1
u1 = w1*ur01(j,1)
w2 = wvno1(j,2)*ur1(j,2)
w2 = w2*v2*fact2
u2 = w2*ur01(j,2)
dk(2) = w1+(w2-w1)*rat
dkk(2)= u1+(u2-u1)*rat
w1 = wvno1(j,1)*ur1(j,1)
w1 = w1*v1*fact1
u1 = w1*ur01(j,1)
w2 = wvno1(j,2)*ur1(j,2)
w2 = w2*v2*fact2
u2 = w2*ur01(j,2)
dk(3) = w1+(w2-w1)*rat
dkk(3)= u1+(u2-u1)*rat
w1 = du1(j,1)-wvno1(j,1)*ur1(j,1)
w1 = w1*v1*fact1
u1 = w1*ur01(j,1)
w2 = du1(j,2)-wvno1(j,2)*ur1(j,2)
w2 = w2*v2*fact2
u2 = w2*ur01(j,2)
dk(4) = w1+(w2-w1)*rat
dkk(4)= u1+(u2-u1)*rat
t0=xmom/2.5066283
t1=omega*tx-wvno*rxx-0.7853981632
t2=omega*tx-wvno*rxx-2.356194489
c1=cos(t1)
s1=sin(t1)

ct2 = cos(t2)
st2 = sin(t2)
do 100 k = 1, 4
 ct = ct1
 if(k.eq.3) ct = -st1
 st = st1
 if(k.eq.3) st = ct1
 vz(1,k) = vz(1,k) - dk(k)*t0*ct
 vz(2,k) = vz(2,k) - dk(k)*t0*st
 ct = ct2
 if(k.eq.3) ct = -st2
 st = st2
 if(k.eq.3) st = ct2
 vr(1,k) = vr(1,k) + dkk(k)*t0*ct
 vr(2,k) = vr(2,k) + dkk(k)*t0*st
100 continue
200 continue
 if(ms.eq.1) go to 220
 sr = sr0
 si = si0
 go to 240
220 sr = 0.0
 si = -per/6.2831853
240 continue
 do 300 k = 1, 4
 t0 = vz(1,k)
 vz(1,k) = sr + vz(1,k) - si + vz(2,k)
 vz(2,k) = sr + vz(2,k) + si + t0
 vr(1,k) = sr + vr(1,k) - si + vr(2,k)
 vr(2,k) = sr + vr(2,k) + si + t0
300 continue
 do 400 i = 1, 2
 do 400 j = 1, 4
 if(ident.eq.3) vz(i,j) = vz(i,j)
 if(ident.eq.3) vx(i,j) = vx(i,j)
 if(ident.eq.3) yz(i,j) = yz(i,j)
 if(ident.eq.3) yr(i,j) = yr(i,j)
400 continue
 return
end

subroutine excit(per, ident)
This routine generates the T component of seismograms
for 1: dip-slip source 2: strike-slip source.
vz(i,j) i=1,2 real & imag part j=1,2 source
dimension d(k,2), vz(2,2)
common dimen/ ut1(200,2), dut1(200,2), dz1(200,2),
* dzu1(200,2), wvnc1(200,2), ur01(200,2),
common/ctrl/
ms, sr0, si0, xmom, rx, tx, npx, kkr, kkl, kkf, ino
common/resp/
df, bmax, mode, per1, per3(200), xx(16),
xt(2, 2), yy(16), yt(2, 2)

s

90 continue
rxx=rxx
if(ident.ge.2) rxx=1000.0
j1=1
if(ident.eq.3) j1=2
j2=mode
if(ident.eq.2) j2=1
if(j1.gt.j2) return
do 100 j=j1, j2
rat=0.0
if(ino.eq.1) rat=(per-per1)/(per3(j)-per1)
wwno=wwno1(j, 1) + (wwno1(j, 2)-wwno1(j, 1))*rat
atn=gamma(j, 1)*rxx
fact1=0.0
if(atn.lt.80.0) fact1=1./exp(atn)
atn=gamma(j, 2)*rxx
fact2=0.0
if(atn.lt.80.0) fact2=1./exp(atn)
omega=6.2831853/per
v1 = ale1(j, 1)/sqrt(wwno1(j, 1)*rxx)
v2 = ale1(j, 2)/sqrt(wwno1(j, 2)*rxx)
w1 = dut1(j, 1)*v1*fact1
w2 = dut1(j, 2)*v2*fact2
dk(1) = w1+(w2-w1)*rat
w1 = wwno1(j, 1)*ut1(j, 1)
w1 = w1*v1*fact1
w2 = wwno1(j, 2)*ut1(j, 2)
w2 = w2*v2*fact2
dk(2) = w1+(w2-w1)*rat
t0=xmom/2.5066283
t1=omega*t*x-wwno*rxx+0.7853981632
c1=cos(t1)
st1=sin(t1)
v1(1, 1)=v1(1, 1) + dk(1)*t0*st1
v1(2, 1)=v1(2, 1) - dk(1)*t0*c1
v1(1, 2)=v1(1, 2) + dk(2)*t0*c1
v1(2, 2)=v1(2, 2) + dk(2)*t0*st1
100 continue
if(ms.eq.1) go to 120
sr=sr0
si=si0
go to 140
120 sr=0.0
si=-per/6.2831853
140 continue
do 200 k=1, 2
t0=vt(1,k)
vt(1,k)=sr*vt(1,k)-si*vt(2,k)
vt(2,k)=sr*vt(2,k)+si*t0

200 continue
do 300 i=1,2
do 300 j=1,2
if(identify.ne.3) xt(i,j)=vt(i,j)
if(identify.eq.3) yt(i,j)=vt(i,j)
300 continue
return
end

subroutine source(ms,dt)
enter source time function.

common/src/ src(500)
character*50 names
do 50 i=1,500
src(i)=0.0
50 continue
go to (100,200),ms-1
100 write(6,*) 'enter t1 for bell type of source'
read(5,*) t1
call pulse(src,500,dt,t1)
return
200 write(6,*)
* 'input source time function from here(1) or file(2)?'
read(5,*) i0
if(i0.eq.1) go to 250
write(6,*) 'enter file name storing source function:'
read(5,5) names
5 format(a)
open(9, file=names, status='old', form='formatted')
 rewind 9
j=1
220 continue
read(9,*,end=230) src(j)
j=j+1
if(j.eq.500)
* write(6,*) 'source timeseries too long! <500'
if(j.eq.500) go to 230
go to 220
230 continue
close(9)
return
250 continue
write(6,*)
* 'enter source time function for every (i-1)*dt:'
write(6,*) '(use -1000.0 to stop)'
j=1
260 continue
read(5,*) src(j)
j=j+1
if(src(j).lt.-999.0) go to 280
goto 260
280 src(j)=0.0
return
end

subroutine pulse(f,n,d,t,t1)
give a source time function
dimension f(1)
t1=0.0
t2=t1+t1
t3=t2+t1
t4=t3+t1
t5=t4+t1
do 100 i=1,n
y=(i-1)*dt
z=y-t1
f(i)=0.0
if(y.gt.t1) go to 101
goto 100
101 if(y.gt.t2) go to 102
 f(i)=(z/t1)*(z/t1)*0.5
goto 100
102 if(y.gt.t3) go to 103
 f(i)=-(z/t1)*(z/t1)*0.5+2.0*(z/t1) - 1.0
goto 100
103 if(y.gt.t4) go to 104
 f(i)=-(z/t1)*(z/t1)*0.5+2.0*(z/t1) - 1.
goto 100
104 if(y.gt.t5) go to 105
 f(i)=(z/t1)*(z/t1) * 0.5 -4.0 * (z/t1) + 8.0
goto 100
105 f(i)=0.0
100 continue
c area of pulse normalized to unity
do 200 i=1,n
200 f(i)=f(i)/(2.*t1)
return
end
gle81.f

f77 -i -lgle81.f -o gle81 -lcalcomp

This program follows the program wig81 and generates
the seismogram after passing through an instrument.

The instrument response is imposed in the frequency
domain.

The source mechanism should be given here.

