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DIGEST

Surface-waveform modeling methods will become standard tools

for studying the lithosphere structures because they can place greater

constraints on earth structure and because of interest in the three-

dimensional earth. The purpose of this study is to begin to learn the

applicabilities and limitations of these methods.

A surface-waveform inversion method is implemented using gen-

eralized seismological data functional theory. The method has been

tested using synthetic and real seismic data and show that this

method is well suited for teleseismic and regional seismograms. Like

other linear inversion problems, this method also requires a good

starting model.

To ease reliance on good starting models, a global search tech-

nique, the genetic algorithm, has been applied to surface waveform

modeling. This method can rapidly find good models for explaning sur-

face-wave waveform at regional distance. However, this implementa-

tion also reveals that criteria which are widely used in seismological

studies are not good enough to indicate the goodness of waveform fit.

These two methods with the linear waveform inversion method,

and traditional surface wave dispersion inversion method have been

applied to a western Texas earthquake to test their abilities. The focal

mechanism of the Texas event has been reestimated using a grid

search for surface wave spectral amplitudes. A comparison of these

four algorithms shows some interesting seismic evidences for litho-

sphere structure.
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CHAPTER 1

INTRODUCTION

1.1 The Problem

To verify seismological inferences about the Earth, matching

observed seismograms is an ultimate challenge. Given past success in

modeling long-period seismograms and routinely estimating earth-

quake mechanisms in the 80s, seismologists are now trying to model

entire regional seismograms at the high frequencies. In this study,

two different methods were used to model the surface-wave waveform.

One of the proposed algorithms uses the gradient information from the

hypersurface of the misfit function to find an optimal solution, and the

second approach is based on a global search technique. The advan-

tages and weaknesses of each algorithm were examined in terms of

robustness. The ultimate purpose of this type of research is to quan-

tify the limitations of one-dimensional earth models as an initial step

in approximating 3-D structures.
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1.2 Review of Related Literature

Since the birth of quantitative seismology, seismologists have

shared the goal that one day we can use all geophysical knowledge to

design an intelligent system which can routinely analyze all near real-

time earthquake data, predict future earthquakes, and systematically

update our knowledge about the Earth. To reach this goal, there are

several important tasks to accomplish: collecting earthquake data,

developing more sophisticated computational techniques, and finding a

better way to interpret data systematically.

For the past half century, seismological research into Earth struc-

ture can be roughly divided into three scales: planetary (global seis-

mology), regional (regional seismology; a few hundred kilometers), and

small (exploration seismology; a few tens of kilometers). The seismol-

ogy development for these three scales has not been uniform. Global

and exploration seismology were developed more systematically than

regional seismology. The reasons are differences in interests of science

and industry, in data coverage, and in the available theoretical compu-

tational methods in each of the three types of studies. In this review,

historical seismology developments will be briefly described, possible

future developing directions will be outlined, and the emphasis of this

study will be addressed.
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1.2.1 Development of Global Seismology

Although earthquakes happen in the world everyday, the cur-

rently available data are very limited in both spatial and temporal dis-

tribution. Confined by the dataset, only the low-wavenumber (har-

monic) global structural features can be estimated. In fact, even

though research in global seismology has been boosted by specific sci-

entific interests, global earth structures determined are not unique.

Global seismology developed systematically. For example, scien-

tists inferred earth structure using free oscillations, surface waves,

and body wave travel times, and reference models are well established

(e.g. Dziewonski and Anderson 1981). Based on the reference models,

routine analysis of seismic sources for large earthquakes became possi-

ble (Dziewonski, Chou, and Woodhouse, 1981; Dziewonski and Wood-

house, 1983; Sipkin, 1986). On the other hand, global heterogeneity

(obtained using tomographic techniques) has been studied using differ-

ent data such as phase and group velocities of long-period surface

waves (Nakanishi and Anderson, 1983, 1984; Nataf, Nakanishi, and

Anderson, 1986), long-period waveforms (Woodhouse and Dziewonski,

1984), P-velocities from teleseismic events (Dziewonski, 1984), and

normal modes (Masters et al., 1982). In these studies, the horizontal

resolution is greater than 1000 km (Zhang and Tanimoto, 1992), and

many significant features, such as mid-ocean ridges, require better

resolution.
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There are several ways to increase the resolving power of seismo-

logical techniques. The first way is to use more data. The number of

global seismic stations is increasing, the earthquake dataset is also

increasing steadily, but slowly. A few decades may be needed to

resolve the details of Earth structure. Under such a limitation, seis-

mologists have to find better ways to increase the usable data which

means to effectively use the current data. One possibility is to use

waveforms directly, another is to use shorter period data from smaller

earthquakes. A difficulty associated with using waveforms is the

availability of accurate source mechanisms of smaller regional earth-

quakes. A second way to increase resolution is to reduce some uncer-

tainties caused by the inaccurate shallow structure. Mooney et al.

(1996) obtained improvement of the resolving power in global struc-

ture when using an improved global crustal model for station correc-

tions. The third way to increase resolution is to find new ways to

interpret data. Two such experiments have been reported. One uses

body wave travel-time residuals (Su and Dziewonski, 1992), the other

uses differential travel times (Woodward and Masters, 1991). The typ-

ical horizontal resolving length for such experiments is 550 km (Su et

al. 1992).

It is clear that the current effort in global seismology is directed

toward increasing resolution. To achieve this, more knowledge is

required about the regional structure. More complicated techniques to

invert different types of data simultaneously must also be developed

and proven.
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1.2.2 Development of Exploration Seismology

The purpose of exploration seismology is to search for resources by

obtaining a high-resolution image of subsurface geology. To do this,

artificial sources and dense receiver coverage are necessary. This

approach contrasts with most crustal- and mantle-scale studies which

rely on natural earthquakes and sparse seismic stations. Huge explo-

ration datasets enable seismologists to investigate the heterogeneity of

shallow structure, even when only travel time data are used. In the

early stages of exploration seismology, it was natural to use first

arrival data (refraction signal) to infer layered structures. But the

problem of non-uniqueness of solutions has pushed the joint use of

both refraction and wide-angle reflection data. The use of both refrac-

tion and reflection data to invert 1-D (e.g. Braile, 1973), and 2-D struc-

ture (e.g. Zelt and Smith, 1992) are well reported.

However, as pointed out by many researchers (e.g. Huang et al.

1986), the precise identification of refraction and reflection signals

(triplication) is crucial for the success of such inversion schemes. Dur-

ing data processing steps like picking phases, artifacts can be intro-

duced. Sometimes it is worse when it is necessary to interpolate travel

time data in order to avoid several problems associated with data

sparseness. All these procedures introduce uncertainties and errors in

inversion results. Another imperfection about this inversion algorithm

is that it cannot retrieve shear velocity information. Even though sig-

nal enhancement techniques such as CDP stacking and migration
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were developed in the oil industry, oil companies still need new tech-

niques to improve the image of the subsurface structure. All these fac-

tors challenge seismologists to find a better way solving problems.

Waveform inversion seems to be a way to avoid introducing artifi-

cial effects and to use more information than travel times. Unfortu-

nately, seismologists find it very difficult to directly invert wide-band

seismic waveforms, and a two-step approach is often used (Nowack

and Braile, 1993). Therefore in exploration seismology, there are two

problems regarding waveform inversion: the first is how to retrieve the

background velocity (to match the low-frequency part waveform), and

the other is how to match the entire waveform once the background

velocity is available. Much research is reported on fitting the entire

waveform when a good starting model is available (e.g. Mora, 1987;

Pan and Phinney, 1989; and Crase et al. 1990). Although the assump-

tion of availability of a good starting model seems suitable because of

standard velocity analysis procedures widely-used in the oil industry,

there has been little progress in retrieving background velocities using

waveform inversion techniques because of its fully nonlinear character.

Recently, two good experiments in retrieving background velocity

were performed by Koren et al. (1991) and Bunks et al. (1995). Koren

et al. (1991) sought an acceptable velocity model using a Simulated

Annealing algorithm. In their experiment, they encountered local

minima on the hypersurface of the misfit function caused by a cycle-

skipping effect, but were able to compute a posteriori probability den-

sity. As outlined previously, seismologists know, from experience, it is
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not a simple task to match the entire waveform. It seems that at least

a two-step approach is needed. Based on this idea, Bunks et al. (1995)

try to use different low-pass filtered waveform in inversion. They first

inverted for a simple 1-D model from the low-frequency signal (0-7

Hz), then inverted for a gross 2-D model using middle-frequency wave-

forms (0-10 Hz), and finally obtained a detailed structure from invert-

ing high-frequency waveforms (0-15 Hz). The results of the Monte

Carlo search and multiscale inversion are encouraging. These experi-

ments show we can obtain good resolution when adequate data are

available. As commented by Nowack and Braile (1993), the current

goal of wavefield inversion in exploration seismology is to find a best

inversion procedure.

1.2.3 The Possible Future Direction of Seismology

We can see that global seismology is currently trying to improve

the resolution of tomographic image of the Earth and to estimate focal

mechanisms of smaller events by extending Harvard CMT method

(Ekstrom, 1996). In exploration seismology, high resolution images of

subsurface structure can be obtained, but only for shallow depths. So

there is an existing gap between the two scales. Since both global seis-

mology and exploration seismology are well developed, we believe that

future attention will focus on systematically studying regional struc-

tures.



8

Theoretically, we should directly model waveforms for 3-D struc-

tures, but practically, it is impossible because of our current limited

knowledge about the complicated structures and our sparse data cov-

erage. So far, there is no report on successful modeling waveform for

3-D, even 2-D structure. Attempts, such as that of Vidale and Helm-

berger (1992), for matching the complicated waveforms using 2-D

finite-difference method have been unsuccessful. Due to present lim-

ited computing ability of seismograms for realistic earth models, two

directions should be considered for separated source inversion and

structure inversion regarding extracting more information in a simpli-

fied 1-D model. The first is inversion using broadband waveform data;

the second is inversion using as many different types of data as possi-

ble. The reason for this is that while broadband waveform data place

better constraints than any single data type, additional constraints

can be obtained from other data such as pP − P providing constraints

on source depth. Once seismologists develop all these tools, the final

stage is to build a system which will automatically locate earthquakes,

analyze source mechanisms, and indicate "anomalous" earthquakes for

further study. All of these will greatly contribute to other branches of

geoscience researches such as delineating the tectonic processes, and

even monitoring the failure stress change in a fault system (Stein et al.

1992). In the meantime, seismologists should continuously develop

forward and inverse algorithms for 2-D and 3-D structures, and a fur-

ther experiment regarding the iterative source and structure inversion

could be tested.
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Recently, there has been much research in focal mechanism analy-

sis using regional broadband waveform. This work using different

subsets of data such as surface-waves (Thio and Kanamori, 1995),

body-wave waveforms (Dreger and Helmberger, 1993), full waveforms

(Mao, Panza, and Suhadolc, 1994), and even one single station (Fan

and Wallace, 1991). Zhou et al. (1994) and Zhu et al. (1996) showed

one interesting method which uses both high-frequency body-wave

waveform and low-frequency full waveform in searching for the best

focal mechanism. In this study, we will concentrate on the regional

structure inversion problem since earth structure is fundamental to

source parameter estimation.

1.2.4 Emphasis of This Study

To model regional broadband waveforms, there are two different

approaches. The first approach is to match different phases of body-

wave such as Pnl and Snl. Zhao and Helmberger (1991) proposed one

strategy to model waveforms. First, they model long-period data (Pn

and Sn) assuming a single crustal layer model and get the average

crustal and upper mantle P, S velocities, and crustal thickness. Next,

they model the fundamental mode Rayleigh wave by adding some lay-

ers in the crust to the previous simple model. Third, they model those

short-period waveforms riding on Pn and Sn by adding some layers in

upper mantle structure. Finally, they adjust their model by trial and

error. This strategy utilizes many body-wave phases with clear
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physical meanings, but it requires an experienced seismologist. The

second approach requires matching the surface-wave waveform. One

example for this approach is the linear inversion method developed by

Gomberg and Masters (1988). They use modal superposition to create

synthetic seismograms and perturb them with respect to layer param-

eters (such as S-velocity). Using these partial derivatives, they formu-

late a linear inverse problem for the differential seismogram between

observed and synthetic ground motions. In this study, we will develop

other inversion methods for surface-wave waveforms because this

approach has the potential to be a fully automatic process. In most

regions, sparse data coverage does not support directly modeling wave-

forms for 2-D, or 3-D structures. Therefore, the synthetic seismograms

used in this study will be generated for a 1-D model using the mode

summation method (Wang, 1981).

Using a cross-correlation technique, Lerner-Lam and Jordan

(1983) formulated an inversion algorithm to obtain earth structure

from long-period teleseismic surface-wave waveforms. A successful

application was presented by the same group (Lerner-Lam and Jordan

1987) on investigating the continental thickness of Eurasia. Using a

similar idea, Cara and Leveque (1987) showed a slightly different way

to extract the "secondary observations" and formulated an algorithm to

invert them. They used teleseismic seismograms which have well-sep-

arated fundamental and higher modes to ensure their success. How-

ever, regional seismograms show more complicated mode interference

effects and their approach becomes difficult.
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Gee and Jordan (1992) introduced Generalized Seismological Data

Functionals theory (GSDF) to deal with surface-wave modal interfer-

ence effects. In this study, an algorithm based on the GSDF theory is

proposed and will be tested using an earthquake that occurred in west

Texas and was well recorded throughout North America. The compari-

son between the GSDF method and linear inversion (Gomberg and

Masters 1988) will also be addressed.

