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Digest

The dispersion properties of surface waves encode information about

the structure of the Earth. In this thesis I obtain group velocity dispersion

curves and local phase velocity dispersion curves for a set of earthquakes

and explosions. Specifically, the data set consists of 50 events recorded

in the Cooperative New Madrid Seismic Network (CNMSN), run by Saint

Louis University, and the Alabama earthquake (October 24, 1997) recorded

by 48 stations spread over North America.

In obtaining the group velocity curves I use the Multiple Filter and

the Phase Matched Filter techniques. The combination of these two tech-

niques permits isolation of the fundamental mode to obtain cleaner group

velocity dispersion curves. The group velocity dispersion curves are used

to test the viability of the Stevens’ model, a global model developed un-

der the Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring. The

results of the test show that the Stevens’ model works well in the range of

periods between 10 and 160 seconds (with differences between observa-

tions and prediction within
���������

at 20 seconds). For periods larger than

160 seconds the model overestimates the values of the group velocities dis-

persion curve (at 260 seconds the overestimations are around �
	 ���� 	 ����� ).

Once the fundamental mode is isolated the local phase velocity disper-

sion curves are calculated with the ����� technique. I have checked the per-

formance of this technique, developed for linear arrays in reflection and re-

fraction experiments, in the non-linear CNMSN array. For some particular

earthquakes, those with the best station coverage and the clearest disper-
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sion curves for a wide period range, the technique works surprisely well

(the differences between observations and predictions are within
���

). For

these events the local phase velocity dispersion curves fit the predictions

of the HAMBURG model for central U.S. (Herrmann and Ammon, 1997).

For the other earthquakes, the � � � technique has not been successful.

Further studies are needed to better improve this technique.
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1. INTRODUCTION

Knowledge of the Earth’s structure with depth is a very challenging

problem. The almost unique source of information for structures located

“at intermediate and deep depths” comes from the record of seismic sig-

nals. Among these, the surface waves play a principal role. As its name

states, surface waves are signals associated with the presence of a free

surface (or, more generally, a discontinuity surface). Their amplitudes

decrease inversely with the distance from the source, in contrast to the

quadratic decrease of
�

- and � -wave amplitudes. For this reason, the

surface waves form the longest and the strongest portion of the seismic

records excited by explosions and shallow earthquakes. Within the sur-

face waves, information about the Earth’s structure is encoded in the form

of their dispersion curves. The longer the wave length of a surface wave

the deeper it samples the Earth’s structure, and the faster is its propaga-

tion velocity. Thus, to analyze how the velocity of propagation of a surface

wave depends on its wavelength (dispersion) amounts to probing Earth’s

structure.

The appearance of a seismic record depends on the signal source and

the propagation properties of the path between source and receptor. For

the Rayleigh surface waves part of the seismic record, Stevens and Adams

(1999) have developed a global model, here after referred to as the Stevens’

model, that provides the group velocity dispersion curves from any source

point to any receiver point. Their main aim was to have a reliable means

of identifying the 20 s Rayleigh wave to automatically determine Ms of

an earthquake or an explosion for the Comprehensive Nuclear-Test-Ban

1
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Treaty (CTBT) monitoring. In fact, a good determination of
���������

, that

is, the relation of the magnitude of a source associated with surface waves

versus to that associated with body waves, and its regional variants, is

among the most reliable discriminants.

In 1990, Saint Louis University upgraded a preexisting seismic network

to form the present Cooperative New Madrid Seismic Network (CNMSN)

consisting of broadband sensors. This increases the quality of data sup-

porting new types of research. This region is important because it is one of

the most seismically active intraplate regions of the world. This study is a

first step towards an improved determination of the shear-velocity struc-

ture of the crust and uppermost mantle in the region.

In the present work I obtain group and local phase velocity disper-

sion curves for 50 events recorded in this network (CNMSN) and for the

Alabama earthquake (October 24, 1997) that was recorded in 48 stations

spread over North America. The group velocity dispersion curves so ob-

tained permit testing the performance of the Stevens’ model (Stevens and

Adams, 2000) comparing the observation with its predictions. One as-

pect in which I am particularly interested is the adequacy of the model for

paths to the New Madrid region depending on the frequency range. Hav-

ing a confident global model in an as-wide-as-possible frequency range

will provide an outstanding tool for different kinds of analysis such as the

study of seismic sources or receiver functions.

I start this thesis with an overview on surface waves and their dis-

persion properties in Chapter 2. In Chapter 3, the theoretical bases for the

group velocity measurements (multiple filter technique and phase matched

filter) are introduced. Then, Chapter 4 is concerned with the actual group
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velocity observations and its comparison with the Stevens-Adams model.

In Chapters 5 and 6, I present the theoretical ideas behind the measure-

ment of the phase velocity (p- � stacking), and the actual phase velocity

observations, respectively. In all this work it is assume that the effects

on the measurement of i) the deviation of ray paths from the great-circle

linking the source to the receivers, ii) azimuthal anisotropy and, iii) mis-

locations of earthquake epicenters are negligible. Finally, in Chapter 7 I

discuss the results.



2. SURFACE WAVES

2.1 INTRODUCTION

The sudden redistribution of stresses in the earth as a result of an earth-

quake (or other sources like the explosion of a nuclear weapon) produces

a release of energy in the form of elastic waves. The series of movements

registered by a seismic detector in some other point of the earth’s surface

depends on the characteristics of the source and on the specific earth struc-

tures crossed by the waves on their way towards the detector.

In this work I am interested in the characterization of the structure of

the earth in term of its elastic properties. First, we will review how each

region of the earth can be characterized the parameters: bulk and the shear

moduli, or alternatively the longitudinal and the transverse wave veloci-

ties. I will introduce the concept of surface waves by considering the earth

as a layered half-space. We will see how to extract information about the

earth structure taking into account the part of the seismograms associated

with these surface waves.

2.2 EARTH STRUCTURE AND BODY WAVES

Imagine that one analyzes the interior of a region of the earth with a

resolution such that it appears homogeneous isotropic and very large. In

the small-strains small-displacements approximation we will have a linear

relation

���������	����
����
���� �	����
����������������
���� �!���"
#�����$�������%����
'& (2.1)
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between the stress tensor ����� and the strain tensor ����� that depends on the

two Lamé parameters � (associated with the bulk modulus) and � (shear

modulus). Remembering the relation between the stress tensor and the

displacement vector field � �
������� �

	
��� � � � ��� � � ��& � (2.2)

we can arrive at the following equation of motion for the displacement

field (Ben-Menahem and Singh, 1981, p. 20; Aki and Richards, 1980, p. 64)

� � � 	 � &��� ����	� �� & � �
���� ����� �� & ������ ��� ��� ����� � � (2.3)

Here �� denotes any external force per unit volume and � is density of

the earth in the particular region being analyzed. Now, if we separate the

displacement vector into two components

�� � ��� � ���� � ���� ���� � � � ��	� ���� � � � (2.4)

we can rewrite the equation of motion in absence of external forces as

� � � � � � �
� � � ���� ��� ��� ��� � � � � � �� � � ���� ��� ���� � � � (2.5)

� �
� � � 	 �� ���� � � � � � � � �!�� � � (2.6)

By looking at the form of this equation and the definitions of ��� � ��� we can

deduce that a general displacement field configuration can be expressed

as a superposition of plane waves of two types:

" Longitudinal waves (or P waves)

��# ��$ #&%'!(*),+.-0/1' � � � � %' � �2 &43 � (2.7)
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" Transverse waves (or S waves)

�� ��� � $ ��� % � � (*),+ - /1' � �&� � %' � �2 &13 � (2.8)

Here the index � can take two values where the unit vectors % � � �
� % � � � % � ��� are orthogonal to the direction of propagation of the wave,

e.g., % � � � %' � � .

Of course, a plane wave solution is an abstract idealization as a physi-

cal region is neither infinite nor eternal. A finite piece of a plane wave in

space and time can be a very good approximation to the configuration of

the field in many interesting situations.

The characteristics of a particular earth region can be encoded in the

values of the velocity of propagation of longitudinal and transverse plane

waves, respectively � and � together with the density, � .

2.3 LAYERED HALF-SPACE EARTH MODEL

A first approximation to the description of the earth is that it consists of

several layers in depth with different properties (different values of � , � ,

and � ). To understand the propagation of waves for this model, one way

to proceed is to look again at the decomposition of a generic solution into

simple traveling wave configurations. (These traveling waves now are not

going to be plane waves, although some of them could be seen as pieces

of plane waves pasted along the surfaces discontinuities.)

In this thesis, we will concentrate on the specific configurations related

with the existence of the free surface of the earth. For this reason let us

consider first a half-space as a model for the earth.
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The surface of the earth is free. This implies that the components of the

stress tensor in the vertical direction, � , must be zero: �#��� % � � � � � . (We will

define the free surface as the � � � plane and assume that the medium

occupies the region ��� � ). Let’s separate the transverse body waves into

horizontal (or ��� waves), if the particle motion is parallel to the surface,

and vertical (or ��� waves), if it is not parallel to the surface. The different

traveling wave configurations proper of this model are:" ��� wave incident at the surface:

�� � ��	� ��
 � �����
 � $ � ��
 % ��� ( ),+�� / � � � / � ��� � &#��������� 2 ��� � �	� � &"!

� $ � ��
 % ��� ( ),+�� / � � � / � ��� � &#��������� 2 � �#� �	� � &$! � (2.9)

Here � denote the incidence angle. As a limiting case there is the

possibility of a half plane ��� wave traveling along the 2 direction." ��� wave incident at the surface. In this configuration there are a

reflected ��� and a reflected
�

wave:

�� � ��� ��% � �����% � ���#
��$ � ��% � �#� �	� % ��& �'�(����� % � � & ( ) +)� / � � � / � ��� � &#�*�(���+� 2 �,� � �	� � &"!

� $ ���% ����� 	�- �(��� 	 � � � � � � & � � � � � 	 �
�(��� 	�- ���.� 	 ��� � � � � & � � � � � 	 �

� � �/� � �	� % ��& �0������� % � � & (*),+�� / � � � / � ��� � &#�����.�+� 2 � �#� �	� � &$!
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� $ �# � � � � & �(��� � �
�(��� 	�- ���.� 	 ����� � � � & � � � � � 	 �

� ������� - % ��& � �#� � - % � � & (*),+)� / � � � / � ��� � &#�����.� - 2 � �#� � - � &$! � (2.10)

In this expression the angle - is related to � by Snell’s law: �
������ � �

������ .

When ���.��� � � � � � & , �(��� - becomes greater than 1 ( - become com-

plex), and therefore �#� � - becomes pure imaginary. By looking at the

previous expression one can see that an imaginary � � � - amounts to

a evanescent inhomogeneous
�

wave traveling in the 2 direction. It

is also worth mentioning that it is not possible to have a ”half-plane

��� ” wave traveling in the 2 direction without the P-wave distur-

bance.

" �
wave incident at the surface. The configuration consists of a re-

flected ��� and a reflected
�

wave:

�� � �� �# � �� �# � �� ���%
� $ �# �*���.� - %��& � � � � - % � � & (*),+)� / � � � / � ��� � &��*���.� - 2 �,�#� � - � &$!

� $ �# ���.� 	�- ���.� 	 � � � � � � & � �#� � � 	 �
���.� 	�- ����� 	 � ��� � � � & � �#� � � 	 �

� �*�(��� - % ��& � �#� � - %� � & (*),+)� / � � � / � ��� � &#������� - 2 � �#� � - � &$!

� $ ���% � 	 � � � � & � ����� 	 - �#� � 	 �
�(��� 	�- ���.� 	 ����� � � � & � � � � � 	 �
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� � � � � �� % ��& �'�(����� % � � & ( ) +)� / � � � / � ��� � &#��������� 2 � �#� �	� � &$! � (2.11)

In this case - is the angle of incidence of the
�

wave. Again Snell’s

law provides the relation between - and � . Notice that in these solu-

tions there are no evanescent parts. We see that it is not possible to

have a ”half-plane
�

” wave moving in along the 2 direction without

SV

" In a half space earth model there is only one other additional type of

configuration: the Rayleigh wave. These are evanescent inhomoge-

neous plane waves with
�

and � � components. We will deal with

them more extensively in the next section.