The dimension needed has been reduced to the minimum,
and time series point can be as large as 8192.
The restriction for this point dimension comes from
the FFT program 'bigfft', which should exist in
the present working directory.

dimension jj(5),az(100),baz(100)
complex data(10),rr,tt,ff
common/dimen/ x(1026), y(1026)
common/pltes/ to,yend,y1,iplt,jctr1,bb,cc
common/keep/ s1,s2,s3,t1,t2,cos1,sin1,df
character*2 form(5), bb, cc
character*50 names

data form/'Z','R','SH','NS','EW'/

5 format(a)
10 format(/1x,a2, ' component for station at R=',f8.1,
 ' Az=',f6.1, ' is being processed. ')
20 format(/1x, 'ins=',i2, '9x, 'peak= ',f7.1, ' iresp= ',
 'i2/ ' dt= ',f9.5, ' ndist= ',i2, '7x, 'dphsrc= ',f6.1/
 ' Z,R,SH,N,E: ',5i2, '5x, ' Quake,Expl: ',i2/
 ' dip= ',f5.1, '5x, 'slip= ',f5.1, ' strk= ',f5.1)
30 format(a2,1x, ' (component)'
write(6,*) ' ' 'write(6,*) 'BE SURE ',
 'the program bigfft exist in the present directory, ''
write(6,*) ' ' 'write(6,*) 'and not be used by other similar jobs. '
write(6,*) ' ' 'write(6,*) 'calculate only(1), '
 ' plot only(2), or calculate and plot(3): '
read(5,*) iplt
write(6,*) 'enter the input file name: '
read(5,5) names
open(1, file=names, status='old', form='unformatted')
rewind 1
write(6,*) ' '
write(6,*) 'store the seismogram data: (y/n)'
read(5,5) bb
if(bb.eq.'n') go to 60
write(6,*)
* 'data (x,y) will be stored in the format of (2e15.8).'</write(6,*)
* 'enter the file name for storing seismogram data:'
read(5,5) names
open(9, file=names, status='new', form='formatted')
rewind 9
60 continue
if(iplt.eq.2) go to 70
open(2, file='bigfft.d', status='new',
* form='unformatted')
open(4, file='tmpp.d', status='scratch',
* form='unformatted')
if(iplt.ne.1) go to 70
write(6,*) '
write(6,*) 'enter output file name',
* 'for storing the plotting data:'
read(5,5) names
open(3, file=names, status='new', form='unformatted')
rewind 3
70 continue

c-120 input control parameters.
c
jctr1=-1
if(iplt.eq.1) go to 80
call plots(0,0,7)
write(6,*) 'original pen move: (1.8,10.3)',
read(5,*) x1,y1
call plot(x1,y1,-3)
yend=y1
ipen=1
write(6,*) 'choose the pen:',
read(5,*) ipen
call newpen(ipen)
if(iplt.eq.2) go to 140
80 continue
write(6,*) 'choose the type of instrument'
write(6,*) '1=0 15-100 WWSSN =1 30-100 WWSSN'
write(6,*) '2=6824-13 LP SYSTEM =3 6824-2 LP SYSTEM'
write(6,*) '4=WWSSN SP =5 USGS SP'
write(6,*) '6=CSSN SP'
write(6,*) '-1 do NOT pass through any instrument',
read(5,*) ins
write(6,*)
* 'enter the peak value for instrument response:'
read(5,*) peak
write(6,*)
* 'Take integration(-1), derivative(1), or not(0):'
read(5,*) iresp
read(1) dt,ndist,kkr,kkl
kk=kkr+kkl
read(1) dphsrc,nper

- 73 -
write(6,*)
if(kk.eq.2) write(6,*)
* 'Both Rayleigh and Love eigens been generated'
if(kkr.eq.1.and.kkl.eq.0) write(6,*)
* 'Only Rayleigh eigens been generated.'
if(kkr.eq.0.and.kkl.eq.1) write(6,*)
* 'Only Love eigens been generated.'
write(6,*)
write(6,*)
* 'Which components to be plotted? (Z,R,SH,NS,EW)'
write(6,*)
* 'if yes answer 1, no answer 0 (e.g. 1,0,0,1,1)'
read(5,*) (jj(i),i=1,5)
if(kkr.ne.0) go to 100
j=jj(1)+jj(2)
if(j.eq.0) go to 100
write(6,*) '"no P-SV wave ready, run again.'"
go to 1000
100 continue
if(kkl.ne.0) go to 120
if(jj(3).eq.0) go to 110
write(6,*) '"no SH wave ready, run again.'"
go to 1000
110 continue
120 continue

c
\texttt{c-150 input source mechanism.}
c
write(6,*)
write(6,*)
* 'no. of epicentral distance generated = ',ndist
write(6,*) '"source depth = ',dphsrc,"' dt = '"',dt
write(6,*)
* write(6,*) '"earthquake source(1) or explosion(2)?'
read(5,*) m3
degrad=3.141592653/180.0
if(m3.eq.2) go to 130
write(6,*) '"enter the source mechanism dip,slip,stryk:'"
read(5,*) dip0,slip0,stryk0
130 continue
c
if(iplt.eq.1) write(3) ins,peak,iresp,dt,ndist,dphsrc,
* jj,m3,dip0,slip0,stryk0
go to 150
140 continue
read(1) ins,peak,iresp,dt,ndist,dphsrc,jj,m3,dip0,
* slip0,stryk0
write(6,20) ins,peak,iresp,dt,ndist,dphsrc,jj,m3,
* dip0,slip0,stryk0
150 continue
c
c-900 the main loop.
c
iazm=0
iaz=-1

stations at different epicentral distances.
do 900 kdist=1, ndist
iaz=iaz+1
if(iplt.eq.2) go to 210
read(1) ro, to, np0
write(6,*)
write(6,*) 'r0=', ro, 't0=', to, 'np0=', np0
write(6,*)
np2=np0/2+1
df=1.0/(np0*dt)
if(iaz.lt.iazm) go to 180
iaz=-1
write(6,*) 'enter Az, bAz (in degree):'
write(6,*) '(use bAz=0.0 to set bAz=Az+180.0'
write(6,*) 'use -1,-1 to stop)
k=1
160 continue
read(5,*) az(k), baz(k)
if(az(k).eq.-1.0 and baz(k).eq.-1.0) go to 170
if(baz(k).eq.0.0) baz(k)=az(k)+180.0
if(baz(k).ge.360.0) baz(k)=baz(k)-360.0
k=k+1
go to 160
170 naz=k-1
write(6,*)
* 'how many sets of different distances FOLLOWED will use'
write(6,*)
* 'the above azimuth data: (if not know, enter 100)'
read(5,*) iazm
180 continue
write(6,*)
write(6,*) 'wait.'
rewind 4
do 200 k=np2,1,-1
read(1) (data(i),i=1,10)
write(4) (data(i),i=1,10)
200 continue
if(iplt.eq.1)
* write(3) ro, to, np0, naz, (az(k), baz(k), k=1, naz)
210 continue
if(iplt.eq.2)
* read(1) ro, to, np0, naz, (az(k), baz(k), k=1, naz)
ni=np0/1024
nm=np0-ni*1024
ni=ni+1
if(nm.eq.0) ni=ni-1

stations at different azimuths.
do 900 kaz=1, naz
phi0=az(kaz)

- 75 -
phi=bar(kaz)
if(iplt.eq.2) go to 310
phi=phi*degrad
cos1=cos(phi)
sin1=sin(phi)
if(m3.eq.2) go to 300.
c-300 dislocation source.
c
strk1=phi0-strk0
dip=dip0*degrad
slip=slip0*degrad
strk1=strk1*degrad
strk2=2.*strk1
dip2=2.*dip
s1=sin(slip)*sin(dip2)
s2=-(cos(slip)*sin(dip)*sin(strk2)+
* 0.5*sin(slip)*sin(dip2)*cos(strk2))
s3=sin(slip)*cos(dip2)*sin(strk1)-
* cos(slip)*cos(dip)*cos(strk1)
t1=sin(slip)*cos(dip2)*cos(strk1)+
* cos(slip)*cos(dip)*sin(strk1)
t2=cos(slip)*sin(dip)*cos(strk2)-
* 0.5*sin(slip)*sin(dip2)*sin(strk2)
300 continue
310 continue
c-500 store the spectrum data in bigfft.d
c
different components at the same station.
do 900 j=1,5
if(j*j(j).eq.0) go to 900
cctimeform(j)
write(6,10) cc,r0,phi0
if(iplt.eq.2) go to 650
rewind 2
rewind 4
isign=+2
write(2) np0,dt,df,isign
do 500 k=np2,2,-1
read(4) (data(i),i=1,10)
freq=(k-1)*df
go to (400,320),m3
320 go to (330,340,350,360,370),j
330 ff=data(4)
go to 460
340 ff=data(8)
go to 460
350 write(6,*) 'explosive source no SH wave. run again.'
go to 1000
360 ff=-cos1*data(8)
go to 460
370 ff=-sin1*data(8)
go to 460
400 go to (410, 420, 430, 440, 440), j
410 ff=s1*data(1)+s2*data(2)+s3*data(3)
go to 460
420 ff=s1*data(5)+s2*data(6)+s3*data(7)
go to 460
430 ff=t1*data(9)+t2*data(10)
go to 460
440 rr=s1*data(5)+s2*data(6)+s3*data(7)
tt=t1*data(9)+t2*data(10)
ct1=-cos1
st1=sin1
if(j.eq.4) go to 450
ct1=-sin1
st1=-cos1
450 ff=ct1*rr+st1*tt
460 continue
call resp(ff,freq,ins,peak,irep)
write(2) ff
500 continue
ff=cmplx(0.0,0.0)
write(2) ff
c
system call: perform big fft
close(2)
call system('bigfft',kturn)
open(2,file='bigfft.d',status='old',
* form='unformatted')
rewind 2
read(2) npx,dtx,dfx,inx