Using linearized inversion, a good starting model is necessary to

guarantee the success of final convergence. It is necessary to use a

global search method to ease the dependence on a priori information.

A second algorithm is also considered. To use Genetic Algorithms (GA)

in searching models which produce good surface-wave waveform fits.

Hopefully, these two algorithms will provide more insight in how to

build a more intelligent and robust inversion algorithm.



CHAPTER 2

THE WEST-TEXAS EARTHQUAKE OF APRIL 14 1995

In this study, the different algorithms will be tested using data

from the April 14, 1995 western Texas earthquake. This earthquake

was well recorded by broadband seismometers throughout North

America. The observations were collected from IRIS (Incorporated

Research Institutions for Seismology), CNSN (Canadian National Seis-

mological Network), USGS (United States Geological Survey), UNAM,

and PASSCAL experiments. The station distribution is shown in Fig-

ure2.1. For each station, Table 2.1 lists its location, its azimuth from

the epicenter, its hypocenter distance from the event, the polarity of P

wave first arrival, takeoff angle, and whether or not the dispersion

data used in searching Rayleigh or Love wave radiation pattern are

shown in Table 2.1.

Using these data, the different algorithms for modeling surface-

waveforms will be tested. Before this stage, the source parameters

will be reestimated, i.e. source depth and focal mechanism. Table 2.2

lists three different source parameters which include Harvard CMT

solution, USGS Sipkin’s solution, and the reestimated source parame-

ters used in this study.

12
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Table 2.1 The station informations

Station Longitude Latitude Azimuth Distance P R L IH-P
(°) (°) (°) (km) (°)

ALE -62.35 82.50 6.1 6036.3 -1 0 0  29.0
ANMO -106.46 34.95 331.3 596.8 -3 1 1  69.0
ARC -124.08 40.88 307.8 2210.4 0 1 0  46.8
BAR -116.67 32.68 285.4 1295.3 0 0  1 63.7
BBB -128.11 52.18 327.3 3169.0 0 1 1  36.5
BINY -75.99 42.20 54.0 2774.7 0 1 1  39.3
BKS -122.24 37.88 301.0 1934.1 -3 1 0  56.3
BMN -117.22 40.43 315.6 1689.8 -1 1 1 59.4
CAIG -100.27 17.05 167.3 1496.1 0 1 1  60.9
CALB -118.63 34.14 290.1 1503.7 -5 1 0 60.8
CBKS -99.74 38.81 18.2 1004.2 0 1 0  67.2
CCM -91.24 38.06 48.9 1408.2 0 1 1  61.9
CEH -79.09 35.89 68.1 2340.5 -3 0 0  43.1
CMB -120.39 38.04 303.3 1789.9 -1 1 1  58.9
COL -147.79 64.90 334.6 4911.3 -1 0 0  32.3
COR -123.30 45.59 317.7 2365.9 0 1 1  41.4
CUIG -99.18 19.33 160.0 1281.2 0 1 1  63.9
CYF -109.87 37.55 325.0 1009.4 -1 1 1  67.2
DAWY -139.43 64.05 336.6 4525.6 0 0 0  33.2
DGR -117.01 33.65 289.7 1345.7 3 1  1 62.8
DLBC -130.03 58.44 334.7 3733.1 0 1 1  35.1
DRLN -57.50 49.26 47.9 4368.4 0 0 0  33.5
DUG -112.81 40.20 324.6 1398.3 0 1  1 62.0
EDM -113.35 53.22 345.1 2677.0 -1 1 1 39.7
EYMN -91.50 47.95 23.9 2208.2 -1 1 1  46.9
FCC -94.09 58.76 9.9 3244.3 -1 1 1  36.1
FFC -101.98 54.74 1.9 2719.7 -1 0 0  39.5
FRB -68.55 63.75 23.2 4453.6 -1 0 0  33.3
GAC -75.48 45.70 46.9 2962.4 0 1 0  38.1
GAR -114.10 38.88 317.0 1373.5 -1 1 1 62.4
GOL -105.37 39.70 350.5 1063.6 -5 0 0  66.8
GSC -116.81 35.30 297.4 1397.6 0 1  1 62.3
HOPS -123.07 38.99 303.5 2047.2 0 0 0  53.0
HRV -71.56 42.51 55.5 3133.0 0 1  1 36.7
INK -133.52 68.31 343.8 4663.0 -1 0 0  32.9
ISA -118.47 35.66 296.9 1535.4 0 0  0 60.5
JFWS -90.25 42.91 36.1 1823.4 0 1 1  58.4
JRSC -122.24 37.40 299.4 1916.7 0 0 0  56.7
LBNH -71.93 44.24 51.9 3160.7 0 1 1  36.6
LMN -64.81 45.85 51.6 3749.1 0 1 1  35.0
LMP -111.20 37.98 321.8 1121.5 -1 1 1  66.2
LMQ -70.33 47.55 46.4 3406.2 0 1 1  35.8
LSCT -73.22 41.68 56.6 2975.7 0 1 1  38.0
MBC -119.36 76.24 354.8 5187.3 0 0  0 31.6
MDW -112.36 38.89 321.6 1264.8 -3 1 1 64.2
MHC -121.64 37.34 299.8 1864.7 -1 0 0  57.8
MIAR -93.57 34.55 60.1 1032.6 5 1 0  67.0
MIN -121.61 40.35 309.0 1997.4 -1 1 0  54.6
MLAC -118.83 37.63 303.9 1647.0 -3 1 1 59.6
MLC -116.77 38.99 311.8 1564.3 -1 1 1 60.2
MNV -118.15 38.43 307.6 1634.5 -1 0 0 59.7
NEE -114.60 34.82 298.5 1172.2 0 1 1  65.6
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NEW -117.12 48.26 333.4 2318.1 -1 1 1 43.6
NWC -113.56 37.63 313.6 1248.7 0 0  0 64.5
ORV -121.50 39.56 306.8 1949.1 -1 1 1 55.9
OXIG -96.72 17.08 153.8 1606.6 0 0 0  59.9
PAS -118.17 34.15 191.0 1462.9 0 1  1 61.2
PFO -116.46 33.61 290.0 1294.6 0 0  0 63.7
PGC -123.45 48.65 325.8 2660.3 0 1 1  39.8
PH2 -114.98 37.66 310.5 1352.8 -3 1 1 62.7
PKD1 -120.42 35.89 295.9 1711.2 -1 1 0  59.3
PLIG -99.50 18.39 162.8 1370.8 1 1 1  62.4
PMB -123.08 50.52 329.4 2786.9 -1 1 1  39.2
PNIG -98.13 16.40 159.8 1624.5 0 1 1  59.8
PNT -119.62 49.32 331.6 2522.8 0 1  0 40.3
RCC -110.59 40.52 331.9 1313.9 -1 1 1 63.3
RES -94.90 74.69 317.4 4965.5 -1 0 0  32.2
RPV -118.40 33.74 289.1 1474.4 -3 1 1 61.1
RTS -115.79 39.67 316.0 1541.4 -3 1 0 60.4
SADO -79.14 44.77 46.0 2659.2 -1 1 1  39.8
SAO -121.45 36.77 298.0 1827.5 -3 0 0  58.4
SCHQ -66.83 54.83 36.1 3975.3 -3 1 1  34.1
SMTC -115.72 32.95 287.4 1212.4 0 1  0 65.0
SRS -110.60 38.91 327.2 1168.0 -1 1 1  65.6
SSPA -77.89 40.64 56.4 2567.4 -1 0 0 40.0
TUC -110.78 32.31 289.6 745.3 -2 1 1 67.9
ULM -95.88 50.25 13.6 2305.5 -2 1 1  43.9
USC -118.29 34.02 290.3 1470.1 0 1  1 61.1
VTV -117.33 34.57 293.6 1399.8 0 1  0 62.0
WALA -113.91 49.06 339.7 2271.0 -1 1 1 44.9
WCP -114.17 40.52 322.2 1503.0 -1 1 1 60.8
WDC -122.54 40.58 308.6 2079.7 -3 1 1  51.9
WHY -134.99 60.67 334.6 4102.5 -1 1 1  33.9
WMOK -98.78 34.74 39.5 655.1 3 1 0  68.4
WMT -111.84 40.11 327.0 1338.3 0 1  1 62.9
WVOR -118.64 42.44 318.8 1921.1 -1 0 0 56.6
YBH -122.72 41.73 311.5 2154.3 0 1  1 49.0
YKW3 -114.61 62.56 350.5 3681.7 -1 1 0 35.3
ZIIG -101.47 17.61 171.9 1414.2 0 0 0  61.8

Comparing USGS and Harvard CMT solutions, they both have

good agreement in hypocenter location and origin time. However, the

focal mechanism is different for the two solutions. From experiences,

the published source depths for shallow events usually have huge

uncertainty. Therefore, we simply use USGS’s hypocenter location and

origin time and will reestimate the focal mechanism and depth.

From stations which have source-receiver distances greater than

3600 km, it is very common to see a 9 second time difference between

P and sP phases (Figure 2.2). At such distance, the observed first
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Fig. 2.1. Station distribution map. The stations are shown as triangles. The focal
mechanism used in this study is shown as the beach ball. This map is generated
using GMT (Wessel and Smith, 1991)
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Table 2.2 Source parameters for different solutions

Longitude Latitude Depth Origin Strike Dip Rake moment
(°) (°) (km) Time (dyne-cm)

HARVARD -103.32 30.24 15.0 00:32:54.2 117 53 -87 3.82E24

USGS -103.327 30.261 13.0 00:32:55.04 136 60 -86 4.00E24

this study -103.327 30.261 20.0 00:32:55.04 114 64 -101 3.00E24

arrival is beyond the upper-mantle P triplication zone which is caused

by upper-mantle discontinuities. Therefore, the P waveform and its

coda keep the waveform characters that generated in the source. This

indicates that source depth is not as shallow as suggested by Harvard

and USGS solutions. For a simple crustal model, such a sP − P differ-

ence will correspond to an earthquake deeper than 20 kilometers.

Using CUS model, synthetics are generated for different depths: 13,

15, 17, 19, 21, 23, and 25 km. From the comparison of observed and

synthetic seismograms, the preferred depth would be 20 km. Figure

2.3 shows the comparison for the station DAWY.

The source mechanism used in this study is based on the grid

search for Love- and Rayleigh-wave radiation patterns (Herrmann,

1974) using observed spectrum amplitude of fundamental mode group

velocities at different frequencies. Based on a grid search for a focal

mechanism at different source depths, the optimum result is a point

source at 20 km depth, with a strike of 114°, a dip of 64°, a rake of

-101°, and with seismic moment 3.0E24 dyne-cm.

From the station distribution (figure 2.1), we can see that most

broadband stations are in the western United States. The second best
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Fig. 2.2. For teleseismic records, a general 9 seconds travel time difference for sP-P is
observable.

coverage occurs in the northeastern United States. The fundamental-

mode Rayleigh and Love wave spectral amplitudes used in the radia-

tion pattern search also have more dense data points in these two

regions. The observed spectral amplitudes delineate a clear nodal

plane for the Love wave radiation pattern. All three solutions can pro-

vide good Love wave radiation patterns to match the observed data.

But from Rayleigh wave radiation patterns, the reestimated focal

mechanism is optima. For comparison, figure 2.4, 2.5, and 2.6 show

the Love wave radiation patterns at nine periods for the mechanism
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Fig. 2.3. Compare the observed teleseismic P seismogram at DAWY with synthetics,
the preferred source depth is 20 km. The synthetics are generated using CUS model
for different depths; 13, 15, 17, 19, 21, 23, and 25 km. The used focal mechanism is
the reestimated one in this study.

used in this study, for the Harvard CMT solution, and for the USGS

Sipkin’s solution. Figure 2.7, 2.8, and 2.9 will similarly display the
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Fig. 2.4. The Love wave radiation patterns for the preferred focal mechanism at 20
km depth. The bars indicate attenuation corrected spectral amplitudes in cm-sec nor-
malized for geometrical spreading to 1000 km.

Rayleigh wave radiation patterns.

P-wave polarities provide a check of focal mechanisms. The P-

wave polarity reading is shown in table 2.1. A negative number
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Fig. 2.5. The Love wave radiation patterns for Harvard CMT solution at 15 km
depth.

indicates downward movement, and the positive number indicates

upward movement. The number 1 indicates a impulsive P-wave

arrival; the larger numbers indicate emergent arrivals in which we are

less confident. P-wave polarities for these three focal mechanisms are

shown as figure 2.10, 2.11, and 2.12. In these figures, the circles
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Fig. 2.6. The Love wave radiation patterns for Sipkin’s USGS solution at 13 km
depth.

represent impulsive upward P arrivals while the plus signs represent

emergent upward P arrivals; in a similar way, triangles represent

impulsive downward P arrivals and the minus signs are for emergent

downward P arrivals. The reestimated focal mechanism which have

only one inconsistent station is better than the other two solutions.
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Fig. 2.7. The Rayleigh wave radiation patterns for the preferred focal mechanism at
20 km depth.