2.4 RAYLEIGH WAVES

Extrapolating the form of a plane wave to the case in which some of

the direction cosines %' & , % ' � %' � are greater that zero, though leaving the

relation %' �& � % ' �� � %' �� � � unchanged, we obtain a evanescent form for the

displacement fields,��# � $ � %� & � /��,� %� � & (*),+ ��� � ����� & � ��� ! (*),+ � / � � � / � ����� & 2 &$!!��� ��% � � � � /����	���& � �� � & ( ) + ��� � ����� & ��� � ! (*),+ � / � � � / � ����� & 2 &"! ��� ��
 � � ���� ( ) + ��� � ����� & ����� ! (*),+ � / � � � / � ����� & 2 &"! �
(2.12)

where

� � ��
 � ����� ��� �� � � ��� ��
 � ������ ��� �� � � (2.13)

There is only a regular solution that satisfies the free surface boundary

condition. This solution is a combination of evanescent
�

and � � wave
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traveling along the 2 axis:�� � $ � ���& � /�� � �� � & (*),+ � � � ����� & � � � ! ( ) + � / � � � / � ����� & 2 !
� � � /���� ���& � �� � & (*),+ � � � ����� & ����� ! ( ) + � / � � � / � ����� & 2 ! (2.14)

This will represents waves traveling in the positive 2 direction with phase

velocity � . Its evanescent character can be seen in the decaying exponential

with increasing � , (provided �,� � � � are real, that is, � � � ). Applying the

boundary condition on the free surface (Ben-Menahem and Singh, 1981, p.

114), one obtains the relations

	 � � $�� / 
 	 � � �� � � � � � �

� / 
 	 � � �� � � $�� 	 ��� � � � �
(2.15)

and therefore, the condition�
	 � � �� � � � � � �,� � � � � (2.16)

This condition is known as the Rayleigh equation. It can be shown that,

provided that � � � , a � � � exists (and independent of � ) that satisfies

Rayleigh equation.

A real representation of a Rayleigh wave configuration can be written

as

�� � $ � % ��& � & � � & ���.� � � � � � ����� & 2 ! � �,� % � � � � � � & ���.� � � � � � ��� � & 2 ! � � (2.17)

with depth functions
� & � � & and

� � � � & of the form

� & � � & � (*),+ � � � ��� � & �,��� ! � �
� � � �

	 � � � ( ),+ � � � ����� & ����� !!� (2.18)

� � � � & � � (*),+ � � � ����� & � � � ! � �
� � � �

	 � � � � � (*),+ � � � ����� & ����� ! � (2.19)
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The Rayleigh waves are a surface phenomenon. They are inhomo-

geneous plane waves with vanishing amplitude at greater and greater

depths. Their polarization can be described as retrograde elliptical at the

surface. At a depth
� � � � � � � � � � & , where

� & � � & goes through a zero, they

change this behaviour to prograde elliptical.

In the half-space earth model we have enumerated all possible charac-

teristic configurations. However, in a more complicated earth model with

different layers in depth, new types of configurations appear.

Let us consider the simple case of a single layer over a half-space model.

The generalization of the Rayleigh wave configurations to this case gives

rise to new phenomenology. The different solutions can be classified into

branches (
�

� �
� � � � � � ) and these branches into modes (

�

�1� �
�

� � �
� � � � � � � �

� � �
)

(Ben-Menahem and Singh, 1981, p. 116-120). All these solutions have

a decaying behaviour in the half-space. The part of the solutions inside

the layer can have oscillatory behaviour or exponential (growing and de-

caying) behaviour. With the “
�

� branch” term one indicates oscillatory

symmetric modes of the free surface. The energy of this configurations is

concentrated mainly in the free surface. On the other hand, “
� � branch”

indicates antisymmetric modes of the free surface. In this case the en-

ergy is concentrated mainly in the interface. Within each branch there

are different solutions indicated by the symbols
�

�1� �
�

� � �
�

� � � � � � and
� � � �

� �1� � � � � � � � � . � �1� and
� � � are the fundamental modes of branch

�

�and
� � respectively. In this study we will concentrate in the fundamental

mode of the branch
�

� (
�

�1� ), that is the mode with mayor energy concen-

tration in the free surface.

The most important feature of all these modes is that on them the phase
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velocity � depends on the frequency � . This gives a dispersive character

to the Rayleigh waves. The specific form of � � � & for each mode depends

on depth and properties of the layer with respect to the half-space. In

more general situations one can have an earth model with multiple layers

or even a continuously changing structure in depth. In these cases too,

� � � & will depend on the specific structure in depth of the earth. This is the

crucial factor in this thesis. We will extract information about the structure

of the earth by looking at the dispersion curves � � � & of Rayleigh waves

and of a new surface wave configurations that exist in a multilayer earth:

Love waves.

2.5 LOVE WAVES

In a half-space earth model there is no possibility of having an evanes-

cent ��� configuration. From equations (2.12), the displacement at any

point of the medium would be given by

�� ��
 � � % ��� (*),+ ��� � ����� & ����� ! ( ),+ � / � � � / � ����� & 2 &"! � (2.20)

This confines the energy to propagate along the free surface with exponen-

tial decay away from the � � � . The stress free boundary condition at the

surface � � � yield

� � � ��� � & � � � � � (2.21)

Therefore, � � � implies that in the case of a homogeneous half-space

medium Love waves do not exist.

Consider however a half-space covered with a homogeneous layer of

thickness H. The free surface is taken as the plane � � � . From equations



13

(2.12) and (2.8)

�� �
�������� �������
%� � � $ (*),+ � � / � ����� & � � � ! � � (*),+ � / � ����� & � � � ! �

� (*),+ � / � � � / � ����� & 2 &"! �� � � � � � &��

� % ��� (*),+ � � � ����� & � � ' � ! � (*),+ � / � � � / � ����� & 2 &"! � � � � � &��
(2.22)

where

� � � 
 � �� �� � � � �� � � � � � 
 � � � �� �� � �� � � (2.23)

The traction at the free surface must be zero and the displacements and

the tractions must be continuous across the interface. These conditions

yield (Ben-Menahem and Singh, 1981, p. 106)$ � � � � �$ (*),+ � � / � ����� & � � � ! � � (*),+ � / � ��� � & � � � ! � � (*),+ � � � ��� � & � � � ! � � �$ (*),+ � � / � ����� & � � � ! � � (*),+ � / � ����� & � � � ! � / ��� ��� �� � � � ( ),+ � � � ����� & � � � ! � � �
(2.24)

The solution of these equations leads to a dispersion relation, that gives

the phase velocity as a function of the frequency (or period),	�
 � ��� ����� & � � � & �
� � � �
� � � �

�
(2.25)

Using the explicit expressions of � and � we arrive at	�
 � � � �� �� ��
� �� � � � � ��� � ��� � � � � � ��

� � � � � � �� � � ��� � (2.26)

and therefore a dispersion curve � � � � � & .
It is clear from Eq. (2.23) that � � � � , because otherwise, �� will not

tend to zero as ��� � . Furthermore, if � � is purely imaginary, Eq.(2.25)

becomes

� � � 	�
 ��� ��� ����� & � � � & �
� � �
� � �

� � � (2.27)
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which has no relevant solutions for � � � because the two sides are of

opposite signs. Therefore, � � is real, i.e. � � � � . Then � � � � � � � , which

implies that the shear-wave velocity in the layer has to be less than the

shear-wave velocity in the half-space. Only in this case (typical in real

situations) will one have surface Love waves.

Equation (2.25) (or (2.26)) is a transcendental equation. For any value

of � in the interval � � � � � � � , it determines a set of possible values

of � ����� & � � � , the first in the interval � � ��� � 	 & , the second in the interval

��� � � � ��	 & , and so on. As in the dispersive case of Rayleigh waves one has

different modes of propagation. Let us reiterate that the dispersion equa-

tion shows that the phase velocity, � , of Love waves is not a fixed constant

but depends on the particular value of � . Waves with different frequencies

will have, in general, different phase velocities.

2.6 SURFACE WAVES AND EARTH STRUCTURE

For frequencies in which the finiteness of the Earth can be neglected,

the traveling wave description just given provides us with a qualitative

description of the different oscillatory phenomena one sees in the earth

surface and interior. An earthquake, or any other earth cataclysm, excites

all these traveling-wave modes, and they are detected by worldwide seis-

mic networks.

Surface waves, that is, Rayleigh and Love waves, propagate along the

Earth’s surface, whereas body waves,
�

and � waves, propagate through

its interior. For laterally homogeneous medium models, Rayleigh waves

are radially polarized and exist at any free surface, whereas Love waves
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are transversely polarized and require some velocity increase with depth

(or a spherical geometry) to exist. They differ from body waves in many

respects. They travel slower, their amplitude-decay with range is gen-

erally much less, and their velocities are strongly frequency dependent.

Their amplitude distribution over depth is stationary with horizontal po-

sition (apart from an overall multiplicative factor describing the horizontal

spreading). Therefore, the geometrical spreading effects are much less on

surface waves than on body waves, for which the energy spreads both

horizontally and vertically down into the Earth’s interior.

Surface waves are generally the strongest arrivals recorded at teleseis-

mic distances and they provide some of the best constraints on Earth’s

shallow structure and low-frequency source properties. They also form

the longest and strongest portion of a seismic record excited by explo-

sions and shallow earthquakes. Traversing areas with diverse geologic

structures, they incorporate information on the properties of these areas,

which is best reflected in the dispersion, the dependence of velocity on

frequency. Long-period surface waves, with periods of 10 to 200 s, have

been a valuable source of information on both the Earth structure and the

seismic source mechanism. Their phase velocities, group velocities, (see

below) and attenuation characteristics have been useful in delineating the

structure of the crust and upper mantle in various regions of the Earth.

Their source spectra and radiation patterns have contributed to the deter-

mination of seismic moment, focal mechanisms, and focal depths of re-

mote events (Tsai and Aki, 1969 and 1970). They also supply crucial data

for discriminating earthquakes from underground explosions.

In this thesis I will be concerned with the measurement of the disper-
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sion relations for surface waves based on seismic records. The last part

of this chapter will review some elementary concepts on phase and group

velocities.

2.7 PHASE AND GROUP VELOCITIES

We saw that in the infinite homogeneous and isotropic earth model, the

structural parameters � , � and � can be encoded in the phase velocities �

and � of plane
�

and � waves. In the same way, in a layered half-space

earth model, (or with a continuously varying structure in depth), the struc-

tural � � � & and � � � & can be encoded in the dispersive phase velocities � � � � &
and � � � � & of inhomogeneous plane Rayleigh and Love waves, respectively.

Taking the traveling phase of surface inhomogeneous plane wave so-

lutions ( ) + � / � � � / � ����� & 2 &"! � (2.28)

one realizes that its wave number is ' � ����� � � & and from here one can

find a relation � � � � ' & . Obviously, from this relation the phase velocity

can be defined as � � ��� ' . The definition of group velocity is
� ��� ��� � ' .