c-600 find overall max, min

cymax=-1.0e+38
cymin=1.0e+38
do 600 k=1,np0,2
read(2) y1,y2
if(y1.gt.ymax) ymax=y1
if(y2.gt.ymax) ymax=y2
if(y1.lt.ymin) ymin=y1
if(y2.lt.ymin) ymin=y2
600 continue
xmin=0.0
xmax=(np0-1)*d
if(iplt.eq.1) write(3) xmin,xmax,ymin,ymax
rewind 2
read(2) npx,dtx,dfx,inx
if(iplt.eq.1) go to 660
650 continue
if(iplt.eq.2) read(1) xmin,xmax,ymin,ymax
plot axis
660 continue
call seiplt(xmin,xmax,ymin,ymax,xmin1,xmax1)
if(bb.eq.'n') go to 680
write(9,30) cc
write(9,*)
* 'dt=', 'dt', ' nn=', 'np0', ' from: ', xmin1, ' to ', xmax1, ' sec'
if(m3.eq.1) write(9,*)
* 'source depth= ', dphsrc, ' dip= ', dip0, ' slip= ',
* slip0, ' strk=', strk0
if(m3.eq.2) write(9,*)
* 'source depth= ', dphsrc, ' explosion source'
write(9,*)
* 'r=', r0, ' phi=', phi0, ' to=', t0, ' instrument=', ins,
* ' peak=', peak
680 continue

C---800 divide the whole length into sub-length with 1024 as max.

do 800 k=1,n1
 k0=k
 n0=1024
 if(k.eq.n1.and.nm.ne.0) n0=nm
 go to (700,750,700), iplt
700 do 720 i=1,n0,2
 read(2) yi, yi(i+1)
720 continue
 if(iplt.eq.1) write(3) (yi, i=1,n0)
 go to 760
750 read(1) (yi, i=1,n0)
760 continue
 call seical(k0, n1, n0, dt, r0, xmin1, xmax1)
800 continue
900 continue
1000 continue
 if(iplt.ne.1) call plot(8.0,0.0,999)
 close(1)
 close(2)
 close(3)
 close(4, status='delete')
 close(9)
 write(6,*)
 write(6,*) 'gle81 finished'
 write(6,*)
 stop
end

C
C subroutine resp(ff, freq, ins, peak, iresp)
C This routine imposes the instrument response on the
C seismogram by frequency domain multiplication.
C complex ff
C fr=real(ff)
C fi=imag(ff)
C if(ins.lt.0) go to 250
ins = 0 WWSSN 15-100 = 1 WWSSN 30-100
ins = 2 LP SYSTEM 6824-13 = 3 LP SYSTEM 6824-2
ins = 4 WWSSN SP = 5 USGS SP
ins = 6 CSSN SP

go to (110, 110, 120, 120, 130, 130, 130), ins+1

110 call wussn(freq, peak, ins, pr, pi)
go to 200

120 call lpsys(freq, peak, ins, pr, pi)
go to 200

130 call sperd(freq, peak, ins, pr, pi)

200 continue

 tmp=f(r
 fr=f(r+pr-fi*pi
 fi=tmp*pi+fi*pi

250 if(iresp.eq.0) go to 400

 omega=2. *3.141592653*freq
 if(iresp.eq.-1) go to 300

 tmp=f(r
 fr=-fi*omega
 fi=tmp*omega

 go to 400

300 continue

 tmp=f(r
 fr=fi/omega
 fi=-tmp/omega

400 ff=complx(fr, fi)

 return
end

c

c

subroutine wussn(freq, peak, ins, xr, xi)
c
ins eq 0 15-100 WWSSN
c
ins eq 1 30-100 WWSSN
c
peak magnifications are 350, 420, 1400, 2300, 5600
c
w(e=6.2831853*freq
index=(peak+1)/375
if(ins.gt.0) go to 200

100 continue

go to (1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5), index

 1 fmag=278.
 sigma=0.003
 go to 6

 2 fmag=556.0
 sigma=0.013
 go to 6

 3 fmag=1110.
 sigma=0.047
 go to 6

 4 fmag=2190.
 sigma=0.204
 go to 6

 5 fmag=3950.
sigma=0.805
6 zeta=0.93
 zeta1=1.0
 wn=.418879
 wn1=.062831853
 go to 300
200 continue
 go to(10, 20, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 50),
 * index
10 fMag = 251.9
 sigma = 0.003
 go to 60
20 fMag = 503.1
 sigma = 0.012
 go to 60
30 fMag = 1001.5
 sigma = 0.044
 go to 60
40 fMag = 1941.9
 sigma = 0.195
 go to 60
50 fMag = 2241.8
 sigma = .767
60 zeta = 1.5
 zeta1 = 1.0
 wn =.2094395
 wn1 =.062831853
300 continue
 ar = (we*we-wn*wn)*(we*we-wn1*wn1)-4.*zeta*zeta1*wn*wn1*
 * (1.-sigma)*we*we
 ai=2.*we*(zeta1*wn1*(wn*wn-we*we)+zeta*wn)
 * (wn1*wn1-we*we))
 factor = fMag*we*we*we / (ai*ai + ar*ar)
 xr =-ai * factor
 xi =-factor * ar
 return
end

--

subroutine lpsys(freq, peak, ins, xr, xi)
LRSM response for LP system with filter 6824-2 ins=3
LRSM response for LP system with filter 6824-13 ins=2
phase response obtained from hilbert transform of amplitude
response, gain normalized to 1.0 at 25 seconds.
dimension fre(28), p(56), phi(56)
the first 28 p and phi are for 6824-2, next
28 are for 6824-13
data freq/.001, .002, .003, .004, .005, .006, .007, .008, .009,
1.01, .02, .03, .04, .05, .06, .07, .08, .09, 1.1, 1.2, 1.3, 1.4, 1.5,
2.7, 8.9, 1.7
data phi/263.9, 257.9, 251.9, 245.6, 239.3, 233.1, 227.1, 221.1, 1214.6, 208.3, 134.9, 73.2, 15.3, -33.2, -71.2, -100.1, -122.4,
2-140.0, -153.8, -213.1, -232.6, -242.8, -249.2, -253.0, -256.9,
3-259.3, -261.2, -262.9, -265.0, 259.1, 253.4, 248.1, 242.8, 236.9,
4 230.3, 223.4, 216.4, 209.7, 153.4, 102.0, 54.6, 14.4, -16.8,
5 -40.4, -58.2, -73.3, -85.4, -146.4, -153.9, -155.3, -156.4,
6-157.7, -159.2, -160.0, -162.3, -163.8/
data p/. 0000.5, .00040, .00135, .00321, .00625, .01077, .01706, .02546,
1.03631, .05006, .03417, .73604, 1.00000, .97633, .79807, .61417, .46105,
2.34464, .26315, .03583, .01097, .00468, .00240, .00139, .00087, .00058,
3.00040, .00029,
4 .000015, .000391, .00131, .00310, .00609, .01068, .01713, .02556,
5 .03618, .04849, .28030, .67553, 1.0, 1.09448, 1.0044, .36969, .74511,
6 .63557, .54818, .12153, .04830, .02741, .01827, .01328, .01017,
7 .008052, .006545, .005404/
m = 28
degrad = 0.01745329
if(freq gt 0.5) freq = 0.5
if(freq lt 0.005) freq = 0.005
do 200 i = 1,m
if(freq ge fre(i), and, freq le fre(i+1)) go to 160
200 continue
160 continue
if(ins eq 2) j = i+28
if(ins eq 3) j = i
pf = phi(j)+((phi(j+1)-phi(j))/(fre(i+1)-fre(i)))*(freq-fre(i))
ph = p(j) + (p(j+1) - p(j))/(fre(i+1)-fre(i))
pe = pf * degrad
xr = cos(pf) * ph * peak
xi = sin(pf) * ph * peak
return
end