From these comparisons, the depth phases, Rayleigh and Love

wave radiation patterns, and the first arrival P wave polarities, we are

confident that the reestimated focal mechanism is better than the oth-

ers.
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Fig. 2.8. The Rayleigh wave radiation patterns for Harvard CMT solution at 15 km
depth.
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Fig. 2.9. The Rayleigh wave radiation patterns for Sipkin’s USGS solution at 13 km
depth.
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Fig. 2.10. This figure shows the observed P-wave polarities and the reestimated focal
mechanism which will be used for testing several surface-waveform modeling algo-
rithms.



26

N

-

-
- -

-

-

-
-

-

-

- -
-

-
-

Fig. 2.11. This figure shows the focal mechanism of Harvard CMT solution and the
observed P-wave polarities.
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Fig. 2.12. This figure shows the focal mechanism of Sipkin’s USGS solution and the
observed P-wave polarities.



CHAPTER 3

REVIEW OF GSDF THEORY AND FORMULATION OF

THE INVERSION ALGORITHM USING GSDF

3.1 Introduction

Based on their success in observing the apparent anisotropy of the

Eurasian upper mantle (Gee and Jordan, 1988), Gee and Jordan (1992)

introduced the theory of Generalized Seismological Data Functionals

(GSDF) which deals with the interference effects of different surface

wave modes at a certain frequency. This theory allows seismologists to

precisely measure the group and phase delays between observed and

synthetic seismograms at different frequencies even when the modal

interference cannot be ignored. Applications have been reported by

Gaherty et al. (1995, 1996) who used this method to invert for the

upper-mantle velocity structure and anisotropy. In this study, we

extend the Generalized Seismological Data Functionals (GSDF) theory

to the inversion of broadband waveforms modeled as a superposition of

surface-wave modes (Wang, 1981). We demonstrate the utility of this

new inversion algorithm by conducting a simple synthetic test, and

then apply the algorithm to observations from the 1995 west Texas

28
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earthquake to discern what new knowledge about earth structure can

be obtained from it.

3.2 Theory of Generalized Seismological Data Func-

tionals

To use the GSDF approach, we must construct a synthetic seismo-

gram (s̃), an isolation function ( f̃ ) and single-mode seismograms. An

isolation function is a sum of single-mode seismograms which may rep-

resent the dominant part of the observed seismogram (s). Using a

cross-correlation technique, we can quantify the similarity between

observed and synthetic seismograms. For a model that does not signif-

icantly deviate from actual earth structure, the peak of the cross-corre-

lagrams will be located near zero lag-time for all frequency bands and

for all windowed segments of the seismograms. The cross-correla-

grams reflect the degree that the model used to create synthetic seis-

mogram, isolation function and single-mode seismograms differs from

the actual earth. To utilize this information, we have to extract infor-

mation in different frequency ranges and interpret it in terms of differ-

ences in earth structure.

Gee and Jordan (1992) call the extracted information Generalized

Seismological Data Functionals (GSDF). In the following, we give a

brief review of how the GSDF is defined, how the GSDF is related to

familiar physical quantities, and how we extend this theory to invert

for Earth structure. Equations directly adapted from Gee and Jordan
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(1992) will be cited as (GJ.#), where # indicates the original equation

number in their paper.

First, we review the definition and computation of a GSDF. We

use a Gaussian wavelet to approximate the filtered and windowed

cross-correlagrams at a specified frequency. The windowed, filtered

cross-correlagram of an isolation function with a seismogram (either

observed or synthetic) is modeled using a five-parameter Gaussian

wavelet:

FiWC fs(t) ≈ g(t) ≡ AGa[σ s(t − t g)] cos[ω s(t − t p)] (GJ.5)

FiWC̃ fs(t) ≈ g̃(t) ≡ ÃGa[σ̃ s(t − t̃ g)] cos[ω̃ s(t − t̃ p)] (GJ.8)

FiWC̃ ff (t) ≡ Ga[σ̃ f t] cos[ω̃ f t]

where

Fi is a Gaussian frequency content filter with center frequency ω i

and half-bandwidth σ i,

W = Ga[σw(t − tw)]



1 + 0. 01[σw(t − tw)]

4 − ⋅ ⋅ ⋅




is a temporal window

with half-bandwidth σw and centered at tw; usually tw = tc, where

tc is the lag-time of the peak of FiWC ff ,

C fs(t) ≡ f̃ (t) × s(t) is the cross-correlation of the observed time his-

tory, s(t), with the isolation filter, f̃ (t), where × represents cross-

correlation,

C̃ fs(t) ≡ f̃ (t) × s̃(t), is the cross-correlation with the synthetic time

history,
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Ga[x] ≡ exp(−
x2

2
), Ga is the Gaussian function,

A is the amplitude of Gaussian envelope,

σ is the half-bandwidth of envelope spectrum,

ω is the angular frequency of the oscillating wavelet,

t g is the envelope group delay from zero lag-time,

t p is the wavelet phase delay from zero lag-time,

the subscript s denotes the observed seismogram, the subscript s

combined with ∼ denotes the synthetic seismogram, and the sub-

script f with ∼ denotes the isolation filter.

From (GJ.5) and (GJ.8), Gee and Jordan define four data functionals to

characterize the agreement between observed and predicted time his-

tories:

δ t p = t p − t̃ p (GJ.9)

δ t g = t g − t̃ g (GJ.10)

δ tq = −
1
ω̃ s

[ln A − ln Ã] (GJ.11)

δ ta = −
1
σ̃ 2

s
[ω s − ω̃ s] (GJ.12)

These four data functionals are related to differential phase delay, dif-

ferential group delay, differences in logarithmic amplitudes and the

differences in center frequencies. These four data functionals are

defined from two filtered, windowed cross-correlagrams, and can be

transformed into more familiar quantities such as phase velocity,
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group velocity, and attenuation corrections.

We will briefly describe this transformation. We note that all fil-

tered and windowed cross-correlagrams will be normalized by scaling

FiWC̃ ff to unit amplitude. Also, if the observed and synthetic seismo-

grams are composed only of a single mode, then the GSDF are easily

interpreted in terms of differences in modeled and actual phase veloc-

ity, group velocity and Q. For multi-mode time histories the interpre-

tation is much more difficult.

Before relating GSDF to physical quantities, we must know the

roles these quantities play in wave propagation. For a known instru-

ment response I(ω ) and source S(ω ), the difference between the spec-

trum of an isolation filter f̃ (ω ) = I(ω )P̃(ω )S(ω ) and its corresponding

component of the observed seismograms f (ω ) = I(ω )P(ω )S(ω ) is called

"differential propagation". They are related by the equation

f (ω ) =
P(ω )
P̃(ω )

f̃ (ω )

= D(ω ) f̃ (ω ) (GJ.42)

= eiδ k(ω )R f̃ (ω ) = ei[k(ω )−k̃(ω )]R f̃ (ω )

where R is source-receiver distance. To a first-order approximation,

the differential propagation is as

D(ω ) ≈ exp 

−ω jδ τ q(ω j) − (ω − ω j)δ τ a(ω j)




+ exp 

i 

ω jδ τ p(ω j) + (ω − ω j)δ τ q(ω j)




(GJ.44)
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The propagation effects of the isolation filter f̃ (t) and the correspond-

ing waveform f (t) on the observed seismogram are defined in four

equations which are related familiar physical quantities such as total

phase delay, total group delay, and attenuation factor.

δ τ p(ω j) ≡ τ p(ω j) − τ̃ p(ω j) (GJ.45)

δ τ g(ω j) ≡ τ g(ω j) − τ̃ g(ω j) (GJ.46)

δ τ q(ω j) ≡
1
2

τ̃ p(ω j)[Q
−1 − Q̃ −1] (GJ.47)

δ τ a(ω j) ≡
1
2

τ̃ g(ω j)[Q
−1 − Q̃ −1] (GJ.48)

where

τ p(ω j) is total phase delay of f (t) at an arbitrary frequency ω j

with respect to the original time,

τ̃ p(ω j) is total phase delay of f̃ (t) at ω j ,

τ g(ω j) is total group delay of f (t) at ω j ,

τ̃ g(ω j) is total group delay of f̃ (t) at ω j ,

Q−1 is attenuation factor of f (t),

Q̃ −1 is attenuation factor of f̃ (t).

This means that whenever we are able to measure four differential

quantities δ τ x from observed and synthetic seismograms at a certain

frequency ω j , we can approximate to first-order the true waveform

spectral behavior f (ω ) at any arbitrary frequency ω .
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The GSDF δ tx based on the filtered, windowed cross-correlation, and

the δ τ x are related through the time domain windowing function.

Their relationships are given by

δ t g ≈ δ τ g(ω̃ f ) + (1 − ξ 2
1)[tc − δ τ g(ω̃ f )] (GJ.56)

δ t p ≈ δ τ p(ω̃ f ) + (1 − ξ 2
1)(

ω̃ f − ω̃ c

ω̃ f
)[tc − δ τ g(ω̃ f )] (GJ.57)

δ ta ≈ ξ 2
1δ τ a(ω̃ f ) (GJ.58)

δ tq ≈ δ τ q(ω̃ f ) − (1 − ξ 2
1)(

ω̃ f − ω̃ c

ω̃ f
)δ τ a(ω̃ f ) (GJ.59)

where

ω̃ c is the frequency from C̃ ff ,

ξ1 is a window width factor,

tc is the lag-time of the peak of cross-correlagram FiWC ff .

There is an additional assumption that must be stated. Due to the dif-

ficulty in relating the isolation filter’s corresponding feature in the

observed seismogram, it is not easy to evaluate FiWC ff . However, if

the windowing procedure is effective in isolating f (t) from other

phases on the seismograms, then FiWC fs ≈ FiWC ff .

We can estimate tc from an isolated waveform. For non-isolated

waveforms, the C ff cannot be simply replaced by C fs, but the Gaussian

wavelet can be represented as a sum of interference effects of N differ-

ent modes.

FiWC̃ fs(t) =
N

m=1
Σ

N

n=1
Σ FiWC̃mn(t) (GJ.63)
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FiWC fs(t) =
N

m=1
Σ

N

n=1
Σ FiWCmn(t)

where

Cmn(t) ≡ [mode m of f̃ (t)] × [mode n of f (t)],

C̃mn(t) ≡ [mode m of f̃ (t)] × [ mode n of f̃ (t)].

We now characterize these by the relation

FiWC̃mn(t) ≈ ÃmnGa[σ̃ f (t − t̃ mn
g )] cos[ω̃mn(t − t̃ mn

p )] (GJ.68)

where

Ãmn ≡ exp(−ω̃ f t̃ mn
q ),

ω̃mn ≡ ω̃ f − σ̃ f t̃ mn
a .

In this case, we need to know four time shifts that describe the devia-

tions of FiWC̃ fs from FiWC̃ ff . Assume that the windowing and filter-

ing effectively suppress the bandwidth variations, so that σ̃ s ≈ σ̃ f . The

four time shifts are the phase delay t̃ p, a group delay t̃ g, and two

amplitude parameters

t̃ q = −
1
ω̃ f

ln Ã (GJ.60)

t̃ a = −
1
σ̃ 2

f
[ω̃ s − ω̃ f ] (GJ.61)

By defining the following notation,

Bmn =
1

(2π )1 / 2
exp[−ω̃ f (t̃ mn

q − t̃ q)]Ga[σ̃ f (t̃ mn
g − t̃ g)] (GJ.73)

φmn = (ω̃ f − σ̃ 2
f t̃ mm

a )(t̃ mn
p − t̃ p) − σ̃ 2

f (t̃ mn
a − t̃ a)(t̃ p − t̃ g) (GJ.74)
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the perturbation expansions can be simplified by using a set N × N

matrices

(C)mn = Bmn cos φmn (GJ.75)

(S)mn = Bmn sin φmn (GJ.76)

(Cx)mn = Bmnω̃ f (t̃ mn
x − t̃ x)cosφmn (GJ.77)

(Sx)mn = Bmnω̃ f (t̃ mn
x − t̃ x)sinφmn (GJ.78)

Gee and Jordan (1992) gave the following linearized relationships

between the GSDFs and computable quantities from individual mode

branches.

δ tq = 1 ⋅ C ⋅ δ tq + 1 ⋅ S ⋅ δ tp (GJ.84)

δ t p = − 1 ⋅ S ⋅ δ tq + 1 ⋅ C ⋅ δ tp (GJ.85)

δ ta = − 1 ⋅ (Ca + Sg) ⋅ δ tq + 1 ⋅ (Cg − Sa) ⋅ δ tp (GJ.86)

+ 1 ⋅ C ⋅ δ ta + 1 ⋅ S ⋅ δ tg

δ t g = − 1 ⋅ (Cg − Sa) ⋅ δ tq − 1 ⋅ (Ca + Sg) ⋅ δ tp (GJ.87)

− 1 ⋅ S ⋅ δ ta + 1 ⋅ C ⋅ δ tg

The 1 is a N-dimension vector, each element of which equals one. The

δ tx is a N-vector whose n’th component is δ tn
x , the perturbation corre-

sponding to the quantity x of the n’th mode. In the following section,

we will translate this δ tx into δ ττx which directly relates to the seismo-

gram and has clear physical meaning.
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3.3 Structure Inversion

To apply GSDF theory in structure inversion, we must construct

the inversion kernel, G for our inversion. The inverse problem can be

simply expressed in the form :

δ ττx = Gx ⋅ δ m

where

x indicates one of {p, g, q, a}.