Now, this definition can be written as

�� � � & � �� � � & � �� � � � & � � � � &� � � (2.29)

or � � � & � � � � & � � � �� � � &
� � � � &� � � � � � � ��� & � � �

� ��� & � � ��� &�	� � � � � (2.30)

We can gain insight on the meaning of group velocity with the the fol-

lowing exercise. Imagine a plane wave composed of the addition of a nar-

row Gaussian distribution of monochromatic waves around some fixed



17

frequency � � :

$ � � � ' �� 	 ���
(*),+ �

�
� ' � ' � & �

	 � � � ( ),+ � / � � ' &1� � /4' 2 ! � (2.31)

If the Gaussian function is narrow enough one can approximate the fre-

quency by a straight line ��� � � � � � ' � &#� ' � ' � & . Then we can write

$ � � � ' �� 	 ���
(*),+ �

�
� ' � ' � & �

	 � � � ( ),+ � / � � � � /4' � 2 ! ( ),+ � / � � ' � &#� ' � ' � & � � / � ' � ' � & 2 ! �
(2.32)

and integrating

$ � (*),+ � / � � � � /4' � 2 ! (*),+ �
�

� � � ' � & � � 2 ! � � �
	 � � (2.33)

What we obtain is a monochromatic plane wave, with frequency � � (the

central frequency of the Gaussian distribution) and a phase moving at

� � � � � � ' � velocity, modulated by a Gaussian envelope moving at a ve-

locity
� � ' � & , that is, at the group velocity for frequency � � . The group

velocity can be associated with the velocity of propagation of information

by modulating a carrier frequency.



3. THEORY OF THE GROUP VELOCITY
MEASUREMENT

The development of numerical techniques in the last quarter of the last

century has resulted in considerable progress in measurements of disper-

sion curves (Dziewonski and Hales, 1972; Keilis-Borok, 1986). The mea-

surement of these dispersion curves, in general, is complex because the

seismogram consists of a complex sum of normal modes. Others factors

that can affect the measurements are multipathing and background noise.

Knowledge of the group velocity dispersion curve is useful by itself, as

they may be used in inversion processes to obtain shear-wave velocity

structures (Keilis-Borok, 1986, Chapter 6). Also, comparison of calculated

and observed group velocities represents a stringent test of the validity of

a model. In addition, the ability to extract and determine group velocity

curve is a prerequisite of a realizable phase velocity measurement.

One of the goals in this study is to isolate the fundamental mode in

order to calculate the cleanest group velocity curve. The multiple filter

(MFT) and the phase matched filter (PMF) technique are used to do this.

In this chapter, I discuss the theoretical bases for calculating the group ve-

locity dispersion curve, the multiple filter technique (MFT), and isolating

the fundamental mode, phase matched filter (PMF) technique. Dziewon-

ski et al. (1969) proposed the multiple filter technique (MFT) as an an-

alytical method to obtain group velocity dispersion curves for a specific

mode from complex multi-mode dispersion signal. Their development

will be discussed in the first part of the chapter together with limitations

and improvement of this technique. After applying the MFT, the disper-

18
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sion curves are used as an input for the PMF technique proposed by Herrin

and Gogorth (1977), which permits the isolation of the fundamental model

and the cleaning of the signal. This allows us to reapply the MFT and cal-

culate a more accurate group velocity dispersion curve of the fundamental

mode (Fig. 3.1). The theoretical bases of the PMF will be discussed in the

second part of the chapter.

To visualize the measurement process, we will dedicate the last part of

the chapter to applying these techniques to some synthetic seismograms.

3.1 MULTIPLE FILTER TECHNIQUE

Dziewonski et al. (1969) developed the multiple filter technique (MFT)

to determine the group velocities of dispersive waves. The basis of this

method is the property of a dispersive signal that different frequency com-

ponents arrive at different times. This method consists in the application

of an array of narrow filters to the complex seismic signal. These narrow

filters may resolve transient signals composed of several dominant peri-

ods that arrive at the recording station almost simultaneously. Using the

filtered amplitude, I calculate the group velocity. It is assumed that the

signal is a plane wave and that the instrumental response of the signal has

been removed.

The Fourier transform of a signal
� � ��& is defined as:� � � & � ���

� �
� � ��&�� �

����� � � � (3.1)

The complex spectrum of the signal
� � � & can be represented by its ampli-

tude and phase functions � � � & �
	 � � � &�	�� �������� ��� ��� � (3.2)
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MFT

Group velocity curve

PMF

Fundamental mode

MFT

Group velocity curve

  Signal

Figure 3.1: Flow chart of group velocity dispersion curve measurement.
First the MFT is applied in order to obtain a provisional group velocity dis-
persion curve that is used as input in the PMF to isolate the fundamental
mode. Once the fundamental mode is obtained, the MFT is applied again
to this clean signal, containing only the fundamental mode, and an im-
proved group velocity is calculated.
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where r is the distance and � is the azimuth. The phase term for the

propagating surface wave is composed of the initial phase (source phase),� � � � � & , and the propagation term ' � � &�� :
� ��� � � � � & � � ' � � &�� � � � � � � & � (3.3)

A narrow filter is now applied to the signal. Dziewonski et al. (1969)

used the following filter function:

� � � � ��� &�� (*),+ �
� ��� � � ���

��� 	 � � � (3.4)

which has cutoff frequencies at � � �
� � � � . This filter is a Gaussian filter,

centered at the frequency ��� , with the parameter � controlling the width.

The expression of the filtered signal is :

 � � ��& � �
	 �
� ����� ���
���

�
��� � � � & � � � � ��� &�� ����� � � (3.5)

where  � � ��& is the resulting filtered signal. Substituting the definitions of� � � & and � � � & , equations (3.4) and (3.5), the expression for the filtered

signal becomes

 � � ��& � �
	 �
� � � � � �
���

�
��� $ � � & (*),+ � / � � � � ' � � &�� � � � � &�&$! (*),+ �

� ��� � � ���
��� 	 � � (3.6)

Following an scheme parallel to Bhattacharya (1983), it is assumed now

that $ � � & , � � � & and ' � � & can be approximated in the vicinity of �
� by the



22

first order Taylor series expansion:$ � � & ��$ � ��� & � 
 ���� � � ��� � � � � � ��� & ��$ � ��$��� � � � ��� &
' � � & � ' � ��� & � 
 � 
� � � ��� ��� � � � ��� & � ' � � ' �� � � � ��� &
� � � & � � � ��� & � 
 ���� � � ��� � � � � � ��� & � � � � � �� � � � ��� & �

(3.7)

where ' �� � � � � � and
� � is the group velocity.

Now,  � � � & can be evaluated by substituting Eqs. (3.7) into (3.6), with

the variable change � � � � �
	�

 � � ��& � ���� $ � ( ) + � / � ��� � � ' � � � � � &$!
�  ���

�
��� � � � � 	� & ( ),+ � / ��	� ��� 	� � !$� (3.8)

where

� � ��� �� � �� � � � � ' �� ��� � �� &��
� � �� �� �

(3.9)

From Abramowitz and Stegun (1965) (Equation 7.4.2), we use

 ( ),+ � � � � 2 � � 	�� 2 � � &"! � 2 �
� �� � � � ( ) +.- � � �

� �� 3 ��� � - � � 2 � �
� � 3 � ������� � � � � � (3.10)

where ��� � is the error function. Using (3.10), we have
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 �
� � � � � � 2 & ( ) + � � � � 2 � � 	�� 2 � � &$! � 2

� � �� � (*),+ � � � � 2� � 	�� 2 � � &$! ��� � � � � 
 � � � �� � �
��� � � � �

(3.11)

Thus,

	� �  ���
�
��� � � � � 	� & ( ),+ � / ��	� ��� 	� � ! � 	�

� �
� �� (*),+ � ��� � �� ! �(��� � � � � & � �� � � � 
 � � � � �� � � ( ),+ - � � �� � 3

� - ��� � 
 � ��� � � / �� � � � � ��� � 
 � � � � � / �� � � � 3 �
(3.12)

using the relation ��� � � � � & � � ��� � � � & . Therefore the expression for  � � ��& is

 � � ��& � $ �
	 �

( ) + � / � ��� � � ' � ��� � � &$! 	� � (3.13)

The series approximation of complex error function (Abramowitz and

Stegun, 1965, equation 7.1.29) is

��� � � 2 � /�� & � ��� � � 2 & � ( ) + � � 2 � !
	 � 2 � � ��� � � � 	 2�� & � / �(��� � 	 2�� &$! � � � � � (3.14)

If � is large enough in equation (3.12), the term with � � � � can be neglected,

using the first term in the above series approximation. Under this condi-

tion, we can express  � � ��& as � � ��& � � ���� (*),+ � / � ��� � � ' � ��� � � &"! ��� � � � � � � &
� � � � �� (*),+ � ��� � �� ! ���.� � � � � & � �� � � � 
 � � � � �� � � ( ) + - � � �� � 3
	 �

(3.15)
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Expressing  � � ��& by its modulus and its phase,  � � ��& � 	  � � ��& 	 (*),+ � / � � ! ,
where

	  � � ��&�	 � � ���� � � � � � � 
 � �� � � � (*),+ - � � �� � 3 ��� � � � � � � & �
� � � � � � � ' � ��� � � � 
�� � 	�
 � - � �� � 3 � (3.16)

the extreme positions of 	  � � ��&�	 are given by� �
	 � � � � � �

�
� � � �

	 � � � � � � (3.17)

which has the solutions � � � �

� � � � 	 
 � � � � �� � � (3.18)

If � 	 � � � � � & � � (i. e., 	 � �
� �� � $ �� � $ � ) then the only real solution is� � � and it is a maximum. With the following example we can see that

the above condition is in general satisfied. For a value of � � � � (the most

typical values used), the value of the spectral amplitude slope must be

more than eight times higher than the amplitude value ( $ �� � $ � ��� ), at a

frequency � � � 	 � , for � not to be a complex extreme. When I measure

group velocities I assume that the only maximum corresponds to � � � .

Therefore, the group velocity can be obtain by following relation

� � � � � � ' �� ��� � �� � (3.19)

Another assumption is that
� �� is small enough that be can neglect in the

analysis. This assumption can be relaxed if a two-station technique is used

for great-circle paths of if the travel times are much greater that the source

group delay
� �� .
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Therefore, the group velocity is the distance from the source to the

receiver divided by the arrival time of the maximum of the envelope,� � � ' �� � � � � � , where � � denotes the arrival time of the maximum of

the envelope for the � � �

filter to the signal. Thus, the maximum of the en-

velope corresponds to the group travel time of the energy associated with

the frequency � � . But it is worthy to remember that equation (3.13) was

obtained using the first-order expansion of ' � � & , $ � � & and
� � � & . Substitu-

tion of the second-order terms leads to rather involved form of 	  � � ��& 	 and

it will be shown later that in these cases, the maximum of the envelope

does not, in general, correspond exactly to the group travel time.

The precision of measurement of group velocity by a bandpass filtra-

tion technique is subject to the assumptions the either (i) filters are very

narrow, which means that � is high and � � � � may be neglected with re-

spect to
� � and � �
� �� � $��� � $ � , or (ii) the approximations expressed in

(3.7) are valid.

Problems arise when the variation of amplitude with frequency and

the variation with frequency of the group velocity can not be neglected.

Applying MFT to synthetic seismograms, Dziewonski and Hales (1972)

showed that group velocity determination by MFT has systematic errors

when the group velocity changes rapidly with frequency and these errors

can be reduced with increase of � . Herrmann (1973) noted that the varia-

tion of group velocity with frequency causes an error in amplitude deter-

mination by MFT.

Note also that the use of the filtered output to estimate phase travel

time will be affected by the shape of the signal amplitude spectrum (3.16b).

The magnitude of these errors, examining
� � � ��& , will depend on the group
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velocity and the rate of the slope and value of the spectral amplitude.

To clarify the processes in the MFT, I present the flow chart of this tech-

nique in the Figure 3.2.

3.1.1 WHY A GAUSSIAN FILTER?

One important thing to considerate is the resolution of the filtering

function in the immediate vicinity of each center frequency and velocity

value. We require the resolution to be good. If we define the following

integral as a measure of the duration of a time signal,

� �� � ���
� �

� � 	 � � ��& 	 � � � � (3.20)

and measure the frequency domain duration as

� �� � � �
� � � � 	 � � � & 	 � � � � (3.21)

then the uncertainty principle states for a time function,
� � ��& , vanishing at

infinity faster than � � �� � , that

� �� � �� � � �
	�	

�� � (3.22)

The equality holds only for Gaussian signals [Percival and Walden (1993),

p. 74].
� �� and

� �� represent measures of the time and frequency resolution.