subroutine sperd(freq, peak, ins, xr, xi)
ins = 4 WWSSN SP
is = 5 USGS SP
is = 6 CDSN SP
The values for WWSSN and USGS from Luh (1977, BSSA, p. 950)
double complex ss(20),ww,tt
double precision xnorm,a(20)
go to (100,200,300), ins=3
100 continue
m=3
n=5
xnorm=1.007d+1
a(6)=1.0d+0
a(5)=5.68d+0
a(4)=1.51d+1
a(3)=2.21d+1
a(2)=1.84d+1
a(1)=7.22d+0
go to 400
200 continue
 m=4
 n=0
 xn0=2.921d+15
 a(11)=1.0d+0
 a(10)=4.315d+2
 a(9)=8.449d+4
 a(8)=7.520d+6
 a(7)=4.032d+8
 a(6)=1.161d+10
 a(5)=2.041d+11
 a(4)=1.482d+12
 a(3)=2.348d+12
 a(2)=1.589d+12
 a(1)=2.665d+11
 go to 400
300 continue
 c
 Ts=1.0 Tg=0.23 hs=0.8 hg=0.8 sigma=0.0
 m=3
 n=4
 xn0=.307321224d+2
 a(5)=1.0d+0
 a(4)=.855652d+1
 a(3)=.310340d+2
 a(2)=.372023d+2
 a(1)=.189036d+2
400 continue
 c
 w0=dcmplx(0.0d+0, db1e(freq))
 s0(1)=w0
 do 500 i=2, n
 s0(i)=s0(i-1)*w0
500 continue
 c
 t0=dcmplx(a(1), 0.0)
 do 600 i=1, n
 t0=t0+a(i+1)*s0(i)
600 continue
 c
 t0=s0(m)/t0
 xn0=xn0*pea0
 x0=real(t0)*xn0
 xi=dimag(t0)*xn0
 return
end

c

subroutine swilt(xmin, xmax, ymin, ymax, xmin1, xmax1)
c
CALC00M plot.
c
plot axis only.
common/pltses/ t0, yend, y1, ip0l, jctrl, bb, cc
common/plott/ xnp1, xnp2, ynp1, ynp2, x1, x0
character*2 bb, cc
x1unit: how many unit per inch
c
nseg: how many unit for one segment in time axis
if(kctrl. le. jctrl) go to 100
write(6,*)
write(6,*) 'Total time axis from , xmin, to , xmax'
write(6,*)
* 'Enter time window to be plotted: (start and end time)'
write(6,*) ' (use -1, -1 to plot the whole time span)'
read(5,*) xmin1, xmax1
if(xmin1. lt. 0.0 and. xmax1. lt. 0.0) then
 xmin=xmin
 xmax=xmax
endif
xmin=abs(xmax1-xmin1)
if(iplt.eq.1) go to 90
write(6,*)
* 'how many inches for time axis, (total= ', xmin1, 'sec)'
write(6,*) 'how many inches for amplitude axis,'
write(6,*)
* 'and how many units for one segment? (as 5.0, 0.8, 10.0)'
read(5,*) x1, y1, xseg
90 continue
write(6,*)
* 'how many plots FOLLOWED will use above numbers?'
write(6,*) 'if not know, enter 100.'
read(5,*) jctrl
kctrl=kctrl+1
if(iplt.eq.1) return
ymin=ymax
if(abs(ymin).gt. ymax) ymax=abs(ymin)
yend=yend-y1-0.68
if(yend.1.0.5) call plot(0.5, y1-yend, -3)
yend=yend1
if(yend1.1.0.5) yend=y1-y1-0.68
call plot(0.0, -y1-0.68, -3)
xmin=xmin1/x1
ii=xmin1/xseg
if(xmin1.1.0.0) ii=ii-1
x0=xseg*ii
xnp1=x0
xnp2=xinut
ynp1=-ymxx
ynp2=2.*ymxx/y1
power=alog10(ymxx)
if(power.1.0.) power=power-1.
power=aint(power)
yy=ymxx/10 **power
call plot(-0.16, 0.0, 3)
call plot(-0.16, y1, 2)
call plot(-0.16, y1, 2)
call symbol(-0.175, -0.025, 0.09, 1h, 90, .1)
call number(999., 999., 0.09, y9, 90., 1)
call number(999., y1=0.19, 0.09, yy, 90., 1)
call symbol(-0.35, y1=0.29, 0.11, 3h*10, 90., 3)
call number(-0.4, 999., 0.06, power, 90., -1)
call symbol(-0.6, y1=0.45, 0.12, cc, 0.0, 2)
xr=x1+0.03
yr=0.5*y1-0.05
xlen=abs(xmax1-x0)/xinut
grid=xseg/xinut
call plot(0.0, -0.1, 3)
call plot(0.0, -0.14, 2)
if(x.0.lt.0.0) xshift=-0.15
if(x.0.ge.0.0) xshift=-0.03
if(x.0.ge.10.0) xshift=-0.08
if(x.0.ge.100.0) xshift=-0.11
call number(xshift,-0.25,0.08,x0,0.0,-1)
call plot(0.0, -0.1, 3)
x1=1.
400 xx=x1*grid
call plot(xx, -0.1, 2)
call plot(xx, -0.14, 2)
rsym=x0+xseg*x1
if(rsym.lt.0.0) xshift=-0.15
if(rsym.ge.0.0) xshift=-0.03
if(rsym.ge.10.0) xshift=-0.08
if(rsym.ge.100.0) xshift=-0.11
if(rsym.ge.1000.0) xshift=-0.15
call number(xx+xshift,-0.25,0.08,rsym,0.0,-1)
call plot(xx, -0.1, 3)
x1=x1+1.
if(abs(xx).gt.xlen) go to 500
go to 400
500 continue
if(t0 .le. 0.0) go to 520
call symbol(xx/2.3,-0.45,0.14,'T-',0.0,2)
call number(999., 999., 0.1, t0, 0.0, 2)
go to 600
520 call symbol(xx/2.05,-0.45,0.14,'T',0.0,1)
600 continue
call plot(0.0, 0.0, 0.3)
return
end

 subroutine seical(j0,n1,nn,dt,r0,xmin1,xmax1)
plot seismogram.
common/dimen/ x(1026), y(1026)
common/plotf/ xnp1,xnp2,ynp1,ynp2,xx,yr
common/pltses/ t0,yend,y1,iplt,jctrl,bb,cc
character*2 bb,cc
i0=(j0-1)*1024+1
i00=i0+1023
if(nn.1t.1024) i00=i0+nn-1
\(x_0 = (i0-1) \times dt \)
\(x00 = (i00-1) \times dt \)
if \((x0, le, x_{min1}, \text{and} \, x00, le, x_{min1})\) go to 500
if \((x0, ge, x_{max1}, \text{and} \, x00, ge, x_{max1})\) go to 500
do 100 i=1,nn
\(x(i) = x0+(i-1) \times dt \)
100 continue
do 200 i=1,nn
if \((x(i), ge, x_{min1})\) go to 250
200 continue
250 continue
mm\(=i-1 \)
do 300 i=1,nn
if \((x(i), gt, x_{max1})\) go to 350
300 continue
350 continue
mm1\(=i-1 \)
kk\(=mm1-mm \)
do 400 i=1,kk
\(j=mm+i \)
x\((i) = x(j) \)
y\((i) = y(j) \)
400 continue
if \((iplt, eq, 1)\) go to 420
\(x(kk+1) = xnp1 \)
\(x(kk+2) = xnp2 \)
y\((kk+1) = ynp1 \)
y\((kk+2) = ynp2 \)
call line\((x, y, kk, 1, 0, 0)\)
420 continue
if \((bb, eq, \text{‘n’})\) go to 500
do 450 i=1,kk
write\((9, 10) \, x(i), y(i) \)
end
format\((2e15.8)\)
450 continue
if \((iplt, eq, 1)\) return
500 continue
if \((j0, eq, n1)\) call number\((xr, yr, 0, 1, r0, 0, 0, -1)\)
return
end

program spec81.f

f77 -i -l spec81.f -o spec81 -l calcomp2

This program follows the program wig81 and plots the
spectrum after passing through an instrument.