δ ττx is an N-vector for corresponding to N modes,

Gx is an N × k Frechet kernel matrix for structural inverse prob-

lem,

δ m is a model correction vector for k unknowns.

δ τ x is not measurable but fortunately GSDF theory provides a way to

compute these nonmeasurable quantities using the mode interference

relationship. Thus, in an application of GSDF theory, we must relate

δ ττx to δ tx to create the kernel Gx.

From (GJ.56-59), we can transform δ ττx to δ tx as

δ tg = δ ττg(ω̃ f ) + (1 − ξ 2
1)[tc1 − δ ττg(ω̃ f )]

δ tp = δ ττp(ω̃ f ) + a[tc1 − δ ττg(ω̃ f )]

δ ta = ξ 2
1δ ττa(ω̃ f )

δ tq = δ ττq(ω̃ f ) − aδ ττa(ω̃ f )

where a = (1 − ξ 2
1)(

ω̃ f − ω̃ c

ω̃ f
). Substituting these into (GJ.84-87) gives
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the following equations which relate the four GSDFs to the inversion

kernels Gx.

δ t p = 1 ⋅ C ⋅ 1a tc + 1 ⋅ 

C(Gp − aGg) − S(Gq − aGa)


⋅ δ m

δ tq = 1 ⋅ S ⋅ 1a tc + 1 ⋅ 

C(Gq − aGa) + S(Gp − aGg)


⋅ δ m

δ ta = 1 ⋅ (Cg − Sa) ⋅ 1a tc + 1 ⋅ S ⋅ 1(1 − ξ 2
1)tc

+ 1 ⋅ 

−(Ca + Sg)(Gq − aGa) + (Cg − Sa)(Gp − aGg)


⋅ δ m

+ 1 ⋅ 

ξ 2

1CGa + ξ 2
1SGg



⋅ δ m

δ t g = − 1 ⋅ (Ca + Sg) ⋅ 1a tc + 1 ⋅ C ⋅ 1(1 − ξ 2
1)tc

+ 1 ⋅ 

−(Cg − Sa)(Gq − aGa) − (Ca + Sg)(Gp − aGg)


⋅ δ m

+ 1 ⋅ 

− ξ 2

1SGa + ξ 2
1CGg



⋅ δ m

Now, we have a general form of inversion problem for earth structure

in terms of the GSDF’s δ tx, kernels Gx, and the interference effects

C, S, Cx, Sx.

At this point, it is possible to outline this structure inversion prob-

lem. At a particular frequency, according to GSDF theory, using a

cross-correlation we can obtain four "observations" (GJ.9-12) and eval-

uate the mode interference, which we will use with Gx to form inver-

sion kernels. Therefore, we perform this measurement procedure at

several frequencies, we then have the "data vector" and "kernel
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matrix" ready for inversion. In the following sections, we will show

how we create the kernels ( Gx ).

Kernel Gp

Kernel Gp relates phase velocity changes to model perturbations.

δ ττp = Gp ⋅ δ m

The n’th component in the differential phase velocity vector δ ττp is

defined as

δ τ pn
=

R
cnobs

−
R

cnsyn

=
R

cn + δ cn
−

R
cn

=
R
cn




− 1 + ( 1 −

δ cn

cn
+ (

δ cn

cn
)2 ⋅ ⋅⋅)





=
R
cn




−

δ cn

cn
+ (

δ cn

cn
)2 ⋅ ⋅ ⋅





≈ −
R

cn
2
δ cn =




−

R
cn

2

∂cn

∂m



⋅ δ m

where

R is the source-receiver distance, and

cn is phase velocity for the n’th mode of the synthetic seismogram.

In matrix form, we can see that δ τ p1
is the total phase delay for mode 1

when model m changes into m + δ m.
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δ τ p1

δ τ p2

⋅
δ τ pN





N×1

= −












R
c2

1

∂c1

∂m1

R
c2

2

∂c2

∂m1

⋅ ⋅ ⋅

R
c2

N

∂cN

∂m1

R
c2

1

∂c1

∂m2

R
c2

2

∂c2

∂m2

⋅ ⋅ ⋅

R
c2

N

∂cN

∂m2

R
c2

1

∂c1

∂m3

R
c2

2

∂c2

∂m3

⋅ ⋅ ⋅

R
c2

N

∂cN

∂m3

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

(#1 mode)

(#2 mode)

⋅ ⋅ ⋅

(#N mode)










N×k










δ m1

δ m2

δ m3

⋅
⋅

δ mk








k×1

Kernel Gg

To construct the kernel Gg which relates group velocity variation

to model perturbations,

δ ττg = Gg ⋅ δ m

the n’th component in the differential group velocity vector δ ττg, δ τ gn
is

defined as

δ τ gn
=

R
U nobs

−
R

U nsyn

=
R

U n + δU n
−

R
U n

=
R

U n




− 1 + (1 −

δU n

U n
+ (

δU n

U n
)2 ⋅ ⋅⋅)





=
R

U n




−

δU n

U n
+ (

δU n

U n
)2 ⋅ ⋅ ⋅





≈ −
R

U n
2 δU n =




−

R

U n
2

∂U n

∂m



⋅ δ m

where
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U n is group velocity of n’th mode synthetic seismogram.

In matrix form







δ τ g1

δ τ g2

⋅
δ τ gN





N×1

= −












R
U2

1

∂U1

∂m1

R
U2

2

∂U2

∂m1

⋅ ⋅ ⋅

R
U2

N

∂U N

∂m1

R
U2

1

∂U1

∂m2

R
U2

2

∂U2

∂m2

⋅ ⋅ ⋅

R
U2

N

∂U N

∂m2

R
U2

1

∂U1

∂m3

R
U2

2

∂U2

∂m3

⋅ ⋅ ⋅

R
U2

N

∂U N

∂m3

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

(#1 mode)

(#2 mode)

⋅ ⋅ ⋅

(#N mode)










N×k










δ m1

δ m2

δ m3

⋅
⋅

δ mk








k×1

Kernel Gq

To create kernel Gq which relates attenuation to model perturba-

tions,

δ ττq = Gq ⋅ δ m

we write (GJ.47) in a general matrix form and reformulate the above

equation to yield

δ ττq =
1
2

τ̃̃τ p(ω )[Q−1 − Q̃ −1]

=
1
2




τ̃̃τ p(ω )

∂Q−1

∂m



δ m

= Gq ⋅ δ m

Using the relationship between γ and Q, the partial derivative of γ

with respect to model perturbations can be calculated.
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γ n =
ω

2c0n

Q−1
n

∂γ n

∂m
=

ω
2c0n

∂Q−1
n

∂m
− Q−1

n
ω

2c0n
2

∂c0n

∂m

Therefore, the partial derivative of Q−1
RL can be rewritten as

∂Q−1
n

∂m
=





∂γ n

∂m
+ Q−1

n
ω

2c0n

∂c0n

∂m




2c0n

ω

The n’th row (# n mode) of kernel Gq is

(Gq)n = τ̃ pn
(ω )





c0n

ω
∂γ n

∂m
+

Q−1
n

2c0n

∂c0n

∂m




Gq in matrix form is













τ̃ p1




c01

ω
∂γ1

∂m1
+

Q−1
1

2c01

∂c01

∂m1




τ̃ p2




c02

ω
∂γ2

∂m1
+

Q−1
2

2c02

∂c02

∂m1




⋅ ⋅ ⋅

τ̃ pN




c0N

ω
∂γ N

∂m1
+

Q−1
N

2c0N

∂c0N

∂m1




τ̃ p1




c01

ω
∂γ1

∂m2
+

Q−1
1

2c01

∂c01

∂m2




τ̃ p2




c02

ω
∂γ2

∂m2
+

Q−1
2

2c02

∂c02

∂m2




⋅ ⋅ ⋅

τ̃ pN




c0N

ω
∂γ N

∂m2
+

Q−1
N

2c0N

∂c0N

∂m2




⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

(#1 mode)

(#2 mode)

⋅ ⋅ ⋅

(#N mode)











(N×k)

Kernel Ga

The last kernel is Ga. From (GJ.48), we have the relationship

between Ga and Q.

δ ττa =
1
2

τ̃̃τ g(ω )[ Q−1 − Q̃ −1 ] = Ga ⋅ δ m
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In a manner similar to that for deriving Gq, we can use the Q and γ

relation and the partial derivatives of γ to obtain the kernel Ga as

(Ga)n =
τ̃ gn

(ω )
2

∂Q−1
n

∂m

= τ̃ gn
(ω )





c0n

ω
∂γ
∂m

+
Q−1

n

2
∂c0n

∂m




Ga in matrix form is













τ̃ g1




c01

ω
∂γ1

∂m1
+

Q−1
1

2c01

∂c01

∂m1




τ̃ g2




c02

ω
∂γ2

∂m1
+

Q−1
2

2c02

∂c02

∂m1




⋅ ⋅ ⋅

τ̃ gN




c0N

ω
∂γ N

∂m1
+

Q−1
N

2c0N

∂c0N

∂m1




τ̃ g1




c01

ω
∂γ1

∂m2
+

Q−1
1

2c01

∂c01

∂m2




τ̃ g2




c02

ω
∂γ2

∂m2
+

Q−1
2

2c02

∂c02

∂m2




⋅ ⋅ ⋅

τ̃ gN




c0N

ω
∂γ N

∂m2
+

Q−1
N

2c0N

∂c0N

∂m2




⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

(#1 mode)

(#2 mode)

⋅ ⋅ ⋅

(#N mode)











(N×k)

Partial Derivatives of c, U , and γ

All four kernels Gp, Gg, Gq, and Ga are derived in terms of partial

derivatives of phase velocity c, group velocity U , and attenuation γ . In

this section, We will give all partial derivatives which will be used in

creating kernels.

Perturbation theory is used to obtain phase velocity partials with

respect to medium parameters, and a numerical method introduced by

Rodi et al. (1975) is used to calculate surface-wave group-velocity par-

tial derivatives. The following equations apply to a single mode at a
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certain frequency, therefore we omit the subscript n for the n’th mode.

The subscript 0 is used to denote the value before introducing causal

Q. The velocity subscript v can be replaced by P-wave velocity α or S-

wave velocity β . ρ is layer density. h is layer thickness. ω r is a refer-

ence angular frequency used for introducing causal Q.

Rayleigh Waves

The equation for phase velocity, c, attenuation, γ , group velocity,

U , and various partial derivatives with respect to these quantities are

given as follows:

c = c0 +
1
π

ln(
ω
ω r

) Σ




∂c0

∂β
βQ−1

β +
∂c0

∂α
α Q−1

α





γ =
ω

2c2
0
Σ





∂c0

∂β
βQ−1

β +
∂c0

∂α
α Q−1

α





U = U0




1 + (2 −

U0

c0
)(

c − c0

c0
) +

2γ U0

πω





∂c
∂v

=
∂c0

∂v




1 +

1
π Qv

ln(
ω
ω r

)




∂c
∂ρ

=
∂c0

∂ρ
+

1
π

ln(
ω
ω r

)




∂c0

∂β
(−

β
2ρ

)Q−1
β +

∂c0

∂α
(−

α
2ρ

)Q−1
α





∂c
∂h

=
∂c0

∂h
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∂c
∂Q−1

v
=

1
π

ln(
ω
ω r

)
∂c0

∂v
v

∂γ
∂v

=
ω

2c2
0

∂c0

∂v
Q−1

v −
2γ
c0

∂c0

∂v

∂γ
∂ρ

=
ω

2c2
0





∂c0

∂β
(−

β
2ρ

)Q−1
β +

∂c0

∂α
(−

α
2ρ

)Q−1
α




−

2γ
c0

∂c0

∂ρ

∂γ
∂h

= −
2γ
c0

∂c0

∂h

∂γ
∂Q−1

v
=

ω
2c2

0

∂c0

∂v
v

∂U
∂v

=
∂U0

∂v





U
U0

−
U0

c0
(
c − c0

c0
) +

2γ U0

πω




+

∂c0

∂v
(
U0

c0
)2



2

c
c0

− 2
c

U0
− 1





+
∂c
∂v

U0

c0
(2 −

U0

c0
) +

∂γ
∂v

2U2
0

πω

∂U
∂ρ

=
∂U0

∂ρ





U
U0

−
U0

c0
(
c − c0

c0
) +

2γ U0

πω




+

∂c0

∂ρ
(
U0

c0
)2



2

c
c0

− 2
c

U0
− 1





+
∂c
∂ρ

U0

c0
(2 −

U0

c0
) +

∂γ
∂ρ

2U2
0

πω

∂U
∂h

=
∂U0

∂h





U
U0

−
U0

c0
(
c − c0

c0
) +

2γ U0

πω




+

∂c0

∂h
(
U0

c0
)2



2

c
c0

− 2
c

U0
− 1





+
∂c
∂h

U0

c0
(2 −

U0

c0
) +

∂γ
∂h

2U2
0

πω
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∂U
∂Q−1

v
=

U0

c0
(2 −

U0

c0
)

∂c
∂Q−1

v
+

2U2
0

πω
∂γ

∂Q−1
v

Love Wave

The corresponding quantities and partial derivatives for Love

waves are as follows:

c = c0 +
1
π

ln(
ω
ω r

) Σ ∂c0

∂β
βQ−1

β

γ =
ω

2c2
0
Σ ∂c0

∂β
βQ−1

β

U = U0




1 + (2 −

U0

c0
)(

c − c0

c0
) +

2γ U0

πω





∂c
∂β

=
∂c0

∂β




1 +

1
π Qv

ln(
ω
ω r

)




∂c
∂ρ

=
∂c0

∂ρ
+

1
π

ln(
ω
ω r

)




∂c0

∂β
(−

β
2ρ

)Q−1
β





∂c
∂h

=
∂c0

∂h

∂c
∂Qβ

=
1
π

ln(
ω
ω r

)
∂c0

∂β
β

∂γ
∂β

=
ω

2c2
0

∂c0

∂β
Q−1

β −
2γ
c0

∂c0

∂β



47

∂γ
∂ρ

=
ω

2c2
0





∂c0

∂β
(−

β
2ρ

)Q−1
β −

2γ
c0

∂c0

∂ρ





∂γ
∂h

= −
2γ
c0

∂c0

∂h

∂γ
∂Q−1

β
=

ω
2c2

0

∂c0

∂β
β

∂U
∂β

=
∂U0

∂β





U
U0

−
U0

c0
(
c − c0

c0
) +

2γ U0

πω




+

∂c0

∂β
(
U0

c0
)2



2

c
c0

− 2
c

U0
− 1
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3.4 Forming Inversion Kernel

As shown above, we calculate partial derivatives with respect to

all parameters (α , β , ρ, Qα , Qβ , h) instead of computing partial deriva-

tives for shear velocity only. The intention is that we try to provide all

the possible tools to interpret the seismograms as completely as possi-

ble, and as automatically as possible. Therefore, it is the user’s

responsibility to choose those specific model parameters to invert for;

and only the chosen part will be used to assemble the inversion kernel.