It is known that the improvement of the time domain resolution can be

achieved only at the expense of frequency domain resolution. It is obvi-

ous, from (3.22) that there is an advantage in using a filter for which this

expense is the least.
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Figure 3.2: Flow chart of MFT. Following Fourier transform of the signal, an
array of filters are convolved with our signal. After that the inverse Fourier
transform is applied to the filtered signal. The travel time of the maximum
of the envelope is the group travel time. The group velocity is the distance
dividing by this time.
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If ��� denotes the center frequency for the Gaussian filter, in the fre-

quency domain the Gaussian filter can be expressed as :

� � � � & � (*),+ � � � � � � ���
� � 	 	 (3.23)

The inverse Fourier transform of � � � � & is

� � � ��&�� �
� ���
	 �

(*),+ �
� � �� � ��

� � � � �'� ��� ��& (3.24)

Looking the expressions (3.23) and (3.24), the resolution is controlled in

both domains by the parameter � . Improved resolution in one domain

causes the opposite effect in the other, but the value of the product of the

RMS durations of the Gaussian function,
� � � � � , remains constant.

Selection of a particular filter width represents a compromise between

the time and frequency domain resolution and depends on the level of

noise, the character of the dispersion curve and the degree of contamina-

tion from energy belonging to other modes of propagation.

3.1.2 EFFECT OF MODAL INTERFERENCE

Until now, the theoretical discussion has been limited to the case in

which only one mode is present in the signal. But the seismic signal is a

complex signal, composed for different modes and noise. This complexity

sets limitations to our approach of the problem.

At short periods, problems arise because of the presence of more than

a single surface wave mode (Fig 3.3). Because the signal spectrum of these

periods is a superposition of modal contributions, the resultant spectrum

is highly oscillatory (see section 3.3) making analysis difficult. Herrmann

(1973) showed the limitation of the multiple filter technique for the effect

of modal interference.
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Figure 3.3: Group velocity curves for the first five modes for the Earth
model used in section 3.3.
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Following Herrmann (1973), ignoring the source amplitude spectral

shape, the filtered multi-mode signal can be expressed as

 � � � � & � ���
	 �
� �

�

��
� � �

$ � � ��� � � & � 2 � ��
� � ��

�
�

� � � �� � � � ���� (3.25)

where the subscript � designates the value of a quantity for the � � �

mode.

Dziewonski et al. (1969) stated that the individual maxima of the enve-

lope correspond to the arrivals of the group velocities of each mode. Be-

cause the modulus of (3.25) is a very complicated function then the accu-

rate determination of group velocities, occurs when the envelope maxima

are well separated.

Define the duration � � of the resulting Gaussian envelope as the time

from the peak value until the amplitude decreases to (*),+ � � � & of the orig-

inal value. In terms of � and � � (the characteristic filter period), the dura-

tion has the expression: � � � � � � �

�

�
(3.26)

Therefore, for practical purposes, when the two equal amplitude maxima

are separated by a time greater than 	 � � it is assumed that the two modes

do not interfere. If the different mode maxima are separated enough,

determinations of spectral amplitude, group velocity, and instantaneous

phase can be made using the equation for only one mode (3.8), rather than

(3.26). When the time separation of the arrivals of the two modes is less

than 	 � � , the maxima of the envelope will not correspond to the actual

maxima of the individual modes. Examining (3.26), the resolution can be

increased by decreasing the duration of the envelope of each mode by de-

creasing � . However, this would cause the amplitudes to reflect the varia-

tions of the group velocity with the frequency, requiring more terms in the
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Taylor’s expansion, equations (3.6) and (3.7)).

Narrow band-pass filtering of a dispersed surface wave can be used

to determine the group velocities and spectral amplitudes of the various

modes composing the signal under certain conditions. Namely, that the

group-velocity arrivals of the individual modes are well enough separated

in time that the contribution to the filtered signal do not interfere.

3.1.3 INCLUDING HIGHER ORDER IN THE TAYLOR’S EXPANSION

Bhattacharya (1983) approximated $ � � & , ' � � & and
� � � & , including a

higher order terms in the Taylor’s series expansion than Dziewonski et

al. (1969) did, by considering

$ � � & � $ � ��$��� � � � � � & �
' � � & � ' � � �� � � � � ��� & � ' � �� �� � � � ��� & � �
� � � & � � � � � �� � � � ��� & � �� � � �� � � � ��� & � �

(3.27)

Substituting the above approximation into (3.6), the new expression is sim-

ilar to (3.8), with the same � and � , but changing � by � �

 � � ��& � ���� $ � (*),+ � / � ��� � � ' � ��� � � &"!�  ���
�
��� � � � � 	� & (*),+ � / ��	� � � ��	� � ! � (3.28)

where
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� � � � �� � �� � � � �
� � � � �� �

� � � �� / � � ' � �� � � � � & � �� ��
(3.29)

Writing � � ��� ( ) + � / � & , with

� � � � 
 �� �� � � � 
 � 
 � �� � � � ��� � � 	 �
� � 
�� � 	�
 � �� ��� 
 � �� � � � �� ��� �� � (3.30)

and using (3.10) and (3.11), as I did before, the solution for (3.28) is � � ��& � � ���� (*),+ � / � � � � � ' � ��� � � &$!
� � �

� �
� (*),+ � / � � � ��� � �� �(��� � & ��� � �� �#� � � ! ���.� � � � � &

� �� � � � 
 � � � �� � ����� � � � � �� � �#� � � �
� (*),+.- / 
 � 
�� � � � 
 � �� � � ���.� � � � 
 � �� � � �#� � � 3� � ��� � ���

�
� / � �

& � ��� � ����� � / � � &$! � �

(3.31)

where �	� � � � � � �#� � 
 �� � � � �� � � ���.� 
 �� � � �
� � � � � � � ���.� 
 �� � � � �� � � � � � 
 �� � � �

(3.32)

If � is large enough than be can neglect � � � � with respect to
� � then

we can apply the approximation describes in (3.14), keeping the first term.
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Therefore,

 � � ��& � � � � �� � � ( ),+ � � � � �� � � � � ! �(��� � � � � &
� (*),+ � / � ��� � � ' � � � � � � � � � � �� ���.� � � �� &$!
� � ���� � � � � � � � � �

� ����� � � 
 � �� � � � 	 ( ) + � � � � �� � � � � � � &$!
� ��� � � � � � � �#� � � �� � &"! (*),+ � / � ��� � � ' � ��� 2 &"! �

(3.33)

where 2 � � � � �

	
� � �

� � ���.� � � � � (3.34)

and
� � 
�� � 	�
 � � ���� ����� � �� � � �	�� � �

��� � &
	 �

(3.35)

As before we look for the maximum of the envelope of  � � ��& . For that

we shall find the value of � at the point of the maximum. It difficult to cal-

culate the maximum of the envelope of (3.33) using both terms on the right

side of the expression. We can simplify by neglecting the first term with

respect to the second term when the envelope of the second term reaches

maximum. We can do it if � � �� is large enough (Bhattacharya, 1983). Thus,

near the maximum of second term, we may approximate the filtered signal

by
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 � � ��& � � ���� � � � � � � � � �
� �(��� � � 
 � �� � � � 	 (*),+ - � 
 � �� � � � � � � 3

� ��� � 
 � � � � �#� � 
 �� � � � ( ) + � / � � � � � ' � ��� 2 &"! � (3.36)

where the amplitude and phase of (3.36) are, respectively,

	  � � ��& 	�� � ���� � � � � � � � � �
� ���.� � � 
 � �� � � � 	 (*),+ - � 
 � �� � � � � � � 3

� ��� � 
 � � � � � � � 
 �� � � � �
(3.37)

and
� � ��� � � ' � ��� 2 � (3.38)

The extreme positions of 	  � � ��& 	 are the solutions of the following equa-

tion

� � � �
� �
	 � � � � � � � �(��� � �#� � �� � � � �

� � � � � � �
	 � � � � � ���.� � � � (3.39)

or � � ��
� 	�
 � � �

�� � � � � ���.� � ��� �
� �
	 � � ���� ���� �

� � � �
	 � �#� � � � �

(3.40)

Since, as it was assumed before that � is large then it may be taken as an

initial approximation (see Bhattacharya, 1983)� � � 	 
 � � �
(3.41)

The maximum of the envelope of the filtered signal occur at :����� �� � � � �� � � 	�
 � �
(3.42)
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or, � � � ���� � � �� � � 	 
 � � (3.43)

Thus, if � 	 
 � �
is ignored, (3.43) reveals that the measured group velocity

by MFT will be higher than the true value if � 	 
 � �
is negative or lower

than the true value if � 	�
 � �
is positive. For all combinations of signs of

�
and � , MFT distorts the computed group velocity to the group veloc-

ity of neighboring frequency at which the amplitude spectrum is rapidly

changing.

3.1.4 INSTANTANEOUS FREQUENCY

One way to improve the group velocity measurements when the am-

plitude changes with frequency, is to consider that the measured group

velocity corresponds to the instantaneous frequency ( � � � ) instead of

the central filter frequency �
� .

If the complex signal in the time domain is

 � � ��& � 	  � � ��&�	 (*),+ � / � � ��&"! � (3.44)

the instantaneous frequency is defined (see Keilis-Borok (1986), p. 137) as

� � ��& � � � � ��&� � �
(3.45)

The property
� � � � � � � � (3.46)

(Keilis-Borok (1986), p. 140) tells that when
�

is measured an approximate

value of the mean frequency around which the signal spectrum is con-

centrated can be obtained. Only in the case when the slope in spectrum
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amplitude is equal to zero does the mean frequency coincide with the cen-

tral frequency of the narrow-filter. We can improve the measurement by

assuming that the mean instantaneous frequency is the frequency that cor-

responds to the value of the measured group velocity instead of the filter

frequency.

From (3.15),

� � ��& � � � � ��&� � � � � � �
� � 
 � �� � � �

� �
	 �
� �

	 �
� �� � � (3.47)

If q is large it is assumed
�

� � 
 � �� � � � � � (3.48)

and neglecting the � � � $�� �� � $��� term the expression for the instantaneous

frequency is
� � ��& � ��� � �

	 � (3.49)

Examining the expressions (3.43) and (3.49)

� � � ���
��� �� � � � � � � � � � � � � � � &��

� � � �
� � � ���

��� �� � � � � � � � � � � � � � � &��
� � � �

(3.50)

this mean that the instantaneous frequency is shifted toward a direction

that compensates the error in the group velocity measurement.
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3.2 PHASE MATCHED FILTER

Herrin and Goforth (1977) proposed the phase matched filter technique

(PMF) to remove the effect of noise and other modes from the seismic sig-

nal to isolate the fundamental mode. The PMF compresses the waveform

into a narrow time window centered near zero time, allowing noise to be

windowed out by taking the spectrum of this narrow window rather than

the full signal time window. However, the amount of compression de-

pends on how well the phase matched filter matches the actual phase of

the signal. The PMF can be used to remove multipathing effects, isolate

the fundamental mode and improve the signal-to-noise ratio.

Consider the cross-correlation of a signal, f(t), with a time function, h(t):

� � ��& � � � ��& � 	 � � � &�	 	 � � � &�	 � 2 � � / � � � � & � � � � &"! � (3.51)

Now we choose an
� � ��& such that the Fourier phase is the same as

� � ��&
( � � � & � � � � & ), as a phase matched filter with respect to the signal, then

� � ��& � � � ��& � 	 � � � & 	 	 � � � &�	 � (3.52)

There are different possible choices for 	 � � � &�	

a) 	 � � � &�	 � 	 � � � & 	
This maximizes the signal-to-noise power ratio assuming ”white noise”.

For a low-level-noise signal, this give the best result.

b) 	 � � � � & 	 � �� � ��� � �

The output after this filter becomes the impulse function in the time do-

main, which maximizes the time resolution of the function but greatly re-

duces the signal-to-noise ratio. This is a good choice for interfering signal.
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c) 	 � � � � &�	 � �
This is a compromise between the time resolution and the signal-to-noise

ratio criteria. In my measurements this will be the one that I use.