The source mechanism is included here.
The whole processes are treated in the freq domain.

The dimension needed has been reduced to the minimum,
and the number of series point is not limited.

-NOV 1, 1981

dimension jj(5), az(100), baz(100)
complex data(10,2), rr, tt, ff
common/dimen/ x(1026), y(1026)
common/ctrl/ ictrl, size, xy(6)
character*2 form(5), cc, yorn
character*50 names
data form/'Z ', 'R ', 'SH', 'NS', 'EW'/
format(a)
10 format(/1x,a2, ' component for station at R=', f8.1, ' Az=',
 ' f6.1, ' is being processed. ')
20 format(/1x, 'ins=', i2, 'x', 'peak=', f7.1, ' iresp=', i2/
 ' dt=', f9.5, ' ndist=', i2, 'x', 'dphsrc=', f6.1/
 ' Z,R,SH,N,E: ', 5i2, 5x, ' Quake, Expl: ', i2/
 ' Spectrum Plot: ', i2/
 ' dip=', f5.1, 5x, 'slip=', f5.1, 5x, 'strk=', f5.1)
write(6,*)
write(6,*) 'calculation only(1), plot only(2), or both(3):'
read(5,*) iplt
write(6,*)
write(6,*) 'enter the input file name:
read(5,5) names
if(iplt.ne.2)
 open(1, file=names, status='old', form='unformatted')
if(iplt.eq.2)
 open(9, file=names, status='old', form='formatted')
rewind 1
rewind 9
if(iplt.eq.2) go to 60
open(2, file='tmp0.d', status='scratch', form='unformatted')
open(4, file='tmp2.d', status='scratch', form='unformatted')
if(iplt.ne.1) go to 60
write(6,*) 'enter the output file name:
read(5,5) names
open(3, file=names, status='new', form='formatted')
rewind 3
60 continue

c-120 input control parameters.
if(iplt.eq.1) go to 70
call plots(0,0,7)
write(6,*), 'original pen move: (2.0,2.0)',
read(5,*) xi,yi
call plot(xi,yi,-3)
ictrl=0
write(6,*), 'choose the pen:',
read(5,*) ipen
call newpen(ipen)
write(6,*), 'enter size (e.g. 1.0):'
read(5,*) size
call factor(size)
write(6,*), 'plot the observed data? (y/n):'
read(5,*) yorn
if(yorn.eq.'n') go to 70
write(6,*), 'enter the file name of observed data:'
read(5,*) names
open(8,filenames,statuse='old',form='formatted')
rewind 8
continue
if(iplt.eq.2) go to 140
write(6,*), 'X-axis to be period(1) or freq(2):'
read(5,*) iaxis
if(iplt.eq.2) go to 140
write(6,*), 'choose the type of instrument'
write(6,*), '(-0 15-100 WWSSN =1 30-100 WWSSN',
write(6,*), ' =2 6824-13 LP SYSTEM =3 6824-2 LP SYSTEM',
write(6,*), ' =4 WWSSN SP =5 USGS SP',
write(6,*), ' =6 CSSN SP',
write(6,*), ' =-1 do NOT pass through any instrument',
read(5,*) ins
write(6,*), 'enter the peak value for instrument response:',
read(5,*) peak
write(6,*), 'take the integration(-1), derivative(1), or not(0):'
read(5,*) iresp
read(1) dt,ndist,kkr,kkl,kkf
kk=kkr+kkl
read(1) dph,nc,nper
write(6,*), '/
if(kk.eq.2) write(6,*), 'Both Rayleigh and Love eigens been generated.',
if(kkr.eq.1.and.kkl.eq.0) write(6,*), 'Only Rayleigh eigens been generated.',
if(kkr.eq.0.and.kkl.eq.1) write(6,*), 'Only Love eigens been generated.',
write(6,*), '/
write(6,*), 'Which components to be plotted? (Z,R,SH,NS,EW)',
write(6,*), 'if yes answer 1, no answer 0 (e.g. 1,0,0,0,1,1)'
read(5,*) (jj(i), i=1,5)
if(kkr.ne.0) go to 100
j=j+1
if(j.eq.0) go to 90
write(6,*) 'no P-SV wave ready, run again.'
go to 1000
90 continue
100 if(kkl.ne.0) go to 120
if(jj(3).eq.0) go to 110
write(6,*) 'no SH wave ready, run again.'
go to 1000
110 continue
120 continue

!-130 input source mechanism.
write(6,*)
write(6,*) 'no. of distance = ', ndist, ' dt=', dt
write(6,*)
write(6,*) 'source depth = ', dphsrc, ' spectrum type = ', kkf
read(5,*) m3
degrad=1.141592653/180.0
if(m3.eq.2) go to 130
write(6,*) 'enter the source mechanism dip, slip, strk:
read(5,*) dip0, slip0, strk0
130 continue

if(iplt.eq.1) write(3,*) 'control parameter:'
if(iplt.eq.1) write(3,*) ins, peak, iresp, dt, ndist, dphsrc,
kkf, jj, m3, dip0, slip0, strk0
* go to 150
140 continue
read(9,5) names
read(9,*) ins, peak, iresp, dt, ndist, dphsrc, kkf, jj, m3,
dip0, slip0, strk0
write(6,20) ins, peak, iresp, dt, ndist, dphsrc, jj, m3, kkf,
dip0, slip0, strk0
150 continue

!-900 the main loop.

iaim=0
iaz=-1
do 900 kdist=1, ndist
iaz=iaz+1
if(iplt.eq.2) go to 210
read(1) ro, t0, np0
write(6,*)
write(6,*) 'ro=', ro, ' to=', t0, ' np0=', np0
write(6,*)
if(iaz.lt.iaim) go to 175
iaz=-1
900 continue
write(6, *) 'enter Az, bAz (in degree):'
write(6, *) '(use bAz=0.0 to set bAz=Az+180.0)
write(6, *) ' use -1,-1 to stop')
k=1
160 continue
read(5, *) az(k), baz(k)
if(az(k), eq. -1.0. and. baz(k). eq. -1.0) go to 170
if(baz(k), eq. 0.0) baz(k)=az(k)+180.0
if(baz(k), ge. 360.0) baz(k)=baz(k)-360.0
k=k+1
go to 160
170 naz=k-1
write(6,*)
* 'how many sets of different distances (r) FOLLOWED'
write(6,*) ' will use ',
* 'the above azimuth data: (if not know, enter 100)'
read(5, *) iazm
175 continue
write(6,*) '
write(6,*) 'wait'
rewind 4
k=1
180 continue
do 190 j=1,kkf
read(1) per,(data(i, j), i=1,10)
190 continue
if(per.le.0.0) go to 200
write(4) per,((data(i, j), i=1,10), j=1, kkf)
k=k+1
go to 180
200 continue
np2=k-1
if(iplt.eq.1)
* write(3,*) 'r0,t0,npt,nstation,az1,baz1,az2,baz2,...'
if(iplt.eq.1)
* write(3,*) r0,t0,np0,naz,(az(k),baz(k),k=1,naz)
210 continue
if(iplt.eq.2) read(9,5) names
if(iplt.eq.2)
* read(9,*) r0,t0,np0,naz,(az(k),baz(k),k=1,naz)
do 900 kaz=1,naz
phi0=az(kaz)
phi1=baz(kaz)
if(iplt.eq.baz) go to 310
phi=phi1*degrad
cos1=cos(phi)
sin1=sin(phi)
if(m3.eq.2) go to 300
c-300 dislocation source.
c
strk1=phi0-strk0
dip=dip0*degrad
slip=slip0*degrad
strk1=strk1*degrad
strk2=2.*strk1
dip2=2.*dip
s1=sin(slip)*sin(dip)
s2=-cos(slip)*sin(dip)*sin(strk2)+
* 0.5*sin(slip)*sin(dip)*cos(strk2))
s3=sin(slip)*cos(dip)*cos(strk1)-
* cos(slip)*cos(dip)*cos(strk1)
t1=sin(slip)*cos(dip)*cos(strk1)+
* cos(slip)*cos(dip)*sin(strk1)
t2=cos(slip)*sin(dip)*cos(strk2)-
* 0.5*sin(slip)*sin(dip2)*sin(strk2)
300 continue
310 continue