To stabilize the inversion, all information for different frequencies

inside the inversion kernel are weighted according to their frequency

amplitudes. This weighting procedure greatly improves the inversion

stability.

When inverting teleseismic surface-wave waveforms, sometimes

the body waves (e.g. SS, SSS) or some unwanted surface waves due to

improper rotation will adversely affect the cross-correlation between

the isolation function and the observed seismogram, and resulting in

signal misalignment. To avoid this problem, a window is applied to the

seismograms before cross-correlation, and this may successfully isolate

the surface-waves from body waves. Although a pre-windowing proce-

dure is applied, the same trouble may still happen occasionally. In

such a situation, the information at that frequency must be rejected

when forming the inversion kernel, otherwise it will plague the inver-

sion for its strongly misaligned "phase delay" or "group delay." Figure

3.1 shows an example of this problem. Because of improper rotation,
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the unwanted Love-wave waveform appears on the radial component

seismogram prior to the Rayleigh wave wavetrain. This unwanted

Love wave signal causes two problems, misidentification of a Gaussian

wavelet (Figure 3.1a) and signal misalignment (Figure 3.1b), which

can not be incorporated in inversion.
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Fig. 3.1b. (cont’d). (b) Misalignment of signals which produces signifi-
cant bias phase and group delay. This arises because a period of 25 sec-
onds is considered compared to 20 seconds in Fig. 3.1a.

We have mentioned that users have the power to decide what

parameters will be inverted for during the inversion. An aspect which
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Fig. 3.1a. This is an example showning how unexpected signal interference affects
the extracting procedure in GSDF theory. There are five traces presented to show the
different processing stages. The top two traces are the prefiltered isolation filter and
observed seismogram, respectively, The third trace shows the Gaussian filtered
cross-correlation at a target period of 20.0 seconds. The five extracted parameters are
shown. The dashed curve inside the envelope is from the synthetics and the solid
curve is from the observed data. The fourth trace is the windowed cross-correlagram
from the third trace. The bottom trace is the filtered windowed cross-correlagram
and its five Gaussian wavelet parameters which are to be used in further processing.
Due to improper rotation, the Love wave appears on radial component before the
Rayleigh wave arrival. The Love wave wavetrain may causes error (a) wrong deter-
mination of Gaussian wavelet parameters, and

is strongly related to this decision is the phrase "using what kind
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information." During each iteration in the inversion, we have calcu-

lated partial derivatives with respect to parameters for each layer at

several appointed frequencies, and all this information is rearranged

to form four kinds of delay at each frequency. After manually rejecting

miscalculated cross-correlations at some frequencies, users have to

decide which combinations of δ t p, δ t g, δ ta, δ tq they will use to invert

for a particular combination of model parameters (α , β , ρ, Qα , Qβ , h).

From our experience, we found that when we invert for velocity struc-

ture the phase delay (δ t p) and the group delay (δ t g) play major roles in

inversion, and the other two delays (δ ta, δ tq) are better in inverting for

attenuation factors. We also found that when the initial model is far

from the final result, using group delay information in the inversion

can easily pull the model close enough to the final model so that phase

delays can be used. It only at the final stage when the synthetic is very

close to the observed seismograms that the phase delay information

can be used for a powerful fine tuning of the model since there is no

"cycle skipping" problem.

3.5 Synthetic Test

A simple source with strike, dip, rake angles of 45°, 45°, 45°,

respectively, at a 20 km depth was used in this synthetic test. The

receiver is located 1000 km away along a line with an azimuth of 10°.

The "observed" seismograms were created for a two layered crust with

an upper mantle deviating slightly from the PREM model (Figure 3.2).
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Here, we only try to invert for shear velocity structure, so all the other

parameters related to the source and earth model are assumed to be

known. The starting model is a two-layered crustal model overlying a

PREM mantle. Figure 3.3 shows that the starting synthetic seismo-

grams after greatly slow "observed" seismograms.

ρ β α Qb Qa

D
E

P
T

H
(k

m
)

SYNTHETIC_TEST START 

2 3 4 5 6 7 8 9
0

1 0 0

2 0 0

1 0 1 0 0 1 0 0 0

TRUE INV

Fig. 3.2. The starting model (dashed line) used in synthetic test of the GSDF inver-
sion algorithm and the ’true’ model (solid line) used to create the ’observed data’.

After 12 iterations, the synthetic seismograms are almost the

same as the "observed" seismograms (Figure 3.4). Checking the model

differences between the "true" model and the final model (Figure 3.5),

we can see that the structure almost matches the "true" model, except

in the upper mantle where the surface waves do not provide enough

resolving power, causing the "zig-zag" pattern. The differences in Q

models are not significant at these frequencies and this distance.
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Fig. 3.3. The velocity time histories of ’observed seismograms’ (solid line) and the
those from the starting model (dashed line) are both filtered in the frequency band
0.01-0.05 Hz by using a Butterworth filter with four poles. The plotted seismograms
are normalized according the maximum amplitude of each component in the current
frequency band. It is clear that the starting model is not close to the ’true’ model and
this may test the ability of the inversion programs to resolve structure.
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3.6 Real Data Test

After the successful synthetic test, we wish to test this technique

on real data. The April 14, 1995 Texas earthquake provides useful

data for this purpose. According to the USGS solution, the epicenter of

the Texas earthquake is at 30.261°N 103.33°W and the origin time is

00:32:55UT. The current collected data set consists of 89 broadband

records from IRIS, Canadian National Seismological Center (CNSDC),

USGS, UNAM, and PASSCAL instruments (Figure 2.1).

Some source parameters were refined on the basis of fitting sur-

face-wave amplitude spectra (Table 2.2). The redetermined source

depth is 20 km deep, with strike, dip, rake angles of 114°, 64°, -101°,

respectively and Mw = 5.6.

3.7 Inversion Procedure

We have tried three different inversion runs, the first two had

major problems in matching the waveform or in the reasonableness of

the resulting model, so the third one was adopted for inverting struc-

ture. In performing the inversions, we use an earth flattening approxi-

mation to use plane-layered surface-wave theory to generate synthet-

ics.

The first run consisted of a joint inversion of both Rayleigh and

Love wave seismograms for shear velocity structure. The result was

that that the synthetic seismograms tended to fit the largest surface
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Fig. 3.4. After 12 iterations, the final inversion result shows a pre-
dicted waveforms that closely agree with ’observed seismograms’.
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Fig. 3.5. The comparison between the final model and the ’true model’.
We can see that the 2-layer crust is very close to the ’true’ model, but
that in the upper mantle the model fluctuates around the ’true model’.

wave amplitude, and ignored the small amplitude wavefields. This

arose because of the amplitude level weighting used to stabilize the

inversion. Therefore, separate inversions for Rayleigh wave and Love

wave were necessary.

The second inversion sequence consisted of inverting for the shear

velocity structure from the Love wave, and then using this structure

as an a priori shear velocity structure so the the Rayleigh wave pro-

vided information on the compressional velocity structure. This proce-

dure can match both Rayleigh wave and Love wave waveforms very

well, but we found it is impossible to find a reasonable explanation for

the anomalous Poisson’s ratios in the inverted model. It is well known

that the lower mode Rayleigh wave are insensitive to compressional
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wave velocity structure, so the only conclusion for this is that the

shear velocity structure inverted from Love wave is not adequate for

explaining Rayleigh wave. An unaccounted anisotropy effect may

cause the overcorrection in compressional velocity structure. Figure

3.6 compares waveforms and Figure 3.7 shows the model resulting

from the second inversion procedure. Although the synthetic wave-

form does not perfectly fit the Rayleigh wave (Figure 3.6), we can see

the general features are matched using a single model for both Love

and Rayleigh waves. In Figure 3.7 we see that the P-wave velocity

structure has lower values to compensate for the high shear velocity,

and vice versa. This results in some unexplainable Poisson’s ratios

such as 0.135 for the middle crust and 0.328 for the lower crust.

Since our forward synthetic seismogram algorithm does not

include anisotropy effects, we modify our inversion procedure as as fol-

lows: we invert for V β_SH from Love waves, and use another separate

inversion to get V β_PSV from the Rayleigh wave on the vertical compo-

nent. We fixed the Poisson’s ratio when we invert for V β_PSV . The

fixed Poisson’s ratios are kept the same as the original input model. In

this study, we set the Poisson’s ratio at 0. 25 for the crust, 0. 28 for the

layers between 40 km and 220 km, and adopt the values from PREM

model for those layers deeper than 220 km.

When we invert for the shear-wave velocity structures, the attenu-

ation factors can be determined simultaneously either by joint inver-

sion of V β and Q or by a subsequent Q inversion. The Q determination

is not definitive, since we have many uncertainties in our source and
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Fig. 3.6. The result of inversion using the second procedure. This inversion procedure
first obtains the S wave velocity from the Love wave and then inverts for the P wave
velocity from Rayleigh wave by assuming no anisotropy effect. This shows a accept-
able waveform match in phase, but not in envelope.
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Fig. 3.7. The model inverted by the second inversion procedure.

velocity structures in our inversion, so the only objective criterion for

determining Q is the envelope shape of the surface waves. As shown

on Figure 3.8, the Rayleigh wave signal at large distance is well dis-

persed with a strong Airy phase. This Airy phase is affected by crustal

wave propagation; therefore, the envelope amplitude of the Airy phase

is controlled by the crustal attenuation factors. So the Q structure

determined is sensitive to the crust and uppermost mantle.

3.8 Inversion Results

Data from 43 of 89 broadband stations were inverted. In this

report, three representative stations were selected to present the

inversion results. The waveform fitting success will be shown in
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several different frequency bands.

Station ALE, which is located in Arctic Canada is the farthest sta-

tion used in this study. There are some interesting features in the

inverted results. Looking at the waveform fit in the low frequency

range (0.005-0.03 Hz bandpass; shown as Figure 3.8a), it is clear to see

that the synthetic seismograms successfully match the observed sur-

face wave. Two velocity models, PSV and SH are obtained respectively

from Rayleigh wave and Love wave.

For ALE, the attenuation factor was fixed during inversion (Fig-

ure 3.9). A high Q structure (QS = 1000) is used for crust, a low Q

(QS = 100) was adopted for structure between 40 km and 500 km, and

QS = 143 for those depthes greater than 500 km. And from Figures

3.8a,b, the synthetic Rayleigh wave and Love wave amplitudes only

show small deviations from observed seismograms; therefore the Q

model is considered adequate. We also note that the sharp Q contrast

between the crust and mantle is a common feature for those stations

located inside the North America craton.

The second station is FCC which located on the west shoreline of

Hudson Bay and is in the center of the North American craton. The

inverted models (Figure 3.10) show high shear velocity for upper man-

tle but not as high as SNA model (Grand and Helmberger, 1984). The

current inversion result shows 4.5% anisotropy between 70 km and

140 km. The synthetics fit data well at low frequency (Figure 3.11a)

and can fit the fundamental mode as high as 0.1 Hz (Figure 3.11), but

have difficulty in producing some higher mode arrivals between 800
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Fig. 3.8a. Waveform fit of the final inverted model for ALE in the frequency band of
0.005-0.03 Hz. The signal which arrives at 1020 seconds and around 1300 seconds
are the S and SS phases, respectively. From the S phase waveform, we can say that
the source time function used in this inversion is a little short but is close enough.
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Fig. 3.8b. (Cont’d). Waveform fit in the 0.005-0.05 Hz frequency band.
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Fig. 3.9. The inverted models for ALE. Two models (PSV and SH) were obtained from
the Love wave and Rayleigh Wave. Comparing these two models, there is one slight
anisotropic zone above 200 km.

and 940 seconds.