Herrin and Goforth (1977) refer to the zero-phase time-domain signal

as the ”pseudo-autocorrelation function”. Assuming that the seismogram

is composed of propagating normal modes, the signal can be expressed as

� � ��& � �
	 �
� �

� �
� � 	 � � � � & 	 (*),+ � � � � ' � � � &�� � � � � � &"! � � (3.53)

where
� � � � & is source phase shift for the

� � �

mode.

When the PMF technique is applied to the signal,
� � ��& , the pseudo-

autocorrelation function has the expression

� � � ��& � �
	 �
� �

� �
(*),+ � /��' � ��! � � 	 � � � � &�	 (*),+ � � � � ' � � � &�� � � � � � &"! � � � (3.54)

where �' � is an estimate of dispersive wavenumber of the � � �

mode of in-

terest. Rewriting the above equation it is obtained
� � � ��& � ����  �� � 	 � � � � & 	 ( ),+ - 
 �' � � ' � � � & � � � � � � � &13 (*),+ � � �"! � �

� ����  �� ��� ����$� 	 � � � � &�	 (*),+ � � � � ' � � � &�� � � � � � &"! � � � (3.55)

If the source effect is removed and �' � � ' � � � , the first integral in the

right-hand side will be approximately zero-phase and will be concentrated

around zero-lag. Time-windowing
� � � ��& with a symmetric and zero-phase

window , � � ��& , will remove the contribution of the other modes and noise

to the signal, provided that they are separated enough from the zero-lag.

Therefore, we can write that

�� � � ��& � � � ��& � � � ��& (3.56)
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Taking the Fourier transform of the windowed pseudo-autocorrelation func-

tion results in

	 � � � � & 	 ( ) + � / � ' � ��! � ���
� � � � ��& � � � ��& ( ),+ � / � �"! � � (3.57)

where

� ' � �' � � ' � � (3.58)

or if we have not removed the source phase shift

� ' � �' � � ' � � � �� �
(3.59)

When � , the distance between the source and the receiver, is large enough

we can neglect the source phase term in the above expression. Notice that

there may be a residual phase ( � ' � ), depending of the accuracy of the ini-

tial estimate of the wavenumber dispersion curve. To improve that we can

use an iterative process with a new estimate of the wavenumber disper-

sion curve:

�' � ���� � �' � � � ' (3.60)

Then we can substitute this new value, �' � ���� in (3.55) and repeat the process

again until the process converge.

A fundamental ambiguity is present in (3.57)

(*),+ � / � ' � ! � (*),+ � / � ' � � / 	 � � ! � (3.61)

To remove this ambiguity requires a priori knowledge of the location of

the wavenumber at least at one frequency. This is possible if the data per-

mits connecting the dispersion curve to global long period phase-velocity

dispersion curves.
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Herrin and Goforth (1977) described the computer algorithm used in

the PMF technique. Here I present this algorithm with some details. To

find a PMF for a given seismic signal, I use the following iterative process:

1. Input a trial group-velocity dispersion curve and an amplitude spec-

trum for the filter. We obtain this trial group velocity dispersion

curve from the multiple filter technique describe in the section (3.2)

2. The group delay and the Fourier phase of the signal are related (Keilis-

Borok, 1989, p. 137) by

� � �'� � & � �
� � � � &� � (3.62)

where � � � is the group delay and
� � � & is the spectral phase, then

� � � � & �
� � �
��� � � �'� � & � � � � � � � & � (3.63)

This integral can have an additive constant without affecting the

derivative group delay. Russell et al. (1987) show that the windowed

pseudo-autocorrelation function is not biased by constant phase er-

rors.

Using the epicentral distance and the dispersion curve, I calculate� � � . With these group delay and (3.63) I obtain the Fourier phase of

the phase matched filter.

3. I perform the cross-correlation of the signal with the phase matched

filter calculated before (3.52) in the frequency domain. The ampli-

tude of the phase matched filter is equal to unity ( 	 � � � & 	 � � )
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4. After that I calculate the inverse Fourier transform to window the

pseudo-correlation function in the time domain. The window func-

tion that I use is a Parzen window defined as

� � ��& �
���������� ���������
� � � 
 �� � � � � 
 � � �� �

� 	 ��	�� � ��	

	 
 � � � � �� �
� � ��	 � 	 ��	�� �

� 	 ��	 � �
(3.64)

where
�

is the one-sided width of the Parzen window. The win-

dow size is proportional to the longest period in the signal. Russell

(1987, section 4.1.3) discusses the bias of the Parzen window func-

tion, showing that the PMF in an iterative process can remove resid-

ual bias in phase, but not the bias in the spectral amplitude, that can

be quite biased when there is significant curvature ( 	 � � � � � & 	 ) in the

amplitude spectrum.

5. Then I take this windowed pseudo-correlation function and obtain

its spectral amplitude and phase.

6. I apply a first derivative smoothing condition, to the dispersion curve.

This condition, with the approximations made (see section 3.2), is the

same as imposing a condition for continuity of the second derivative

of the Fourier phase spectrum. This is used to correct the group de-

lay of the trial filter (3.53)

7. I return to the step 3, repeating the process until the phase spectra of

the filter and the desired signal in the band of interest are identical.
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3.3 EXAMPLE OF MULTIPLE FILTER AND PHASE MATCHED
FILTER TECHNIQUES

As an example of the techniques described in previous sections, I ap-

ply them to some synthetic seismograms. These synthetic seismograms

have been calculated using the mode summation code by R. B. Herrmann

(Computer Programs in Seismology 3.1, Saint Louis University, 1996). To

calculate them I utilize a simple earth model, a layer over a half-space and

a strike-slip source with a strike = � � , a rake = � � , and dip =
� ���

at 40 km

depth. The recording azimuth is
� ���

. I only compute the first five modes

(Fig. 3.4).

In the Figure 3.5, the synthetic seismograms for four different distances

(1000 km, 2000 km, 3000 km and 4000 km) are presented. The increased

dispersion with distance is easily seen.

The output of the MFT program is shown in Figure 3.6, where at the

left of the figure is displayed the plot of the maximum values of the enve-

lope amplitude per period, which are indicated with different symbols. At

the right side is the plot of group velocity with period where the different

colors represent different envelope amplitude values, with the highest am-

plitude in red. In the group velocity plot the fundamental mode is clearly

seen by the gradation of color for periods larger than 10. For short periods

the contributions of the higher modes are notable.

After picking the points that I think belong to the fundamental mode

dispersion curve, I use these values as one of the input of the PMF tech-

nique. With that I isolate the fundamental mode. The comparison between

the synthetic fundamental mode and the isolated fundamental mode us-
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Fundamental mode

1- mode

2- mode

3- mode

4- mode

Signal

Time (s)

Figure 3.4: The first five modes and the complete modal summation at
4000 km

ing the PMF is presented in the Figures 3.7 and 3.8. Most of the differences

between both signal are at short periods where the contributions of higher

modes is important. The two signals in Figure 3.8 would be identical if

low pass filtered.
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Figure 3.5: Synthetic Rayleigh waves at four different distances
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Figure 3.6: MFT at 4000 km. At the right side the plot of the group ve-
locity dispersion curve with period is displayed; the color represents the
filtered envelope values as a function of velocity and period. The red color
represent the highest amplitude. The thin black lines, in this plot, are the
theoretical group velocity dispersion curves for the earth model used in
the synthetic computations. At the left side the plot shows the maximum
amplitude values of the envelope (discrete symbol) per period. The red
color lines show the amplitude of the different modes used in making the
synthetic seismogram and with thin black line, the amplitude of the signal
is plotted. The oscillation of the signal is due to the interferences of the
higher modes
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Time (s)

Fundamental mode

Fundamental mode_pmf

Figure 3.7: The original fundamental mode and the fundamental mode
isolated by the PMF, for the signal at 4000 km

Figure 3.8: Superposition of the original fundamental mode and the output
of PMF



4. GROUP VELOCITY MEASUREMENT

Using the methodology discussed in the Chapter 3, I calculate the group

velocity dispersion curves for Rayleigh and Love waves. The data set

consists of 50 events recorded by the Cooperative New Madrid Seismic

Network (CNMSN) and the Southern Alabama earthquake (24 of October,

1997), which was recorded by 48 stations. The comparison of observed

Rayleigh wave group velocity dispersion curves with the Stevens’ model

predictions is the main point of this chapter.

I start this Chapter with the a description of Stevens’ model (Stevens

and Adams, 1999). After that, I present the data set and the results of the

test between the observations and the model predictions for the events

recorded by CNMSN and for the Alabama earthquake.

4.1 STEVENS’ MODEL

One of the motivations of this work is to test the Stevens’ model. My in-

tention is to check its performance for different ranges of periods by com-

paring its predictions with the group velocity dispersion curves that I have

calculated. Before the presentation of the results I want to introduce the

methodology under the Stevens’ model.

This global model was created to identify and detect surface waves

under a Comprehensive Nuclear-Test-Ban treaty at the International Data

Center. The authors continue incorporating more data into this model to

predict surface wave behavior more accurately.

Observed surface waves provide strong constraints on earth structure,

so development of regional earth models can be a self-correcting process.
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That is, surface wave dispersion and amplitude can be used to infer earth

structure, and earth structure can be used to calculate surface-wave dis-

persion parameters. This is the basic idea of the project led by J. Stevens.

Stevens and Adams (1999) collected group and phase velocity data and

performed global tomographic inversions, determining the shear velocity

as a function of depth in discrete cells. This global model is divided in

� � � � � cells, each one associated with a particular Earth model type. Each

model type consists of plane layers with uniform P and S velocities, den-

sity and Q (the thickness of the layer is obtained by previous studies). The

layers extend to a depth of about 200 km. They treat the S-velocities as free

parameters which are estimated by tomographic inversion of observations

of phase and group velocity dispersion of surface waves. The surface wave

dispersion observations come from :

1. A large data set of 84,966 phase velocity measurements taken from

Curtis et al. (1998)

2. Global surface wave group velocities from earthquakes derived us-

ing PIDC GSETT3 data (Stevens and McLaughlin, 1988), augmented

with more recent measurements derived from PIDC data, for a total

of 1500 path at 6 frequencies from 0.02-0.06 Hz.

3. Surface wave phase and group velocity dispersion curves from un-

derground nuclear test sites (Stevens, 1986; Stevens and McLaughlin,

1988), calculated from earth models for 270 paths (test site-station

combinations) at 10 frequencies between 0.015 and 0.06 Hz.

4. Phase and group velocity measurements for western Asia and Saudi
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Arabia from Mitchell et al. (1996) for 12 path at 17 frequencies be-

tween 0.012 and 0.14 Hz. A large data set of dispersion measure-

ments from Saudi Arabia provided by St. Louis University (Mokhtar

et al. personal communication)

5. Global phase velocity model of Ekstrom et al. (1996) for 9 periods

between 35 and 150 seconds calculated for each
� �

grid block from a

spherical harmonic expansion of order l=40.

6. Group velocity measurements for Eurasia from Ritzwoller et al. (1996)

and Levshin et al. (1996) for frequencies between 0.004 and 0.1 Hz

with 500 to 5000 paths per frequency.

7. Group velocity measurements for South America and Antarctica pro-

vided by the University of Colorado (Vdovin et al.,1999; Ritzwoller

et al., 1999).

Inversions are performed with P-wave velocities fixed (Crust2 or other

studies) and with the P-wave velocities constrained by Poisson’s ratio, and

densities by Birch’s Law. The inversions are limited to depths between 3

and 200 km, with fixed water layers and extended to greater depth using

PREM (Dziewonski and Anderson, 1981). A smoothness condition that

minimizes the change in adjacent layer velocities is also applied. The cal-

culations are performed using the LSQR algorithm as described by Nolet

(1987). Although surface-wave attenuation is not modeled in this inver-

sions, the earth models include a
�

structure based on PREM model in the

mantle and on ”Swanger’s law”
� � � � � � where � is the shear velocity in

m/s in each crustal layer (Stevens and Adams, 1999). The shallow layers
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are too thin to be resolved by surface wave inversion, but are important

to account for the effects of sediments and, for oceanic model types, the

water column, because these layers have a strong effect on the higher fre-

quencies, so these are fixed in the tomographic inversion. The parameters

for these shallow layer are taken from other studies (e.g Mooney et al.,

1988; Laske and Masters, 1997).
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4.2 THE CNMSN EVENTS

The events used in this study were recorded by 8 Broadband stations

belonging to CNMSN and BILLIKEN run by Saint Louis University (Fig

4.1 and Table 4.1).