C

C do 900 j=1,5
if(jj(j).eq.0) go to 900
cc=form(j)
write(6,10) cc,r0,phi0
do 900 k=1,kff
if(iplt.eq.2) go to 640
rewind 2
rewind 4
kzero=0
do 500 k=1,np2
read(4) per,((data(i,j0),i=1,10),j0=1,kff)
freq=1./per
900 go to (400,320),m3
320 go to (330,340,350,360,370),j
330 ff=data(4,kf)
go to 460
340 ff=data(8,kf)
go to 460
350 write(6,*) 'explosive source no SH wave. run again.'
go to 1000
360 ff=-cos1*data(8,kf)
go to 460
370 ff=-sin1*data(8,kf)
go to 460
400 go to (410,420,430,440,440),j
410 ff=s1*data(1,kf)+s2*data(2,kf)+s3*data(3,kf)
go to 460
420 ff=s1*data(5,kf)+s2*data(6,kf)+s3*data(7,kf)
go to 460
430 ff=t1*data(9,kf)+t2*data(10,kf)
go to 460
440 rr=s1*data(5,kf)+s2*data(6,kf)+s3*data(7,kf)
tt=t1*data(9,kf)+t2*data(10,kf)
ct1=-cos1
st1=sin1
if(j.eq.4) go to 450
c1=-sin1
st1=-cos1
450 ff=ct1*rr+st1*tt
460 continue
 call resp(ff, freq, ins, peak, iresp)
gg=sqrt(real(ff)*real(ff)+aimag(ff)*aimag(ff))
 if(gg.le.1.e-33) kzero=kzero+1
 if(gg.le.1.e-35) go to 500
 write(2) freq, gg
500 continue
 npp=npp2-kzero
 c-600 find the max/min
 rewind 2
 ymax=-1.0e+38
 ymin= 1.0e+38
 xmax=-1.0e+38
 xmin= 1.0e+38
 do 600 k=1,npp
 read(2) freq, gg
 if(gg.gt.ymax) ymax=gg
 if(gg.lt.ymin) ymin=gg
 if(freq.gt.xmax) xmax=freq
 if(freq.lt.xmin) xmin=freq
 600 continue
 tmp=xmin
 if(iaxis.eq.1) xmin=1./xmax
 if(iaxis.eq.1) xmax=1./tmp
 rewind 2
 if(iplt.ne.1) go to 640
 write(3,*) 'npt0, xmin, xmax, ymin, ymax, T/f:
 write(3,*) npp, xmin, xmax, ymin, ymax, iaxis
 if(iaxis.eq.1) write(3,*) 'period amp'
 if(iaxis.eq.2) write(3,*) 'freq amp'
 go to 660
640 continue
 if(iplt.ne.2) go to 650
 read(9,5) names
 read(9,*) npp, xmin, xmax, ymin, ymax, iaxis
 read(9,5) names
650 continue
 plot axis
 if(kf.eq.1) call splt(xmin, xmax, ymin, ymax, cc, iaxis)
 if(kf.eq.1 and yorn.eq.'y') call obs(iaxis)
660 continue
 n1=npp/1024
 nm=npp-n1*1024
 n1=n1+1
 if(nm.eq.0) n1=n1-1
 c-800 divide the whole length into sub-length with 1024 as max.
do 800 k=1,n1
 n0=1024
 if(k.eq.n1 and nm.ne.0) n0=nm
 if(iplt.eq.2) go to 750

- 91 -

do 700 i=1,n0
read(2) x(i),y(i)
if(iaxis.eq.1) x(i)=1./x(i)
700 continue
if(iplt.eq.1) write(3,40) (x(i),y(i),i=1,n0)
if(iplt.eq.1) go to 800
750 continue
if(iplt.eq.2) read(9,40) (x(i),y(i),i=1,n0)
40 format(2e13.7)
call sppcall(n0)
800 continue
900 continue
1000 continue
if(iplt.ne.1) call plot(8.0,0.0,999)
close(1)
close(2,status='delete')
close(3)
close(4,status='delete')
if(yorn.eq.'y') close(8)
if(iplt.eq.2) close(9)
write(6,*) 'spec81 finished'
write(6,*) 'spec81 finished'
stop
end

subroutine resp(ff,freq,ins,peak,iresp)
This routine imposes the instrument response on the
seismogram by frequency domain multiplication.
complex ff
fr=real(ff)
fi=aimag(ff)

if(ins.lt.0) go to 250

ins = 0 WWSSN 15-100 = 1 WWSSN 30-100
 = 2 LP SYSTEM 6824-13 = 3 LP SYSTEM 6824-2
 = 4 WWSSN SP = 5 USGS SP
 = 6 CSSN SP

250 if(iresp.eq.0) go to 400
omega=2.*3.141592653*freq
if(iresp.eq.-1) go to 300

-92-
fr = fi*omega
fi = tmp*omega
go to 400
300 continue
tmp = fr
fr = fi/omega
fi = tmp/omega
400 ff = cmplx(fr, fi)
return
end

C

C subroutine wussn(freq, peak, ins, rr, xi)
C
C ins = eq 0 15-100 wussn
C ins = eq 1 30-100 wussn
C peak magnification is fixed at 350, 700, 1400, 2800, 5600
we = 6 2831853*freq
index = (peak + 1.) / 375.
if (ins .gt. 0) go to 200
 go to (1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5), index
1 fmag = 278.
sigma = 0. 003
 go to 6
2 fmag = 556. 0
 sigma = 0. 013
 go to 6
3 fmag = 1110. 0
 sigma = 0. 047
 go to 6
4 fmag = 2190. 0
 sigma = 0. 204
 go to 6
5 fmag = 3950. 0
 sigma = 0. 805
 go to 200
6 zeta = 0. 93
zeta1 = 1. 0
wn = 418879
wn1 = 06283185
 go to 300
200 continue
 go to (10, 20, 20, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, 50), index
10 fmag = 251. 9
 sigma = 0. 003
 go to 60
20 fmag = 503. 1
 sigma = 0. 012
 go to 60
30 fmag = 1001. 5
 sigma = 0. 044
 go to 60
40 fmag = 1941. 9
 sigma = 0. 195
go to 60
50 fmag=2241.8
 sigma=0.767
60 reta=1.5
 reta1=1.0
 wn= .2094395
 wn1= .062831853
300 continue
 ar = (wn*wn-wn*wn)*(wn*wn-wn1*wn1)-4.*reta*reta1*wn*wn1*
 1 - (1.-sigma)*wn*wn
 ai=2.*wn*(reta1*wn1*(wn*wn-wn*wn)+reta*wn*(wn1*wn1-wn*wn))
 factor = fmag*wn*wn*wn / (ai*ai + ar*ar)
 xr =-ai * factor
 xi = ar * factor
 return
end

c

subroutine lpsys(freq, peak, ins, xr, xi)
 lpsm response for lp system with filter 6824-2 ins=3
 lpsm response for lp system with filter 6824-13 ins=2
 phase response obtained from hilbert transform of amplitude
 response. gain normalized to 1.0 at 25 seconds.
 dimension fre(28),p(56),phi(56)
 the first 28 p and phi are for 6824-2, next 28 are for 6824-13
 data fre/.001,.002,.003,.004,.005,.006,.007,.008,.009,
 1.01,.02,.03,.04,.05,.06,.07,.08,.09,1.1,2.3,4.5,6,
 2.7,3.9,1./
 data phi/263.9,257.9,251.9,245.9,239.3,233.1,227.1,221.1,
 1214.6,210.3,134.9,73.2,15.3,13.2,21.2,100.1,122.4,
 2-140.0,-153.8,-213.1,-232.6,-242.8,-249.2,-253.0,-256.9,
 3-259.3,-261.2,-262.9,265.0,259.1,253.4,248.1,242.8,236.9,
 4 230.3,223.4,216.4,209.7,153.4,102.0,54.6,14.4,-16.8,
 5 -40.4,-58.2,-73.3,-85.4,-146.4,-153.9,-155.3,-156.4,
 6-157.7,-159.2,-160.0,-162.3,-163.8/
 data p/0.0005,0.0040,0.0135,0.0321,0.0625,0.01077,0.01706,0.02546,
 1.03631,0.05009,0.34117,0.73904,1.0000,0.79633,0.79807,0.61417,0.46105,
 2 344644,263159,0.3583,0.0197,0.00468,0.00240,0.00139,0.00087,0.00058,
 3 0.00040,0.00029,
 4 0.00015,0.000391,0.0131,0.0310,0.0609,0.1068,0.1713,0.2556,
 5 0.0318,0.04848,0.28030,0.67553,1.0,1.09448,1.0044,0.86969,0.74511,
 6 0.63557,0.54818,1.2153,0.04830,0.02741,0.01827,0.01328,0.01017,
 7 0.008052,0.006545,0.005404/
 m = 28
 degrad = 0.01745329
 if(freq gt 0.5) freq = 0.5
 if(freq lt 0.005) freq = 0.005
 do 200 i = 1,m
 if(freq ge fre(i).and.freq.le.fre(i+1)) go to 160
200 continue
 160 continue