The final station is PAS. The wave propagates through the south-

ern Basin and Range. The inverted model (Figure 3.12) does not

require anisotropy and the shear velocity model is very close to the

TNA model (Grand and Helmberger, 1984). The synthetics fit the S

phase which arrives at 350 seconds and the surface wave very well

(Figures 3.13abc). The model suggests that a velocity discontinuity at

220 km which cannot be seen in the TNA model. Q is very low, with

the average Q for crust of lower than 200. However we found one

interesting feature about the Q behavior. The Q values between 40

and 220 km are slightly higher than those for the PREM model, i.e., a

low Q crust overlying a slightly higher Q upper mantle with respect to
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Fig. 3.10. The final inverted model for FCC. There is 4.5% anisotropy effect exists
between 70 and 140 km.

the reference model.

3.9 Conclusion

We implemented the Generalized Seismological Data Functionals

technique of Gee and Jordan (1992) in a surface-wave waveform inver-

sion algorithm. A simple synthetic test shows its robust inversion abil-

ity. After a successful synthetic test, we useed this inversion algo-

rithm on real data to further test its ability. The Texas earthquake

(30.26 °N 103.33°W, 00:32:55UT, April 14, 1995) is a very good earth-

quake for this purpose because it was well recorded, its source depth is

well constrained, the focal mechanism is fairly well determined, and
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Fig. 3.11a. The waveform fit for the final model for FCC is shown at three frequency
bands : (a) 0.01-0.03 (b) 0.01-0.05 (c) 0.01-0.1 Hz. The SS phase arrives at 660 sec-
onds. The inverted model can fit fundamental mode Love wave and Rayleigh wave
waveforms as high as 0.1 Hz, but it lacks the ability to simulate the high frequency
higher modes.
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Fig. 3.11b. (Cont’d). (b) 0.01-0.05 Hz.
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Fig. 3.11c. (Cont’d). (c) 0.01-0.1 Hz. The SS phase arrives at 660 seconds. The
inverted model can fit fundamental mode Love wave and Rayleigh wave waveforms
as high as 0.1 Hz, but it lacks the ability to simulate the higher modes.
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Fig. 3.12. The inverted models for PAS. There are no clear anisotropy effects. The
crustal Q is very low.

the seismic moment is constrained by long-period surface waves. The

inversion results are excellent and show some interesting features that

agree with results of other studies. For the craton there is some evi-

dence for anisotropy and crustal Q is high. For the mountain region,

although the inverted model shows a shear velocity structure similar

to the TNA model, but the model prefers a velocity discontinuity at 220

km. More effort is required to define the confidence on these features.
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Fig. 3.13a. Waveform fitting is shown on three frequency bands: (a) 0.01-0.03 (b)
0.01-0.05 and (c) 0.01-0.1 Hz. The S wave signal arrives at 350 seconds.
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Fig. 3.13b. (Cont’d). (b) 0.01-0.05 Hz.
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Fig. 3.13c. (Cont’d). (c) 0.01-0.1 Hz.



CHAPTER 4

GENETIC ALGORITHMS

Most seismological inverse problems are nonlinear. The tech-

niques used to solve such nonlinear problems can be placed into two

groups. The strategy of the first group is to linearize nonlinear prob-

lems, then use iterative processes to seek a better solution by using the

gradient information of the misfit function. The strategy of the second

group is to directly search the model space, and find the acceptable

models.

Methods such as least squares, steepest descents, and conjugate

gradient belong to the first group. Although these methods are widely

used in seismology, the requirement of a good starting model is a well-

known disadvantage. For studying large scale large wavelength fea-

tures or deep features beneath the lithosphere, this would not be a real

problem because the research of the past half century already provide

some good starting models such as PREM, IASPEI91 (Kennett and

Engdahl, 1991). On the other hand, for studying the crustal or litho-

spheric structures, a good starting model may not be available

because the crust or lithosphere is the most structurally heterogeneous

region in the Earth. Studying the lithosphere is important because

73
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the evolution history of the lithosphere is hidden in its structure. We

have to investigate the structure of the crust and lithosphere all over

the world to study evolutionary history, to understand the tectonic pro-

cesses, to better predict seismic activity, and to lower the damage of

earthquake hazards.

Based on such a situation, we need to find a way to investigate

many possible models, i.e. to search the whole model space and to

select the acceptable models of structure and their variations. The

Monte Carlo, simulated annealing (SA), and genetic algorithms (GA)

search methods are belong to this group. The Monte Carlo method is a

random search method which has been used in seismology for a long

time (e.g. Keilis-Borok and Yanovskaja, 1967; Press, 1968). Press

(1968) showed a successful experiment which used the Monte Carlo

method to search for the model that can produce correct body-wave

travel-times, surface-wave dispersion, the earth’s free oscillation peri-

ods, mass, and moment of inertia. Six models were found from about

five million randomly generated models. As pointed out by Press

(1968), the reason for using the Monte Carlo method is that it offers

the advantage of exploring the range of possible solutions and indi-

cates the degree of uniqueness achievable with currently available geo-

physical data. Examining these six models, we can find that the struc-

tures for the lower mantle are consistent, but that large variations

occur in the upper mantle. However, the Monte Carlo method has its

own disadvantages. As pointed out by Keilis-Borok and Yanovskaja

(1967), the Monte Carlo method does not use information obtained
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from previous trials in the next trial.

Recently, simulated annealing and genetic algorithms methods

have become very popular in seismology. The simulated annealing

method mimics the crystalizing process observed in chemistry. The

genetic algorithm is inspired by the evolution process observed in bio-

logical science. These two algorithms are better search methods to

determine a global best fit than the Monte Carlo method because they

use information obtained in previous trials. The seismological applica-

tions have been the estimation of residual statics (Rothman, 1985,

1986), waveform inversion of reflection data (Sen and Stoffa, 1992;

Stoffa and Sen, 1991; Sambridge and Drijkoningen, 1992), earthquake

hypocenter location determination (Sambridge and Gallagher, 1993),

and receiver function inversion (Shibutani, Sambridge, and Kennett,

1996). There is one thing in common for all these applications; they all

deal with nonlinear problems.

For example, in receiver function inversion, Ammon et al. (1990)

showed that the final models were dependent on the initial models.

Shibutani et al. (1996) showed that use of the genetic algorithm can

estimate an average model which is more stable and less dependent on

the starting assumptions.

We can see that both simulated annealing (SA) and genetic algo-

rithms (GA) are good ways to perform the uncertainty assessment in a

complicated nonlinear problem. As stated by Sambridge and Dri-

jkoningen (1992) on SA and GA methods: "any problem feasible by one

could also be tackled by the other". To choose which of the two
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methods (GA or SA) is better for the surface-waveform modeling prob-

lem, we need to understand both algorithms and the purpose of our

application. As is well known, generating multi-mode surface wave

synthetics is computationally intensive. So the computation time will

be a crucial factor for selection of the algorithm.

4.1 Workflow of Simulated Annealing Method

The computation procedures of simulated annealing consists of

the following step:

• start from an arbitrary model

• temperature-loop : at temperature T = T0 − k ⋅ δ T

parameter-loop : for model parameter Si, i = 1, ⋅ ⋅ ⋅, m

fix all other parameter value except Si

for the parameter Si, there are n possible values.

possible-value-loop : Sij , j = 1, ⋅ ⋅ ⋅, n

calculate the energy function E(Sij) such as the nor-

malized cross-correlation of observed and synthetic

seismogram.

end of possible-value-loop

end of parameter-loop

compute the probability distribution

P(Sij) =
exp[

−E(Sij)
T

]
m

j=1
Σ exp[

−E(Sij)
T

]
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• end of temperature-loop

We can see that for each temperature, it is necessary to perform (m ⋅ n)

forward computations of synthetics. If there are k steps in lowering

temperature to reach the global minimum, the total forward computa-

tion will be (k ⋅ m ⋅ n). The problem is that there is no rule for choosing

the starting temperature T0 and increment of temperature difference

δ T . Basu and Frazer (1990) designed a sequence of test runs to find

the critical temperature. In spite of this, it is still too time consuming

for surface-waveform modeling.

4.2 Workflow of the Genetic Algorithm

For an m member society evolving through n generation, the com-

putation sequence of the genetic algorithm is as follows:

• Randomly generate m individual models as first generation.

• Generation-loop : for generation = 1, ⋅ ⋅ ⋅, n

Compute m synthetic seismograms (individuals)

Evaluate each individual’s performance; i.e. calculate the

goodness-of-fit.

population-loop : for child = 1, ⋅ ⋅ ⋅, m

Based on the individuals’ performance (probability)

select them as parents;

change parents’ DNA; and

apply possible mutation on their children.

end of population-loop
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• end of generation-loop

We can see it is possible to perform GA on a small population. This

will be more computational efficient than SA in the surface-waveform

modeling problem. However, performing GA on a small population

society has its own risk, as pointed out by Sambridge and Drijkonin-

gen (1992). The society’s members are not close to the global solution,

the few relatively good individuals in the society will multiply them-

selves and dominate the population (i.e. trapped in local minimum).

This problem can be solved by increasing the population size. How-

ever, our purpose for using GA in surface-waveform modeling is not to

rely on the GA to reach the global minimum. Instead, we prefer to

have several runs to see the possible uncertainty, get the rough idea

about the structure, and find some good initial models for other inver-

sion techniques. In our test, a GA run will take 1 to 3 hours of CPU

time in SUN ULTRA 1 (167MHz) workstation. It is affordable to have

several reruns if we find it trapped in a local minimum. We note that

the goodness of fit criteria is user defined, and can combine a variety of

different criteria. We thus choose the genetic algorithm for modeling

surface-waveform. In the following sections, we will address several

technical issues in appling GA in surface-waveform modeling.

4.3 Smoothing Mechanism

Since GA is just one type of a random search method, there is no

strong constraint between parameters (layer S-velocity in this case).
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Usually, there will be a strong zig-zag pattern in the velocity model;

this is undesirable for the purpose in seismology if the emphasis is on

determining the simplest acceptable model. To reduce this pattern in

velocity model, we smooth the layer velocity by considering the adja-

cent velocity contrast without changing the vertical travel times. As

shown in Figure 4.1, the original model (solid line) has a strong zig-zag

pattern but the smoothing mechanism reduces the contrast between

layer shear velocities (dashed line represents the after smoothed

model). We thus attempt to find the smoothest model consistent with

data.

Introducing this smoothing mechanism can be viewed as a heavy

mutation case in GA. Of course, the best model may not survive under

such mutation. But, we can find it from the record of models of each

generation. This may help to us escape from some local minimum in

some cases and provide a driving force for evolution.

4.4 Generation Number and Population Size

Although GA is a global search method which can potentially find

the global minimum, we did not set that as our goal in this study. Due

to the intensive computational load of generating multi-mode surface-

wave synthetics, we limited our computations to a small population

size and only propagated it through finite generations. We hoped, by

using GA search method, to get some starting models for other inver-

sion algorithms. To understand what generation number is sufficient
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Fig. 4.1. In GA, models are randomly generated, so there always will be some ’ZIG-
ZAG’ patterns. To obtaining a smooth background velocity model, a smoothing mech-
anism is introduced. Without changing the vertical shear wave travel time, the
smoothed model (dashed line) has less ’ZIG-ZAG’ pattern than the original model
(solid line).
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for our purpose, we have tested the consequences of a large generation

number. In this test, with results shown in Figure 4.2, we propagated

500 generations and find that after 50 generations model improvement

is less rapid, indicating a degree of convergence. Therefore, in the sub-

sequent tests, we will only use 50 generations for a small population

(i.e. 20). This will only consume 1 to 3 hours of CPU time in SUN

ULTRA 1 workstation.

In some cases, we find the GA trapped in a local minimum. Usu-

ally, this situation is associated with other difficulties such as cycle-

skipping problems for teleseismic waveforms. This will be discussed

later.

4.5 Criteria of Goodness-of-Fit

A surface-wave signal has a longer duration and a more compli-

cated waveform behavior than any single, pulse-like body-wave phase.

To model such long-duration complicated waveforms, there is a cycle-

skipping problem which may produce an unreasonably low or high

velocity model. In addition when processing surface-wave data, we

cannot shift the synthetic seismogram to match the observed arrival

time, a well adapted technique in processing body wave data such as

receiver function inversion. Due to this effect, an L2 norm, such as

used by Gomberg and Masters (1988), may not be suitable for quanti-

fying surface-waveform goodness-of-fit. Instead we choose a cross-cor-

relation as our criteria of goodness-of-fit to circumvent the oscillatory
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Fig. 4.2. To know how many generations is necessary for surface-waveform modeling,
an experiment with large generation number (500) is tested. The result shows that
GA can find a fairly good model within 50 generations. After that, the model
improvement is less rapidly.

signal character, and to focus on agreement of waveform shapes.

Surface-waves usually have a broad frequency content, which

means that a single cross-correlation measurement only represents the

fit of the largest amplitudes, which are typically high-frequency for

crustal earthquakes. This will only resolve the very shallow part of

structure but leave the deeper structure uncertain with high variation.