Stations
Name Lat Lon
BLO 39.1719 -86.5222
CCM 38.0555 -91.2445
FVM 37.984 -90.4260
MPH 35.123 -89.932
PLAL 34.9824 -88.0755
SIUC 37.7148 -89.2174
SLM 38.6362 -90.2362

UALR 34.7760 -92.3435
UTMT 36.3423 -88.8642

Table 4.1: Station locations

I calculate group velocity dispersion curves for 50 events recorded from

01/99 to 05/01 (Figure 4.2 and Table 4.2). The event distances range from

teleseismic to local. Depending of the distance I use a different width pa-

rameter of the Gaussian filter, � which is represented by differences in

color in Figure 4.2. In the event table I have assigned different letter for

each � value used: � � 	 � with A, � � � � with B, � � � � � with C, and

� � 	�� � with D. For a better exposition of the result, I have grouped the

events by their locations; events in the same group have essentially the

same path. These groups are noted in the last column of the table by a

number.
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Figure 4.1: Cooperative New Madrid Seismic Network, broadband stations
used in this study. CCM is a IRIS-Billiken station
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4.2.1 GENERAL RESULTS

In this section I compare the observations to the Stevens’ model. The

results are presented for different range of distances (Figure 4.3). I select

path ranges of 0-500 km, 0-1500 km, 1500-4000 km, and 4000-10000 km to

focus on predictions for paths within the central U.S., for continental U.S.

paths, and global paths. Most of the data used by Stevens and Adams

(2000) have periods between 20 and 150 s. For the other periods, model

based predictions based on CRUST2 (Mooney et al. 1998) for shorter peri-

ods, and PREM (Dziewonski and Anderson, 1981) for longer periods are

used.

The whole result set of the differences between observations and Stevens’

model predictions are displayed in Figure 4.3. To view the performance of

the Stevens’ model and the extrapolations made, I present expansions for

different range of periods. These expansion are for periods shorter than

20 seconds in Figure 4.4, for periods in the range between 20 and 150 sec-

onds in Figure 4.7 and for periods longer than 150 in Figure 4.13. After

each expansion I present the histograms for some selected periods (Fig-

ures 4.5 for 5s, 4.6 for 10s, 4.8 for 20s, 4.9 for 50s, 4.10 for 70s, 4.11 for 100

s, 4.12 for 150s, 4.14 for 180s, 4.15 for 220s, 4.16 for 240s and 4.17 for 260s).

These histograms permit a better visualization of the differences between

observations and model predictions.
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Events
Name Lat Lon

�
� Depth n. Rayleigh n. Love clas

000101 46.87 -78.90 5.2 18 3 2 B
000414 39.86 -86.72 3.6 10.0 1 2 A
000506 -11.25 165.41 6.3 33.6 6 1 D
000602 44.50 -130.18 5.9 10 5 5 B 5
000604 -4.73 102.05 7.9 10 0 7 D
000711 57.58 -154.49 6.7 53.5 6 6 C 1
000720 38.34 -87.42 3.0 0.1 2 1 A
000727 38.26 -87.34 2.7 1.0 3 3 A
000805 38.25 -87.29 3.0 0.1 2 2 A
000809 18.19 -102.30 6.4 33.0 7 7 B 2
000811 38.25 -87.32 2.0 0.1 3 3 A
000817 38.26 -87.34 2.9 0.1 2 4 A
000822 36.486 -91.12 3.9 5.0 3 7 A
000831 38.28 -87.39 3.0 5.0 3 3 A
000903 38.38 -122.41 5.2 9.4 4 5 B 3
000918 25.28 -109.43 4.6 10 5 6 B
001005 38.23 -87.35 2.9 0.1 1 2 A
001207 38.00 -87.68 4.0 10.0 2 4 A
010111 49.24 -128.92 5.8 10 3 2 B 5
010113 12.77 -88.83 7.6 60.0 4 4 B 2
010126 41.99 -80.83 4.2 5.0 2 2 A
010228 47.2 -122.54 6.9 52.9 4 3 B 5
010414 56.35 -119.16 5.3 21.3 4 3 B
010421 43.16 -111.19 5.3 15.0 6 4 B 4
010428 18.60 -104.81 6.1 15.0 7 6 B 2
010504 35.24 -92.22 4.4 13.4 6 6 A
990125 4.45 -75.77 6.1 27.9 4 3 B 1
990308 52.13 159.32 6.7 33 5 4 C
990309 43.47 -127.26 5.1 10 6 6 B 5

Table 4.2: Events analyzed in this study. The different columns present
latitude, longitude, moment magnitude, depth, number of Rayleigh disper-
sion curves, number of Love dispersion curves and the source group of
the event. The letter refers to the distance and the � used in the MFT: A
for � = 25, B for � = 50, C for � = 100 and D for � =200. The group number
indicates events with similar source-station path.
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Events
Name Lat Lon

�
� Depth n. Rayleigh n. Love clas

990310 52.31 -31.85 5.3 10 4 0 C
990320 51.61 -177.73 6.8 33 3 2 C
990331 5.8 -82.39 6.0 10 4 3 B 1

990403a -16.39 -72.51 6.2 94 4 2 C
990403b 13.14 -87.66 5.7 33 4 5 B 2
990404 15.98 -97.25 5.1 33 4 0 B 2
990507 56.55 -153.04 6.1 33 3 0 C 1
990515 37.53 -118.82 5.6 5.7 3 3 B 3
990606 13.78 -90.90 6.1 33 5 5 B 2
990615 18.41 -97.34 6.7 79.6 6 5 B 2
990621 18.37 -101.39 5.7 72.7 6 1 B 2
990703 47.08 -123.46 5.9 40.6 7 3 B 5
990711 15.79 -88.26 6.6 10 4 4 B 2
990801 37.386 -117.73 5.7 8 6 6 B 3
990817 40.81 30.08 7.5 16.6 5 5 C 2
990818 37.91 -122.69 5.0 6.9 3 6 B 3

990820a 9.22 -84.05 6.7 33 5 5 B 1
990820b 44.78 -112.77 5.3 12 4 3 B 4
990930 16.04 -96.93 7.5 47.4 7 0 B 2
991016 34.60 -116.27 7.0 6.0 7 7 B 3
991112 40.77 31.15 7.2 10 7 6 C 2

Table 4.3: Continuation of table 4.2
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Figure 4.3: Difference between observed and Stevens’ model predictions
for Rayleigh wave group velocity dispersion curves for the entire data set
as a function of period. The results are displayed in different distance
windows. The ordinate axes are group velocity values with the unit km/s.



58

-1

0

1

0-
50

0 
km

0 10 20

-1

0

1

0-
1 

50
0 

km

0 10 20

-1

0

1
4 

00
0-

10
 0

00
 k

m

0 10 20

Period(s)

-1

0

1

1 
50

0-
4 

00
0 

km

0 10 20

-1

0

1

A
ll_

di
st

an
ce

s

0 10 20

Period(s)

(OBS - STV)

Figure 4.4: Expansion of Figure 4.3 for periods less than 20 s
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ment corresponding to each value of the differences between observation
and Stevens’ model at 20 seconds period
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Figure 4.9: Histogram at 50 seconds, showing the number of measure-
ment corresponding to each value of the differences between observation
and Stevens’ model at 50 seconds period
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Figure 4.10: Histogram at 70 seconds, showing the number of measure-
ment corresponding to each value of the differences between observation
and Stevens’ model at 70 seconds period
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Figure 4.11: Histogram at 100 seconds, showing the number of measure-
ment corresponding to each value of the differences between observation
and Stevens’ model at 100 seconds period
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Figure 4.12: Histogram at 150 seconds, showing the number of measure-
ment corresponding to each value of the differences between observation
and Stevens’ model at 150 seconds period
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Figure 4.13: Expansion of Figure 4.3 for periods higher than 150 s
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Figure 4.14: Histogram at 180 seconds, showing the number of measure-
ment corresponding to each value of the differences between observation
and Stevens’ model at 180 seconds period
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Figure 4.15: Histogram at 220 seconds, showing the number of measure-
ment corresponding to each value of the differences between observation
and Stevens’ model at 220 seconds period
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Figure 4.16: Histogram at 240 seconds, showing the number of measure-
ment corresponding to each value of the differences between observation
and Stevens’ model at 240 seconds period
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Figure 4.17: Histogram at 260 seconds, showing the number of measure-
ment corresponding to each value of the differences between observation
and Stevens’ model at 260 seconds period
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One way to present the common features of the comparison, is to show

mean values of the difference between the observations and the Stevens’

predictions with periods for different distance ranges (Figure 4.18). The

number of observations per periods that contribute to these mean values

are given in Figure 4.19. These two Figures are better to point out the main

tendencies of the test results. Expansions of the Figure 4.7 are Figures

4.20 (periods shorter than 20 seconds), 4.21 (periods within 20 and 150

seconds), and 4.22 (periods longer than 150 seconds).

The performance of the Stevens model with period between 10 and 160

for distances longer than 1500 km is quite good, reproducing the observa-

tions very accurately (
� � �����

at 20 seconds, Figure 4.8). This result was

expected, because that was the range of periods in which most of the data

used by Stevens and Adams (2000). For periods less than 10 seconds the

observed Rayleigh wave dispersion curves are faster than the model pre-

dictions. These underestimations are within 	 � � � ��� at 5 seconds (Figure

4.5). Most of the observations for these shorter periods correspond to sig-

nal generated by presumed mining events in the deepest part of the Illinois

Basin. The result confidence in these periods may be limited because of the

difficulty in removing contributions coming from higher modes. The re-

sults for periods longer than 160 present a tendency of the model to have

faster velocities than the observed group velocities. For example at 160

seconds the Stevens model overestimate the group velocities values by

�
	 ��� � 	 ����� (Figure 4.12) This tendency increases with longer periods.
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period



74

0

5

10

15

20

25

30
0-

50
0 

km

0 20 40 60 80 100

0

5

10

15

20

25

30

0-
1 

50
0 

km

0 20 40 60 80 100

0

5

10

15

20

25

30

35

40

45

4 
00

0-
10

 0
00

 k
m

0 50 100 150 200 250 300

Period(s)

0

50

100

150

1 
50

0-
4 

00
0 

km

0 50 100 150 200 250 300

0

50

100

150

200

A
ll_

di
st

an
ce

s

0 50 100 150 200 250 300

Period(s)

Num_Obs

Figure 4.19: Number of observations per period that contribute to the
mean values



75

-1

0

1

0-
50

0 
km

0 10 20

-1

0

1

0-
1 

50
0 

km

0 10 20

-1

0

1
4 

00
0-

10
 0

00
 k

m

0 10 20

Period(s)

-1

0

1

1 
50

0-
4 

00
0 

km

0 10 20

-1

0

1

A
ll_

di
st

an
ce

s

0 10 20

Period(s)

Mean (obs - stv)

Figure 4.20: Expansion of Figure 4.7 for periods less than 20 s
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Figure 4.21: Expansion of Figure 4.7 for periods between 20 and 150 s
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Figure 4.22: Expansion of Figure 4.7 for periods higher than 150 s
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4.2.2 LOCAL EXPLOSIONS

Some of the events at local distances are presumed to be mining events,

located near Evansville, IN (Figure 4.23 and Table 4.2, the events in group

A). The observed Rayleigh wave group velocity dispersion curves for these

explosion events are plotted in Figure 4.24. I organized the observations

by station because the explosions are located very close one another, map-

ping almost the same path in their way to the stations. In the next Fig-

ure (4.25) the difference between the observations and the Stevens’ model

predictions are shown. These differences show a clear tendency for the

predicted group velocities to be lower than observed. The periods of the

explosion data ranges from 2 to 15 seconds. The comparison with the

Stevens’ model shows, as I already have commented, a tendency to un-

derestimate the dispersion. However, I can see a repeated pattern in all of

them: a linear increase of the observed group velocity with respect to the

predicted from 2 seconds up to a maximum value at 4 seconds, followed

by a linear decrease from 4 to 6 seconds and an almost constant difference

thereafter.
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Figure 4.24: Group velocity dispersion curves for Rayleigh waves. Each
color represents a different mining event. The color key is shown in Figure
4.12
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Figure 4.25: Difference between the observations and the Stevens’ model
predictions for Rayleigh group velocity dispersion curves for each station.
Each color represents a different mining event. The color key is shown in
Figure 4.12
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Figure 4.26: Group velocity dispersion curves for Love waves. Each color
represents a different mining event. The color key is shown in Figure 4.12
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4.3 ALABAMA EARTHQUAKE

The Alabama earthquake occurred in southern Alabama, on October

24 of 1997, with epicentral coordinates 31.2
�

N and -87.3
�

E. Chang et al.

(1998) estimated the fault parameters (strike, dip, slip, depth, and seis-

mic moment) using surface wave radiation pattern grid searches, regional

waveform moment tensor inversion, and teleseismic P-waveform model-

ing. Their preferred fault parameters are strike � � � �
, dip � � 	 � and rake

� � � � � with a Mw = 4.9 at 4.5 km depth.