-94-
if(ins eq 2) j=i+26
if(ins eq 3) j=i
p(i)= phi(j)+(phi(j+1)-phi(j))/(freq(i+1)-freq(i))*freq(freq(i))
ph = p(j) + (p(j+1) - p(j))/(freq(i+1)-freq(i))*freq(freq(i))
pf = pf * degrad
fr = cos(pf) * ph * peak
xi = sin(pf) * ph * peak
return
eend

subroutine sperd(freq, peak, ins, xr, xi)
in = 4 WWSSN SP
ins = 5 USGS SP
ins = 6 CSSN SP
The values for WWSSN and USGS from Luh (1977, BSSA, p. 950)
double complex es(20), ww, tt
double precision xnorm,a(20)
go to (100,200,300), ins=3
100 continue
m=3
n=5
xnorm=1.007d+1
a(6)=1.0d+0
a(5)=5.684d+0
a(4)=1.510d+1
a(3)=2.217d+1
a(2)=1.846d+1
a(1)=7.220d+0
go to 400
200 continue
m=4
n=10
xnorm=2.921d+15
a(11)=1.0d+0
a(10)=4.315d+2
a(9)=8.449d+4
a(8)=7.520d+6
a(7)=4.032d+8
a(6)=1.161d+10
a(5)=2.041d+11
a(4)=1.482d+12
a(3)=2.349d+12
a(2)=1.569d+12
a(1)=2.653d+11
go to 400
300 continue
c Tsi=1.0 Tg=0.23 hs=0.8 hg=0.8 sigma=0.0
m=3
n=4
xnorm=.307321224d+2
a(5)=1.0d0
a(4)=855652d+1
a(3)=310340d+2
a(2)=372023d+2
a(1)=189036d+2

400 continue
ww=dcmplx(0.0d0,dbl(freq))
ss(1)=ww
do 500 i=2,n
ss(i)=ss(i-1)*ww
500 continue

tt=dcmplx(a(1),0.0)
do 600 i=1,n

600 continue

tt=ss(m)/tt
xnorm=xnorm*peak
xr=real(tt)*xnorm
xi=dimag(tt)*xnorm

end

subroutine obs(iaxis)
common/ctrl,ictrl,size,xy(6)
read(8,10)n
10 format (5x,i5)
do 100 i=1,n
inteq=3
read(8,20)t,y,m
20 format (f10.8,8x,f12.6,25x,i5)
if(iaxis.eq.2) t=1./t
if(y.1t.xy(3)) go to 100
x=alog10(t)
y=(x-xy(1))/xy(5)
y=(y-xy(3))/xy(6)
if (m.ne.1) inteq=1
call symbol(x,y,0.07,inteq,0.0,-1)
100 continue
return
end

subroutine sppplt(xmin, xmax, ymin, ymax, cc, iaxis)
common/ctrl,ictrl,size,xy(6)
character*2 cc, ans
color*50 names
ictrl=ictrl+1
if(ictrl.eq.1) go to 100
write(6,*) 'enter new origin for the next figure w.r.t.'
write(6,*) 'the origin of the present figure (8.5,0.0):'\n -96-
read(5,*) x0, y0
x0=x0/size
y0=y0/size
call plot(x0, y0, -3)

100 continue
write(6,*) 'enter the station identification:
read(5,5) names

5
format(a)
if(xmin.lt.1.e-30) xmin=1.e-30
if(ymin.lt.1.e-30) ymin=1.e-30
xy(1)=alog10(xmin)
xy(2)=alog10(xmax)
xy(3)=alog10(ymin)
xy(4)=alog10(ymax)
do 150 i=1,4
k=int(xy(i))
t=k
if(xy(i).lt.0.0) go to 140

t=t-xy(i)
xy(i)=t
if(i.eq.1.or.i.eq.3) go to 150
if(tt.gt.0.001) xy(i)=t+1.0

go to 150

140 tt=t-xy(i)
xy(i)=t
if(i.eq.2.or.i.eq.4) go to 150
if(tt.gt.0.001) xy(i)=t-1.0

150 continue
write(6,*)
* 'xmin= ', xmin, 'xmax= ', xmax, 'ymin= ', ymin, 'ymax= ', ymax
i1=xy(1)
i2=xy(2)
i3=xy(3)
i4=xy(4)
write(6,*)
* 'Log-Log range- X: ', i1, ' to ', i2, ' Y: ', i3, ' to ', i4
write(6,*) 'give the range for spectrum plotting? (y/n)'
read(5,5) ans
if(ans.eq.'n') go to 190
write(6,*)
* 'enter your range for X-axis, then for Y-axis: (0,2,-2,3)'
read(5,*) xy(1), xy(2), xy(3), xy(4)

190 continue
n1=int(xy(2)-xy(1))
n2=int(xy(4)-xy(3))
write(6,*) 'enter the length of x- and y-axis: (5,3.75)'
read(5,*) xl, y1
write(6,*) 'plot the frame? (y/n):'
read(5,5) ans
if(ans.eq.'n') go to 360
y12=0.5*y1
y12=0.5*y1
xseg=x1/n1

-- 97 --
yseg=y1/n2
call plot(x12,0.0,2)
call plot(x1,0.0,2)
call plot(0.0,y1,3)
call plot(0.0,y12,2)
call plot(0.0,0.0,2)
do 300 i=1,n1+1
 xt=xseg*(i-1)
call number(xt-0.09,-0.2,0.1,10.0,0.0,-1)
y=x,y(1)+i-1.
call number(999.,-0.12,0.06,xp,0.0,-1)
 if(i.eq.n1+1) go to 300
do 300 j=2,10
 xtt=xt+xseg*log10(real(j))
call plot(xtt,0.0,3)
ytt=0.04
 if(j.eq.10) ytt=0.07
call plot(xtt,-ytt,2)
300 continue
do 350 i=1,n2+1
 yt=yseg*(i-1)
call number(-0.38,yt-0.07,0.1,10.0,0.0,-1)
yp=x,y(3)+i-1
 call number(999.,yt-0.04,0.06,yq,0.0,-1)
 if(i.eq.n2+1) go to 350
do 350 j=2,10
 ytt=yt+yseg*log10(real(j))
call plot(0.0,ytt,3)
xtt=0.04
 if(j.eq.10) xtt=0.07
call plot(-xtt,ytt,2)
350 continue
call symbol(x1/3.0,y1/1.05,0.12,names,0.0,20)
call symbol(-0.45,y1/2.1,0.14,'AMP',90.0,3)
 names='FREQ (Hz)'
 if(iaxis.eq.1) names='PERIOD (sec)'
call symbol(x1/2.5,-0.45,0.14,names,0.0,12)
360 continue
xy(5)=real(n1)/xi
xy(6)=real(n2)/yi
return
end

subroutine sppcal(nn)
common/dimen/ x(1026), y(1026)
common/ctrl/ ictrl, size, xy(6)
do 100 i=1,nn
 x(i)=alog10(x(i))
y(i)=alog10(y(i))
 if(x(i).lt.xy(1)) x(i)=xy(1)
 if(x(i).gt.xy(2)) x(i)=xy(2)
if(y(i).lt.xy(3)) y(i)=xy(3)
if(y(i).gt.xy(4)) y(i)=xy(4)
100 continue
 r(nn+1)=xy(1)
 r(nn+2)=xy(5)
 y(nn+1)=xy(3)
 y(nn+2)=xy(6)
call line(x,y,nn,1,0,0)
return
end

program bigfft
This performs a fft of length m=2n to yield a
2n series by doing only an n length fft
I/O is accomplished by means of the file 'bigfft.d'.
The data in 'bigfft.d' should be:
m, dt, df, isign
real, imag or
point1, point2
point3, point4