To overcome this problem, we divide the frequency range of interest
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into several subranges and evaluate the normalized cross-correlation

of narrow band-filtered observed and synthetic seismograms for each

subrange. An averaged cross-correlation value of these subrange

cross-correlations is used as our goodness-of-fit. For example, for

ANMO, we divided the period range (10-50 sec) into 4 intervals :

(10-20 sec), (20-30 sec), (30-40 sec), (40-50 sec). Using these period

intervals as the ranges for bandpass filtering observed and synthetic

seismograms, a cross-correlation value is computed for each interval

and an average cross-correlation is used as our goodness-of-fit.

4.6 Test on the Western Texas Earthquake

We apply this GA search method to the April 14, 1995 Texas

earthquake (30.26 °N 103.33°W, 00:32:55UT). The source depth of the

Texas event is 20 km, with strike, dip, rake angles of 114°, 64°, -101°,

respectively with Mw = 5.6.

Three stations (ANMO, TUC, WMOK) are selected to show the

capability of the GA search method. For each station, three plots of

final good models, waveform fitting, and cross-correlation of different

period ranges of the best result are shown. The first plot shows the

search bounds (thickest dashed line), the good models (thin dashed

line) which have goodness-of-fit greater than a certain value, and the

best model (black solid line). The second plot shows the waveform fit

of the best model. The observed seismogram is drawn as a black line

and the synthetics as a thin dashed line. The third plot shows the
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cross-correlation measurements of the best searched model in the dif-

ferent period ranges which gives us an idea of how good can this model

fits the data. We also can see the reason for using averaged cross-cor-

relation as our criteria of goodness-of-fit because the broadband (e.g.

10-50 sec) waveform with top row is dominated by a high frequency

signal such as is the waveform on the second row (e.g. 10-20 sec).

Examining the results for ANMO (Figures 4.3, 4.4, 4.5), we found

that our best final model for the Rayleigh wave has an unreasonably

low velocities for layers deeper than 50 km. Also on the cross-correla-

tion diagram, we can see that at the 40-50 second period, the enve-

lope’s maximum of the Z component is off central position. This is the

flaw of currently used criteria which can not overcome the cycle-skip-

ping problem. Combining the correlation coefficient at zero lag with

the lag shift of the maximum correlation may be another goodness of

fit criterion to use in the future. However, comparing two best models

obtaining from the separate GA searches for Love and Rayleigh waves,

we see these two models show a very similar model for the upper 50

km.

For TUC (Figures 4.6, 4.7, 4.8, and 4.9), we tested this search

scheme on three cases: using Rayleigh wave only, using Love wave

only, and using both Rayleigh and Love wave. The final results show

that waveform fitting from the separated search are better than those

from the joint search. But in the macroscopic view, they all have a

very similar velocity gradient in the crust. This may illustrate that

the crustal structure is well resolved as indicated by the relative
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GENETIC ALGORITHM SEARCH
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Fig. 4.3a. Using GA to model the surface-waveform of station ANMO. In this test,
separate GA runs were conducted for Love and Rayleigh wave respectively. The
searched models are shown in these figures, the heavy lines are the search bounds,
the thin lines are models which have goodness-of-fit greater than a certain value
shown at the left bottom, and the best model is plotted as thick black line. (a) Models
for Love wave.
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Fig. 4.3b. (cont’d). (b) Models for Rayleigh wave.
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Fig. 4.4. For ANMO, the observed waveforms (solid line) and predicted waveforms
(dashed line) which generated for the best searched models for Love and Rayleigh
wave at frequency range 0.01 to 0.1 Hz.
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Fig. 4.5. For ANMO, the filtered cross-correlations of observed and synthetic wave-
forms at different frequency bands. The number at the right of cross-correlation
traces is the cross-correlation value at zero-lag which is used to construct the value
of goodness-of-fit.
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narrow width of acceptable velocities at shallow depths. In the upper-

most mantle, Figure 4.6(a) shows that a fixed half-space beneath 80

km may not be appropriate and may cause the model between 60 to 80

km to have lower their values to compensate this high velocity half-

space. However, from Figure 4.6(b), the Rayleigh wave seems prefer

this high velocity half-space. So we need to conduct more tests to see if

there exists an apparent anisotropy zone beneath the propagation

path.

For WMOK (Figures 4.10, 4.11, and 4.12), the waveform of the

best model fits the observed seismogram very well, not only for the

fundamental mode but also for the first higher mode Rayleigh wave.

The propagation path through the west Texas region is only 655 km.

This region is a uniform platform between Rocky mountain and Oua-

chita orogenic belt. From the final model, we can see the existence of a

transitional crust-mantle-boundary between 35 and 50 km, which is

all that can be resolved using these low frequency filtered data.

4.7 Test for Teleseismic Traces

In our test, we found that our implementation of GA only works

for recordings at short epicentral distance. For the teleseismic records,

this algorithm doesn’t work simply because the cycle-skipping prob-

lem. However, surface waves at teleseismic distance samples the

upper mantle, and is very important to provide information and con-

straints on the upper mantle. We need to find a way to apply GA
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Fig. 4.6a. Separate GA search results for Love and Rayleigh wave recorded at TUC.
(a) Love-wave model.
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Fig. 4.6b. (cont’d). (b) Rayleigh-wave model.
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Fig. 4.7. A joint GA search using both Love and Rayleigh waveforms at TUC.
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Fig. 4.8a. For TUC, filtered waveforms at frequency range 0.01 to 0.1 Hz for observed
and predicted seismograms. (a) The predicted seismograms were generated using the
best models from individual searches for Love and Rayleigh wave (Figures 4.6ab).
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Fig. 4.8b. (cont’d). (b) The predicted seismograms were generated using the best
model from a joint searches for both Love and Rayleigh wave (Figure 4.7).
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Fig. 4.9a. For TUC, the cross-correlations for the observed and synthetic seismo-
grams which were generated using GA searched models. (a) The synthetics were
computed using the best models from the separate search models for Love and
Rayleigh wave (Figures 4.6ab).
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Fig. 4.9b. (cont’d). (b) The synthetics were computed using the best model from a
joint search for both Love and Rayleigh wave (Figure 4.7).
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search technique to teleseismic records.

To apply GA search technique to teleseismic seismograms, we

change the parameterization of the model. We use three 20 km thick

layers over a half-space, which corresponding to the upper crust, lower

crust, uppermost mantle, and the upper mantle. From the reports on

the structure of the lithosphere, we notice that the average velocity for

the uppermost mantle (40-60 km) is greater than the lower crust

(20-40 km), and the lower crust velocity is higher than upper crust

(0-20 km). In the upper mantle (half-space in this parameterization),

the average velocity should not deviate too much from the uppermost

mantle. So we place these observational constraints on our GA

searched models, i.e. the velocities of the first three layers should

increase monotonically and the difference between the uppermost

mantle and upper mantle should not be greater than 0.2 km/sec.

The test results show a good improvement in the searched model,

it overcomes the cycle-skipping problem. Results at three stations

(HRV, FRB, LMN) show the successful GA search results. However,

this strategy has its own weakness. We will use the GA searched

results for INK to illustrate the weaknesses.

For HRV (Figures 4.13, 4.14), the best GA searched model can

predict the waveform very well in the frequency range of 0.01 to 0.05

Hz. The models show a fairly small uncertainty and the best model is

consistent with the velocity structure of stable continents. For FRB

(Figures 4.15, 4.16), the GA search show its ability to find the models

to predict the well dispersed fundamental mode waveform. We also
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Fig. 4.10. The models from GA search for Rayleigh wave recorded at WMOK.
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Fig. 4.11. The waveform comparison of observed and synthetic seismograms for
WMOK (Figure 4.10).
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Fig. 4.12. The cross-correlation of the best GA searched model for WMOK (Figure
4.10).

notice the envelope of synthetics is shorter than the observed seismo-

grams which may reflect that the model is not good enough to produce

correct amplitude. From Figure 4.16, we see that lower crust velocity

may be too low and uppermost mantle velocity may be a little high.

For LMN (Figures 4.17, 4.18), the waveform fit is acceptable and its

model looks reasonable, but we can see the synthetics do not match the

observed Airy phase. This may be caused by the criteria of goodness-

of-fit used. In applying GA search technique to teleseismic seismo-

grams, we divided the period range 10-70 seconds into 6 subranges.

The period content of wave traveling through crust is mainly shorter

than 30 seconds, therefore the criteria of goodness-of-fit has more

weighting for low-frequency signals and may not properly represent
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the crustal wave. The problem is more clear for INK (Figures 4.19,

4.20). We can see that due to the lack of proper representation of

crustal signals, the GA search technique fails in its search for good

model for the noisy traces such as INK which suffer from multipathing

problem.

4.8 Discussion

From this experiment, we found that the GA search method works

well for regional seismograms (∆ < 1000 km) but not as well for tele-

seismic traces (∆ > 2500 km ). The reasons for this are as follow:

• First, the regional seismograms have a more concentrated energy

envelope instead of a well-dispersed wavetrain seen in teleseismic

surface waves. Therefore, the cycle-skipping problem is less

severe in this case.

• Second, the goodness-of-fit criteria may be too simple. The crite-

ria investigated here only utilizes the amplitude information of

the cross-correlation but ignore the time-shift information.

A different model parameterization designed for teleseismic seis-

mograms works well for some high S/N ratios with strong Airy phase

traces.

Another important result of genetic algorithms is that they pro-

vide a suite of possible models. The distribution of possible solutions

at a given depth qualitatively indicates the sensitivity of the data to

the velocity model. For example, for the ANMO transverse component,
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Fig. 4.13. The waveform fit of the best GA searched model for HRV.
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Fig. 4.14. The GA searched models for HRV.
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Fig. 4.15. The waveform fit of the best GA searched model for FRB.
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Fig. 4.16. The GA search models for FRB.
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Fig. 4.17. The waveform fit of the best GA searched model for LMN.
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Fig. 4.18. The GA search models for LMN.
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Fig. 4.19. The waveform fit for INK. INK is located in the most northwest of Canada.
From the Rayleigh wave trace, we can see the wavetrain due to the multipathing
effect arrives after the 1600 seconds. The currently used criteria of goodness-of-fit
can not properly represent the crustal wave and may cause an overly extended syn-
thetic trace.
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Fig. 4.20. The GA search models for INK. The unreasonable low crustal velocity
value is due to the criteria of goodness-of-fit which can not properly represent the
crust wave.
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the crustal velocities are better defined than upper mantle velocities,

which is as expected for a signal recorded only 600 km away from a

crustal event.

Our results can be used to build a more intelligent algorithm for

modeling surface-wave waveform in the future. This future algorithm

should use both amplitude and time-shift information as its criteria of

goodness-of-fit. It could also attemp the match signal amplitudes, e.g.

to use group velocity information as well. A better way of parameteri-

zation will further improve GA search technique’s applicability and

believability of its results.



CHAPTER 5

COMPARISON OF TECHNIQUES

In this chapter, four different techniques will be used to model the

surface-waveform recorded at CCM (Cathedral Cave, Missouri). The

techniques compared are Genetic Algorithm, traditional inversion of

dispersion data, linear waveform inversion (Gomberg and Masters,

1988), and GSDF inversion. The comparison of different results will

illustrate the strength and weakness of each method. A discussion

will address the new knowledge can we learn through the waveform

modeling as well as way to judging the reliability of inversion results.

The reason for using CCM data in this test is that we found the

CCM waveform very difficult to model. It cannot be fit by any simple

model. Through all these waveform modeling tests, we believe that

some new knowledge can be learned. All these experiences can be

used to improve the algorithms of waveform modeling.

5.1 Genetic Algorithms

In applying GA search method to CCM, two steps were taken. As

mentioned in Chapter 4, there is a cycle-skipping problem in applying

111
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many layers GA search to stations at large distances. For this reason,

the search was performed using a 4-layer GA search. The best result

from this first step search is used to refine the searching bounds for

the second step GA search.

Figure 5.1 shows the 4-layer GA search results and search

bounds. The best model from first step search can match the low fre-

quency waveform (Figure 5.2). Starting with the first stage model, the

second stage GA search bounds were designed. The subsequent GA

search results are shown in Figure 5.3. The waveform predicted from

the best model can fit the fundamental mode as high as 0.1 Hz, but the

higher modes are out of phase (Figure 5.4).

The GA search method provides a very good starting model which

has the fundamental mode matched in phase even though the higher

modes are out of phases. The most important advantage for GA search

method is that it requires no human intervention during the search.

The computational time is the least among all methods tested in this

study.

5.2 Inversion of Dispersion Data

The traditional surface wave inversion method to get seismic

structure use the dispersion data (e.g. Russell, 1987). The Multiple

Filter Technique (Dziewonski et. al., 1969; Herrmann, 1973) is often

used to extract surface-wave group velocity dispersion curves. How-

ever, inversion using only group velocity dispersion data usually
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Fig. 5.1. First stage 4-layers GA search result.
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Fig. 5.2. The waveform fit for the best model in first step GA search.
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Fig. 5.3. Second stage GA search results.
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Fig. 5.4. The waveform fit of the best model in second step GA search.
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suffers nonuniqueness and unstability. The better way is to use both

group and phase velocity dispersion in the inversion. This requires

another procedure to extract surface wave phase velocity dispersion

data. Herrin and Goforth (1977) introduced the use of a phase-

matched filter to estimate the phase velocity. After these two proce-

dures, we can perform the traditional surface-wave dispersion curve

inversion.