This earthquake was recorded by 48 stations located in North America

(Fig. 4.15 and Table 4.4). The good station coverage give the possibility

to test the Stevens’ model for paths through North America at different

distances.

As I did before with the rest of events, I present the completed set of

differences between the observations and the Stevens’ model predictions

(Fig. 4.17). To facilitate their analysis an expansion of Figure 4.17 for pe-

riods shorter than 20 seconds is displayed in Figure 4.18. To point out the

common feature of the test I obtain the mean values of these differences

(Fig. 4.19) and in Figure 4.20 the number of observations that contribute

to the main value at each period are shown.

The results have similar characteristic to the other events, showing a

good agreement between observations and predictions from 10 to 160 sec-

onds at distances longer than 1500 km.
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Figure 4.27: Map with the station (triangle) and the epicenter (start) loca-
tions for the Alabama earthquake. for the Alabama earthquake
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Name Lat Lon Name Lat Lon
BAAM 42.30 -83.66 MCWV 39.66 -79.85
ALQ 34.94 -106.46 MIAR 34.56 -93.57
BBB 52.18 -128.11 MOBC 53.20 -131.90

BINY 42.20 -75.99 NEW 48.26 -117.12
BLA 37.21 -80.42 OXF 34.51 -89.41

BW06 4.28 -109.56 PGC 48.65 -123.45
CBKS 38.81 -99.74 PMB 50.52 -123.08
CCM 38.06 -91.25 PNT 49.32 -119.62
CEH 35.89 -79.09 RES 74.69 -94.90

DAWY 64.06 -139.39 SADO 44.77 -79.14
DLBC 58.44 -130.03 SCHQ 54.83 -66.83
DRLN 49.26 -57.50 SSPA 40.64 -77.89
DUG 40.19 -112.81 TUC 32.31 -110.78
EDM 53.22 -113.35 ULM 50.25 -95.88
ELK 40.75 -115.25 WALA 49.06 -113.91
GAC 45.70 -75.48 WCI 38.21 -86.36

GOGA 33.41 -83.47 WHY 60.66 -134.88
INK 68.31 -133.52 WMOK 34.74 -98.78
ISCO 39.80 -105.61 WVT 36.13 -87.83
JFWS 42.91 -90.25 YKW1 62.49 -114.50
KNB 37.02 -112.82 YKW2 62.43 -114.61

LBNH 44.24 -71.93 YKW3 62.56 -114.62
LMN 45.85 -64.81 YKW4 62.49 -114.74
LSCT 41.68 -73.22 YSNY 42.48 -78.54

Table 4.4: Station locations for the Alabama earthquake
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Figure 4.28: Differences between observation and Stevens’ model predic-
tions
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Figure 4.29: Expansion of Figure 4.17 for period � 	��
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Figure 4.30: Mean between observation and Stevens’ model
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Figure 4.31: Number of observations that contribute to each period



5. THEORY OF THE PHASE VELOCITY
MEASUREMENT

With the increase of the number of modern broadband stations in re-

gional networks several methods have been developed in order to infer

regional structure (e.g. Montagner, 1986; Friederich et al., 1994). The

phase velocity of the surface waves has the advantage of being to first or-

der a linear combination of the underlying 3-D model (Nataf el al., 1986).

Friederich et al. (1994) discuss the limitations of the regional method for

obtain regional structure.

After applying the phase matched filter, I obtained a signal containing a

single mode, the fundamental mode. These simpler signals are the inputs

for the � � � technique that I use to calculate local phase velocity dispersion

curve and which the theoretical bases are displayed in this chapter. The ��
� technique was first developed to be applied in linear array for refraction

and reflection studies (McMechan and R. Ottolini, 1980). McMechan and

Yedlin (1981) were the first to analyze of dispersive waves by this wave

field transformation. Later Russell (1987) in his doctoral thesis developed

this technique for discrete spatial sampling. I follow Russell (1987) for the

phase velocity measurements.

In this chapter, I present the methodology used in the measurement of

local phase velocity, the � � � stacking. The results of the measurements

are compared with the predictions of the regional HAMBURG model (Ta-

ble 5.1) calculated from waveform modeling of an earthquake in Missouri

(Herrmann and Ammon, 1997). The result are presented in the next chap-

ter.

90
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HAMBURG model
Thickness P-velocity S-velocity Density Q � �

� Q � �

�
(km) (km/s) (km/s) (g/cm

�
)

1.00 4.93 2.85 2.48 0.0050 0.010
2.00 5.76 3.32 2.65 0.0005 0.001
2.00 6.25 3.60 2.77 0.0005 0.001
3.00 6.13 3.54 2.74 0.0005 0.001
3.00 6.23 3.60 2.77 0.0005 0.001
4.00 6.41 3.70 2.82 0.0005 0.001
4.00 6.36 3.67 2.80 0.0005 0.001
5.50 6.58 3.80 2.87 0.0005 0.001
5.50 6.53 3.77 2.85 0.0005 0.001
5.50 6.74 3.89 2.91 0.0005 0.001
5.50 6.63 3.83 2.88 0.0005 0.001
1.25 7.33 4.23 3.08 0.0005 0.001
1.25 7.36 4.25 3.09 0.0005 0.001
2.50 7.76 4.48 3.23 0.0005 0.001
2.50 7.84 4.52 3.25 0.0005 0.001
5.00 7.87 4.54 3.26 0.0005 0.001
2.50 8.06 4.65 3.33 0.0005 0.001� 8.56 4.94 3.51 0.0005 0.001

Table 5.1: Earth model for Central North America. HAMBURG earth
model.
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5.1 P- � STACKING

McMechan and Yedlin, (1981), developed an alternate approach to sur-

face wave analysis that consists in the transformation of the entire data

wave field into the slowness-frequency (� � � ) domain where the disper-

sion curve can be directly picked. This method is based on the principle

that when two functions are in phase for a given frequency their sum will

reach the maximum and their difference will assume the minimum value.

The � � � stacking involves searching for phase velocities that will produce

constructive interference of monochromatic waves at a given frequency.

A direct sum of many recording at a given frequency will not, in general,

constructively interfere, due to phase differences at different station. How-

ever if it is assumed that the seismic signal can be approximated by a sum

of wave planes, the difference in phase between any two stations, having

the same azimuth, will be equal to ' � � &�� � , where � � is the interstation

distance. I follow Russell (1987) for the determination of phase velocity

using the � � � technique with discrete spatial sampling.

The expression for the wavenumber is

' � � & � �� � � & � � � � � &�� (5.1)

where � � � � � is the wave slowness. Therefore, either ' � � � or � can be

treated as independent variables in the searching, and they can be varied

for the value (or values) where the phase adjusted sum of the recording

reaches a maximum.

After applying the phase matched filter, I get a signal containing a sin-

gle mode, the fundamental mode. I use this simpler signals to obtain local
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phase velocity dispersion curves. We can express them by

� � � � � & � � �
� �

$ ��� � � & (*),+ � / � � � � � � � � � & � ' � � &�� &$! � � � (5.2)

where
� � � � � & is the source term, � is the azimuth and r the distance from

the source to the receiver.

The � � � stacking process involves two linear transformations: a slant

stack followed by a Fourier transform. A slant stack is a linear operation

that transforms a wave field in the t-r domain into the wave field in the

� � � domain. Here p is the ray parameter (horizontal slowness), and � is

projection of t to zero offset along a line of slope p through the point (t,r)

(McMechan and Ottolini, 1980).

Let N spatially separated stations lie along the same azimuth from the

seismic source. I normalize the signal dividing the recorded seismograms

by the signal belonging to the closed station to the source. With this nor-

malization the source phase and the contribution of the Earth structure

from the source to the closest station are removed. Then, the normalized

signal has the expression
	� � � � �#� & �  �

� �
� ����� � � ������� � � � ����� ��� �


 ��� � � ���� ��� � � � � ���	��� � � � � ��� ��� �

 � � � � � �
� � 2 � � / � �"! � �

�  �
� �

� ����� � �� ��� � � � � (*),+ � / � � & � � ' � �#��! � � � (5.3)

where � �#� � �#� � � � is the different between station / and the closest station.

After this normalization I perform the slant stack, transforming from
	� ��� � ��& wave field to

� � � � ����& , where� � � � ����& � ��� � �
	� ��� � ��� � � � � � � & � (5.4)

N is the number of station. Substituting (5.3) into (5.4), we have� � � � ��� & � � � � �
� �

�$ � � � � � � & (*),+ � / � � � � � � � � � � � � � � � &�� � � ! � � � (5.5)
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where �$ � ��� � � � & � $ ��� � � &$ � � � � � &
�

(5.6)

The � � � wave field contains the same information that the original data

does, but it is now decomposed into elements of equal phase velocity c

(1/p). The slant stack introduces a desired phase distortion of the data

(Chapman, 1978), but no frequency shift. Thus, the amplitude spectrum of

the trace at a given p is identical to that associated with the corresponding

phase velocity in the original data.

The second step is to perform a Fourier transform, that is� � � � � � & � � � �$ � ��� � � � & � (*),+ � / � � � � � � � &�� � � !!� (5.7)

The quantity
� � � � � � & will have a maximum when p’=p. Then I look for

the values of p’ that maximize the modulus of
� � � � � � & at each frequency to

find the phase velocity dispersion curve. If I correct the signal amplitude

by geometrical spreading and attenuation, the maximum value of
� � � � � � &

must be equal to the number of stations. If this value is less than N, then

I can attribute this to some deviations from the assumptions, that all the

station lie along the same azimuth and our signal can be approximate by

plane waves.

McMechan and R. Ottolini (1980) discuss the limitations of � � � trans-

form, concluding that the main limitations are:

1. The profiles are usually spatially aliased. In order to avoid spa-

tial aliasing, the station must be placed at a distance from one an-

other which is less than one-half of the wavelength of the highest

frequency one wishes to resolve. For example if at 20 s the phase ve-
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locity is around 3 km/s we need that the interstation distance to be

less than 300 km.

2. Another limitation associated with the data is related to the coherency

between sources when is used more than one source in the stacking

process. This is no problem when the sources are shots but might

be a problem if earthquake sources were used. Since slant stacking

depends upon constructive interference to delineate the � � � locus,

it work well only when the apparent sources exhibit the same initial

polarity. But I resolve this problem when I normalize by the closest

station in that way the source dependence is removed.