<total: m/2+1 complex data> <total: m time data>
use do xxx i=1, m/2+1
do xxx i=1, m, 2
xxx write(1) data(i) xxx write(1) time(i), time(i+1)
to set up the data file 'bigfft.d' in main program.
isign=-1 : 'forward' FFT, output the lowest freq first.
=+2 : 'forward' FFT, output the highest freq first.
=+1 : 'inverse' FFT, input the lowest freq first.
=+2 : 'inverse' FFT, input the highest freq first.
dt, df defined in the fft program four.f are
if(isign.lt.0.or.df.eq.0.0) df=1. /(nn*dt)
if(isign.gt.0.or.dt.eq.0.0) dt=1. /(nn*df)

This shows how to use 'bigfft':

Input:
m, dt, df
time(i), i=1, m -- time series
Program:
open(1, file='bigfft.d', status='new', form='unformatted')
rewind 1
isign=-1
write(1) m, dt, df, isign
do 100 i=1, m, 2
c100 write(1) time(i), time(i+1)
close(1)
call system('bigfft', kturn)
open(1, file='bigfft.d', status='old', form='unformatted')
rewind 1
read(1) m, dt, df, isign
do 200 i=1, m/2+1
c200 read(1) spec(1, i), spec(2, i)

Output:
m, dt, df, isign
spec(i), i=1, m/2+1 -- complex spectrum

complex data(4096), x, y, z, twiddle, twid21

- 100 -
dimension data2(2,4096)
equivalence (data(1),data2(1,1))
double precision cos0,cosd,sind,pp,r12,g12,rr,gg
open(1,file='bigfft.d',status='old',form='unformatted')
 rewind 1
read(1) m,dt,df,isign
n=m/2
n2=n/2
np1=n+1
pp=3.14159265358979d+0/float(n)
cosd=dcos(pp)
sind=dsin(pp)
twidle=complx(cosd,sind)
if(isign.lt.0) go to 1000
open(2,file='fft.1',status='scratch',form='unformatted')
 rewind 2
if(isign.ne.+2) go to 200
do 100 i=np1,1,-1
 read(1) data(i)
100 continue
 rewind 1
write(1) m,dt,df,isign
 do 150 i=1,np1
write(1) data(i)
150 continue
 do the work
 do 500 j=1,2
 i=1
 rewind 1
read(1) m,dt,df,isign
read(1) x
if(j.eq.1) then
 data(i)=x
 i=i+1
endif
 do 300 k=1,n2
 ii=n+2-i
read(1) y
read(1) x
if(j.eq.1) then
 data(ii)=conjugate(x)
else
 data(ii)=y
 data(ii-1)=conjugate(y)
endif
 i=i+1
300 continue
 call four(data,n,+1,dt,df)
dt=0.5*dt
if(j.ne.1) go to 500
 do 400 i=1,n

- 101 -
write(2) data(i)
400 continue
500 continue
 rewind 1
 rewind 2
 twidel=cplx(x,0,0,0)
do 600 i=1,n
 read(2) x
 z=twidel*data(i)
y=x+z
 z=x-z
 divid=twidel*twidel
600 continue
 c now consider data as a real time series of length 2n
 c the order of time values is 1 n+1 2 n+2 3 n+3 n 2n
 c we now have to demultiplex
 rewind 2
 do 700 i=1,n,2
 write(2) data(i),data(i+1)
700 continue
 rewind 2
 do 800 i=1,n2
 if=i+n2
 read(2) x,y
 data2(1,i)=real(x)
data2(2,i)=real(y)
data2(1,ii)=aimag(x)
data2(2,ii)=aimag(y)
800 continue
 rewind 1
 write(1) m,dt,df,isign
 do 900 i=1,n
 write(1) data2(1,i),data2(2,i)
900 continue
 close(2)
go to 2000
1000 continue
 c forward Fourier transform
do 1100 i=1,n
 read(1) data2(1,i),data2(2,i)
1100 continue
 call four(data,n,-1,dt,df)
df=0.5*df
cos0=1.0d+0
sin0=0.0d+0
 data2(1,n+1)=data2(1,1)-data2(2,1)
data2(1,1)=data2(1,1)+data2(2,1)
data2(2,n+1)=0.0
 data2(2,1)=0.0
 do 1200 i=2,n2+1
 pp =cos0*cosd-sin0*sind
 sin0=sin0*cosd+cos0*sind
 n2=n/2
1200 continue
cos0=pp
i1=n+2-i
r1=data2(1,i)
r2=data2(1,i1)
g1=data2(2,i)
g2=data2(2,i1)
r12=r1-r2
g12=g1+g2
rr=cos0*g12-sin0*r12
gg=sin0*g12+cos0*r12
gg=-gg
r12=r1+r2
g12=g1-g2
data2(1,i) = r12+rr
data2(1,i1)=r12-rr
data2(2,i) = gg+g12
data2(2,i1)=gg-g12
1200 continue
do 1300 i=2,n
data2(1,i)=0.5*data2(1,i)
data2(2,i)=0.5*data2(2,i)
1300 continue
rewind 1
write(1) m,dt,df,isign
do 1400 i=1,np1
i1=i
if(isign.eq.-2) i1=n+2-i
write(i) data(i1)
1400 continue
2000 continue
close(1)
stop
end

c

subroutine four(data,nn,isign,dt,df)
c
FFT
dimension data(1)
n = 2*nn
if(isign.eq.-1 .or. df.eq.0.0) df=1.0/(nn*dt)
if(isign.eq.+1 .or. dt.eq.0.0) dt=1.0/(nn*df)
1 j = 1
do 5 i=1,n,2
i1=i+j1,2,2
1 temp = data(j)
temp = data(j+i1)
data(j) = data(i)
data(j+i1)=data(i)
data(i) = temp
5 m = n/2
3 if(j-m) 5,5,4
4 \quad j = j - m \\
m = m/2 \\
\text{if}(m-2) \text{mod} 3, 3 \\
5 \quad j = j + m \\
\text{mmax} = 2 \\
6 \quad \text{if}(\text{mmax-n}) \text{mod} 7, 10, 10 \\
\text{istep} = 2 \times \text{mmax} \\
\theta = 6.283185307/\text{float}(\text{isign} \times \text{mmax}) \\
\sin = \sin(\theta/2.) \\
\text{wstpr} = -2. * \sin^2 * \sin \\
\text{wstpi} = \sin(\theta) \\
\text{wr} = 1.0 \\
\text{wi} = 0.0 \\
do 9 \quad m = 1, \text{mmax}, 2 \\
do 8 \quad i = m, n, \text{istep} \\
\text{j} = i \times \text{mmax} \\
\text{tempr} = \text{wr} \times \text{data}(j) - \text{wi} \times \text{data}(j+1) \\
\text{tempi} = \text{wr} \times \text{data}(j+1) + \text{wi} \times \text{data}(j) \\
\text{data}(j) = \text{data}(i) - \text{tempr} \\
\text{data}(j+1) = \text{data}(i+1) + \text{tempi} \\
\text{data}(i) = \text{data}(i) + \text{tempr} \\
9 \quad \text{data}(i+1) = \text{data}(i+1) + \text{tempi} \\
\text{tempr} = \text{wr} \\
\text{wr} = \text{wr} \times \text{wstpr} - \text{wi} \times \text{wstpi} + \text{wr} \\
\text{wi} = \text{wi} \times \text{wstpr} + \text{tempr} \times \text{wstpi} + \text{wi} \\
\text{mmax} = \text{istep} \\
go \text{to} \ 6 \\
10 \quad \text{continue} \\
\text{if}(\text{isign} \times \text{lt} \ 0) \text{go to} \ 1002 \\
c \quad \text{frequency to time domain} \\
do \ 1001 \quad \text{iiii} = 1, \text{n} \\
1001 \quad \text{data}(\text{iiii}) = \text{data}(\text{iiii}) \times \text{df} \\
\text{return} \\
1002 \quad \text{continue} \\
c \quad \text{time to frequency domain} \\
do \ 1003 \quad \text{iiii} = 1, \text{n} \\
1003 \quad \text{data}(\text{iiii}) = \text{data}(\text{iiii}) \times \text{dt} \\
\text{return} \\
end