6. PHASE VELOCITY MEASUREMENT

6.1 DATA

In this chapter I present the local phase velocity measurements obtain

using � � � stacking method. With the application of the PMF to the data

set (section 3.2), I not only obtain an improvement of the group veloc-

ity dispersion curves but also isolate the fundamental mode. Using this

simpler signal, in which the noise and the influence of higher modes is

significantly reduced, I apply the � � � stacking to the completed set of

measurements for each earthquake. The methodology is applied only to

earthquakes with three or more Rayleigh and/or Love surface waves ob-

servations (Table 4.2, columns 6 and 7). The data set is the same I used in

the Chapter 4 (Fig. 4.2 and Table 4.2), but I do not get measurements for

all of them.

As I did, in other sections of this thesis, the earthquakes are grouped

depending of their epicentral locations (Fig. 4.2). All the observations are

plotted with a reference model, HAMBURG obtained by Herrmann and

Ammon (1997) for Central United States. The observations for the earth-

quakes, belonging to the same group, are presented in the same Figure.

Each of the earthquakes has a different color and the symbols are circles

in contrast with the symbol for the predictions values which are triangles.

The color keys are displayed in the bottom of each figure. Following each

plot I present a table with the azimuth.
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Figure 6.1: Rayleigh and Love local phase velocity curves for B1 group.
The different colors correspond to different earthquakes. The key between
colors and earthquakes are displayed in left bottom of the figure. The cir-
cles and the triangles indicate the observations and the HAMBURG model
predictions, respectively. triangles

Azimuth (
�

)
Station/event 990125 990331 990820a

BLO 346 354 356
CCM
MPH 339 348 349
PLAL 341 351
SIUC 350
SLM 341 349 350

UARL 344.6
UTMT 352

Table 6.1: Azimuths for the earthquakes in group B1.
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Figure 6.2: Rayleigh and Love phase velocity curves for B2 group. The dif-
ferent colors correspond to different earthquakes. The key between colors
and earthquakes are displayed in left bottom of the figure. The circles and
the triangles indicate the observations and the HAMBURG model predic-
tions, respectively

Azimuth (
�

)
Station/event 990615 990621 000809 010428

BLO 22 29 30 34
CCM 14 22 29
MPH 20 29 30 36
PLAL 34 39
SIUC 19 27 27 32
SLM 16 23 24 29

UARL 26 32
UTMT 21 29 30 35

Table 6.2: Azimuths for the earthquakes in group B2.
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Figure 6.3: Rayleigh and Love phase velocity curves for B3 group. The dif-
ferent colors correspond to different earthquakes. The key between colors
and earthquakes are displayed in left bottom of the figure. The circles and
the triangles indicate the observations and the HAMBURG model predic-
tions, respectively

Azimuth (
�

)
Station/event 990403b 990404 990606 990711 990930 010113

BLO 2 20 8 3 20 4
CCM 12
MPH 355 18 2 356 358
PLAL 359 22 21 2
SIUC 357 17 3 16 359
SLM 355 14 1 356 13 358

UARL 350 12 352
UTMT 4 18

Table 6.3: Azimuths for the earthquakes in group B3.
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Figure 6.4: Rayleigh and Love phase velocity curves for B4 group. The dif-
ferent colors correspond to different earthquakes. The key between colors
and earthquakes are displayed in left bottom of the figure. The circles and
the triangles indicate the observations and the HAMBURG model predic-
tions, respectively

Azimuth (
�

)
Station/event 990515 990801 990818 991016 000903

BLO 76 76 76 70
CCM
MPH 87 88 86 81 87
PLAL 81 86
SIUC 81 80 74 81
SLM 78 78 78 71 79

UARL 90 88 82 89
UTMT 84 84 83 78

Table 6.4: Azimuths for the earthquakes in group B4.
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Figure 6.5: Rayleigh and Love phase velocity curves for B5 group. The dif-
ferent colors correspond to different earthquakes. The key between colors
and earthquakes are displayed in left bottom of the figure. The circles and
the triangles indicate the observations and the HAMBURG model predic-
tions, respectively

Azimuth (
�

)
Station/event 990820b 010421

BLO 97 93
CCM 101
MPH 111 108
PLAL 106
SIUC 100
SLM 102 98

UARL 116 112
UTMT 107

Table 6.5: Azimuths for the earthquakes in group B5.
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Figure 6.6: Rayleigh and Love phase velocity curves for B6 group. The dif-
ferent colors correspond to different earthquakes. The key between colors
and earthquakes are displayed in left bottom of the figure. The circles and
the triangles indicate the observations and the HAMBURG model predic-
tions, respectively

Azimuth (
�

)
Station/event 990309 990703 000602 010111 010228

BLO 84 93 84 92 94
CCM 99
MPH 93 103 93 102 104
PLAL 92 92
SIUC 88 98 88 99
SLM 87 97 87 96 98

UARL 107 95 105 108
UTMT 91 100 90

Table 6.6: Azimuths for the earthquakes in group B6.
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Figure 6.7: Rayleigh and Love phase velocity curves for B group. The dif-
ferent colors correspond to different earthquakes. The key between colors
and earthquakes are displayed in left bottom of the figure. The circles and
the triangles indicate the observations and the HAMBURG model predic-
tions, respectively

Azimuth (
�

)
Station/event 000101 000918

BLO 219 49
CCM
MPH 55
PLAL 214 57
SIUC 224 49
SLM 230 46

UARL 53
UTMT

Table 6.7: Azimuths for the earthquakes in group B.
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Figure 6.8: Rayleigh and Love phase velocity curves for C1 group. The dif-
ferent colors correspond to different earthquakes. The key between colors
and earthquakes are displayed in left bottom of the figure. The circles and
the triangles indicate the observations and the HAMBURG model predic-
tions, respectively

Azimuth (
�

)
Station/event 990507 000711

BLO 83
CCM
MPH 89
PLAL 88 88
SIUC 86 86
SLM 86 86

UARL 91
UTMT 87 87

Table 6.8: Azimuths for the earthquakes in group C1.
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Figure 6.9: Rayleigh and Love phase velocity curves for C2 group. The dif-
ferent colors correspond to different earthquakes. The key between colors
and earthquakes are displayed in left bottom of the figure. The circles and
the triangles indicate the observations and the HAMBURG model predic-
tions, respectively

Azimuth (
�

)
Station/event 990817 991112

BLO 315 316
CCM 318
MPH 315
PLAL 314
SIUC 317
SLM 317 318

UARL 316 317
UTMT 315 316

Table 6.9: Azimuths for the earthquakes in group C2.
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Figure 6.10: Rayleigh and Love phase velocity curves for C group. The dif-
ferent colors correspond to different earthquakes. The key between colors
and earthquakes are displayed in left bottom of the figure. The circles and
the triangles indicate the observations and the HAMBURG model predic-
tions, respectively

Azimuth (
�

)
Station/event 990308 990310 990320 990403a

BLO 48 63 347
CCM 66
MPH 53 68 342
PLAL 52 269 344
SIUC 51 273 344
SLM 51 275 65 344

UARL
UTMT 271

Table 6.10: Azimuths for the earthquakes in group C.
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Figure 6.11: Rayleigh and Love phase velocity curves for D group. The dif-
ferent colors correspond to different earthquakes. The key between colors
and earthquakes are displayed in left bottom of the figure. The circles and
the triangles indicate the observations and the HAMBURG model predic-
tions, respectively

Azimuth (
�

)
Station/event 000506 000604

BLO 52 12
CCM
MPH 57 19
PLAL 57 16
SIUC 54 16
SLM 53 17

UARL 57 22
UTMT 55 16

Table 6.11: Azimuths for the earthquakes in group D.



108

The results are only partially successful. The comparison of the ob-

tained phase velocity dispersion curves with a model developed by Her-

rmann and Ammon (1997) for central U.S. gives only good results (they

fit with the predictions within a
���

) for a reduced group of earthquakes

(Figures 6.2, 6.7, and 6.9). These earthquakes were recorded in a large

number of stations (6 or more). Also, their group velocity curves are the

best in quality (absence of discontinuities and high signal-to-noise rate) in

a wide range of periods, and so, allowed a good isolation of the fundamen-

tal mode. For the other earthquakes the methodology is unstable, giving

place to unrealistic curves.



7. SUMMARY AND CONCLUSIONS

In this work I obtained the group velocity dispersion curves of the fun-

damental mode for Rayleigh and Love waves. The data set is composed

of 50 events recorded by the Cooperative New Madrid Seismic Network

and for the Alabama earthquake recorded by 48 stations located in North

America. I have used the Multiple Filter Technique and the Phase Matched

Filter methods to isolate the fundamental mode and retrieve its group ve-

locity dispersion curve. These dispersion curves are important because

they encode information about Earth’s structure in depth.

The dispersion curves obtained for Rayleigh waves have been com-

pared with the predictions of the Stevens’ global earth model with the

idea of testing its performance. In the period range from 13 to 160 seconds

the Stevens’ model reproduces the observations very accurately (within
���������

at 20 seconds). This is not a surprise because this is the period

range in which most of the data used by Stevens in his inversion lie. For

periods larger than 160 seconds the Stevens’ model shows a linearly in-

creasing tendency to overestimate the group velocity value. For example,

for 160 seconds period the Stevens’ model overestimate the group veloci-

ties by �
	 � 	 ��� � . For these periods the Stevens’ model is not based on the

inversion of data, but on the PREM model for layers deeper than 200 km.

At very long periods the problem may be inadequacy of the great-circle

path assumption. For periods less than 13 seconds the model tends to un-

derestimate the group velocity in comparison with the observation: At 5

seconds period I observe a difference between observations and prediction

of 	 � � � ��� . These underestimations are more prominent for earthquakes
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(or explosions) at regional distances and do not follow a clear pattern ex-

cept for the explosion events. However, at these periods, my confidence

in the resultant curves is limited because of the difficulty in removing con-

tributions of higher modes. Similar results were obtained for the Alabama

earthquake.

In the data set there are some local mining explosions located near

Evansville, IN. The periods of these data range from 2 to 15 seconds. The

comparison with the Stevens’ model shows, as I already have commented,

a tendency to underestimate. However, I can see a repeated pattern in all

of them: a linear increase of the observed group velocity with respect to the

predicted from 2 seconds up to a maximum value at 4 seconds, followed

by a linear decrease from 4 to 6 seconds and an almost constant difference

since for. The existence of this pattern could be an artifact of the model,

since its spatial resolution is comparable to the source-receiver distances.

From a physical perspective, it might be that the characteristics of the Pa-

leozoic sedimentary basin in the central U.S. contribute to the differences

between measured and predicted group velocity dispersion curves. This

sedimentary basin is sampled by these very shortest periods for distances

less than 500 km.

The second part of this work has been dedicated to calculating local

phase velocities for Rayleigh and Love waves using the � � � technique.

This technique was developed to be applied in linear array used in reflec-

tion and refraction experiments. I have applied this technique in the Coop-

erative New Madrid Seismic Network, in spite of the fact that its geometry

is not a linear array. In principle, this non-linearity would have to have

only an small effect for far earthquakes. This technique was only applied
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to clean signals, those where only the fundamental mode was present.

The results are only partially successful. The comparison of the ob-

tained phase velocity dispersion curves with a model developed by Her-

rmann and Ammon (1997) for the central U.S. gives only good results for

a small set of earthquakes, the fit between observations and predictions

are within the
� �

. These earthquakes share the feature that they were

recorded by a large number of stations (6 or more). Also, their group ve-

locity curves are the best in quality (absence of discontinuities and high

signal-to-noise ratio)in a wide range of periods, and so, allowed a good

isolation of the fundamental mode. For the other earthquakes, the method-

ology is unstable, giving place to unrealistic curves. This methodology

will need of further analysis to check its viability and limitations, with

emphasis on quantitatively defining the criteria for a good data set.

A crucial hypothesis in my calculation of local phase velocities is that

the wave front is cylindrical. A direction left for the future is to use the

dispersion curves in a model with no assumption whatsoever about the

great circle path along the lines of Friederich et al. (1994, 2000).
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