On Figure 5.5, we show the multiple filtering result. The bottom

figure shows the group velocity dispersion curve. At CCM, the vertical

component displacement record shows a very clear fundamental mode

and first higher mode Rayleigh wave. At periods longer than 40 sec-

onds, the fundamental mode curve is not as smooth at shorter periods.

This character, which is observable for stations in similar geological

regions such as that where station CBKS (shown on figure 5.24), may

be caused by some structure or may be due to low S/N at long periods.

The first higher mode is clearly identified between 6 and 18 seconds.

But for periods shorter than 5 seconds, a possible second higher mode

arrives to form a strong Lg phase at 3.4 km/sec. We would like to see

whether all these features can be modeled through waveform model-

ing. Figure 5.6 shows the extracted fundamental and first higher

mode using phase-matched filter technique. The top trace is the

observed and the bottom trace is the residual seismogram after sub-

tracting the extracted fundamental and first higher mode Rayleigh

wave. In the residual seismogram, we can see a possible second higher

mode signal in the time window 320 to 430 seconds. But there
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Fig. 5.5. The extracted surface wave dispersion data using multiple filtering tech-
niques. The top plot shows the spectrum amplitudes at different periods. The bottom
plot shows the group velocity dispersion curve.
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Fig. 5.6. This figure shows the extracted traces using the phase match filter tech-
nique. The top trace is the vertical component displacement seismogram of CCM.
The second trace is extracted fundamental mode. The third trace is the extracted
first higher mode. The bottom trace is the residual.
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Fig. 5.7. The comparison of observed phase (circle), group velocities (triangle), and
predicted (line) from inversion for the fundamental and first higher mode Rayleigh-
wave.

remains one question about what kind signal is that which arrives

between 440-540 seconds with strong energy.

Using group and phase velocities in the inversion, the results are

shown in Figure 5.7 and 5.8. Figure 5.7 shows the used observed and

predicted dispersion curves. Figure 5.8 shows the inverted model.

The starting model uses the best model obtained in first-stage GA
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Fig. 5.8. The inversion model.

search shown on figure 5.1. Figure 5.9 shows the waveform fit using

the inverted model at two different frequency bands 0.01-0.1 and

0.01-0.5 Hz. There is a priori information used in generating the syn-

thetics which is not available from this inversion-the frequency depen-

dent Q model which will be described later in this chapter. From the

dispersion curve fit, it is not surprising to see that synthetic
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Fig. 5.9a. The waveform fit of observed and predicted seismograms. The model is
shown as figure 5.8. (a) Displayed at frequency range 0.01-0.1 Hz.
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Fig. 5.9b. (Cont’d) (b) The waveform fit for the frequency range 0.01-0.5 Hz.
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fundamental mode is slightly slower than observed for the crustal

wave and the mantle wave is not matched (Figure 5.9a). Also, the first

higher mode (Figure 5.9b) should be fit much better than fundamental

mode.

This exercise shows that traditional surface-wave inversion can

provide a fairly good model from the point of view of waveform model-

ing. However this method also has its limitations, the inversion is

dominated by short-period data which has more data points than the

long period data and has no ability to change model to fit the data

around 30 seconds in this case. However, this technique is very fast

compared to waveform inversion techniques.

5.3 Linear Waveform Inversion

Gomberg and Masters (1988) introduced a linear waveform inver-

sion technique. This technique formulates the residual seismogram of

observed and synthetic seismograms in terms of model parameter per-

turbations. In this section, we will show the inversion results obtained

by applying the method to the CCM data. The programs used here

were coded by Professor Robert Herrmann, Saint Louis University.

In the original paper (Gomberg and Masters, 1988), the inversions

were performed directly using the entire frequency range of interest.

However, it was found by Professor Herrmann, that a better way to

use this tool is by performing the inversions in different frequency

bands. This improved procedure can utilize different information for
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low frequency and high frequency to constrain the model in a more sta-

ble and robust way. A similar idea was reported by Bunks et al. (1995)

for studying seismic reflection data.

We started with the best model obtained from first-stage GA

search, and performed the linear waveform inversion. Figure 5.10

shows the waveform fit at two frequency ranges. We can see that the

phase and amplitude of fundamental mode matches the observed. The

first higher mode does not match the observed data because the a pri-

ori information of frequency dependent Q is not used in this test. The

inverted model is not shown because it is used later to do fine adjust-

ment by trial and error to obtain a better waveform fit.

Although all reported applications of linear waveform inversion

were for the short distance records, we believe it is possible to apply

this technique to longer distance records. The strength of this method

is that the inversion will be directed toward reducing the large resid-

ual between observed and predicted data. However, the weakness of

this method is associated with its strength, i.e. it needs a sophisticated

controlling method to avoid the effects that are caused by improper

knowledge of earthquake source.

5.4 GSDF Inversion

In this section, we describe our application of the GSDF inversion

method to the CCM data. As with the model obtained from linear

waveform inversion, the inverted model is not shown here, but an
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Fig. 5.10. The waveform comparison of observed, synthetic, and the residual seismo-
grams at two different frequency bands. The top panel which corresponds to appar-
ent velocities of 3.3-2.5 km/sec is plotted at 0.02-0.05 Hz. The bottom panel is for a
4.5-2.5 km/sec window and a 0.02-0.1 Hz frequency band.

improved waveform fit, by trial and error adjustment, based on this

model will be shown later in this chapter. Figure 5.11 shows the wave-

form fit of the GSDF inversion result.

5.5 How to Judge the Waveform Fit

What is the criteria to assess the goodness of waveform fit? From

the viewpoint of waveform modeling, the synthetics should be able to

match the observed data in both phase and amplitude in different
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Fig. 5.11a. The waveform fit for the model obtained from GSDF inversion. Three dif-
ferent frequency ranges are shown: (a) for 0.01-0.05 Hz.
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Fig. 5.11b. (Cont’d) (b) for 0.01-0.1 Hz.
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Fig. 5.11c. (Cont’d) (c) for 0.01-0.5 Hz.
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frequency bands. In this case, first let’s see what is observable from

recorded seismograms of station CCM. At CCM, we can see a funda-

mental mode and first higher mode with large amplitude, so the first

requirement should be a good match to both fundamental and higher

modes signal. If we can find such a model which can predict observed

surface waveform, we would like to know whether this model is also

good enough to match the body wave, Pnl and S in this case. After

that, we would like to know if a model can generally meet the first two

requirement, then is there a way to quantify the confident in this

model or to indicate any improvement that can be expected in addi-

tional modeling.

From above discussion, we can say that all four algorithms can

provide fairly good models that can match fundamental mode up to 0.1

Hz. However, those models can not fit the higher modes, therefore the

question is how to match the higher mode. Looking at the GSDF

inversion result (figure 5.11b), we can see predicted higher mode

amplitude is about factor two smaller than observed.

There are two possible ways to increase the higher mode ampli-

tude. Let’s examine the partial derivatives created for the GSDF

inversion. As shown in Figure 5.12, we see that if we increase the

upper mantle Q value, it is possible to increase the higher mode ampli-

tude. Of course, the crustal Q value should decrease to compensate for

the change and to maintain the fundamental mode amplitude. The

result is shown in Figure 5.13. Indeed, the higher mode amplitude

increases, but compared to Figure 5.11 we see that not only higher
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mode but also fundamental mode amplitude are increased in ampli-

tude, especially the low frequency part of fundamental mode which

corresponding to the wave traveling through the upper mantle.

Another problem with from this model, is that we cannot explain the

signals in the 420-440 second time window.

The second way to increase the higher mode amplitude is to con-

sider a frequency dependent Q for the high-frequency signal. To pre-

serve the low frequency fundamental mode amplitude, the frequency

dependent Q is applied to part of the signal whose frequency content is

greater than 0.1 Hz. To avoid the abrupt change in spectrum shape

when applying frequency dependent Q, a transition zone is used for

0.1-0.2 Hz. The following two examples are based on trial and error

adjustment for the two models from GSDF inversion and linear wave-

form inversion. The reference period for frequency dependent Q is 0.1

Hz and η = 0. 5. During the trial and error adjustment, the fundamen-

tal mode may shift in and out of phase. But the purpose is to under-

stand how to fit the higher mode phase and amplitude, and what pro-

cess creates such strong Lg wave.

The first example is a fine tuning result for the GSDF inversion

result. The model is shown in Figure 5.14 and uses frequency depen-

dent Q. The waveform fit is displayed in Figure 5.15. From the wave-

form, we can see that low frequency fundamental mode amplitude does

not change much. Through the trial and error adjusting, the higher

mode phase and amplitude are generally matched. However, the Airy

phase amplitude is increases during such an adjustment. The
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Fig. 5.13a. Waveform fit for the model which increasing the upper mantle Q. Three
different frequency ranges are displayed: (a) 0.01-0.05 Hz.
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Fig. 5.13b. (Cont’d) (b) 0.01-0.1 Hz.
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Fig. 5.13c. (Cont’d) (c) 0.01-0.5 Hz.
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Fig. 5.14. This figure shows a better model which based on GSDF inversion result,
and using trial and error to do the fine tuning.

waveform, again, cannot match the signals in the time window

420-440 seconds, and it cannot explain what high frequency signals

between 440 and 470 seconds. Looking at the individual mode contri-

butions (Figure 5.16), we see that the higher mode signal are mainly

composed of the first two higher modes.

The second example starts with the inversion result of linear

waveform inversion. This adjusted model shows good agreement with

observed data, so we will use this model as an example to illustrate the

reliability of model. In this model, not only the Rayleigh wave but also

the Love wave are modeled. Figure 5.17 shows the models for the
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Fig. 5.15a. The waveform fit of the model shown as figure 5.14. Three frequency
ranges are displayed: (a) 0.01-0.05 Hz.
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Fig. 5.15c. (Cont’d) (c) 0.01-0.5 Hz.
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Fig. 5.16. The observed, synthetic, and seven single-mode seismograms.
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Fig. 5.17. This figure shows a better model which based on linear waveform inversion
result, and using trial and error to do the fine tuning.

Rayleigh and Love waves. There are several characteristics worth

mentioning. First of all, during the adjusting process, no low velocity

zone is allowed in the crust. Second, there is no need to introduce a

low velocity zone in the uppermost mantle (40-220 km) which is usu-

ally seen in other reported surface wave inversion results. Third, the

model shows a gradient zone between 40 and 60 km instead of a sharp

crust-mantle boundary. Finally, the lower crust (20-40 km) has a steep

velocity gradient. Figure 5.18 shows the waveform fit at three differ-

ent frequency ranges. From these plots, we see a good fit to the higher

mode waveform signal, especially for the signals in the 400-440 time

window which are not well modeled by the other models. In Figure
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5.20, the single mode display shows a very good first higher mode

envelop with a nice tail after 410 seconds. This is consistent with the

observed data. It also shows that the amplitude variation is possibly

caused by construction and destruction of higher modes. Figure 5.19

shows that the synthetic seismograms generated by the locked mode

approximation can match the Pnl phase. One important result of

waveform modeling shown here is that it demonstrates that a single

1-D model can match both body wave and surface wave waveforms in a

regional stable area.

How confident is this model? In this study, the inversions were

performed using damped least square method (Marquardt, 1963). The

calculation of resolving kernels are straightforward. Figure 5.21

shows the resolving kernels and standard deviation of model parame-

ters. However, the standard deviation bar depends on the damping

value used, and does not show any information. On the other hand,

the measurements of four GSDFs may provide extra information to

indicate the goodness of waveform fit. Figure 5.22 shows the four

GSDF measurements for the vertical component Rayleigh wave. The

group velocity differential time dTG indicates that predicted Airy

phase envelope is 11 seconds slower than observed at a 37 second

period. From dTP, it is clear to see that this model may do well in high

frequency but the low frequency part is systematically 5 seconds faster

than the data. From dTQ, we can see that at a period around 35 sec-

onds, the synthetic seismogram’s amplitude is too large. The GSDF

measurements are a good indicator of waveform but do not map
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Fig. 5.18a. The waveform fit of the fine-tuning model shown at figure 5.17. Three dif-
ferent frequency ranges are shown: (a) 0.01-0.05 Hz.
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Fig. 5.18b. (Cont’d) (b) 0.01-0.1 Hz.
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Fig. 5.18c. (Cont’d) (c) 0.01-0.5 Hz.
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Fig. 5.19. The Pnl waveform fit which computed using locked mode approximation for
the fine-tuning model shown at figure 5.17.
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Fig. 5.20. The observed, synthetic, and seven single-mode seismograms were shown
here.
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directly into the velocity-Q model.
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Fig. 5.21. The resolving kernel for the model shown on figure 5.18.

So far, there two hypotheses are proposed to fit the data. The first

hypothesis is that a gradient velocity transition zone exists in the

uppermost mantle instead of a sharp crust-mantle boundary. The sec-

ond hypothesis is that the frequency dependent Q for the crust

(Mitchell, 1980). We will use another two stations in the same region

to search for similar features.

The first station is CBKS. Its group velocity dispersion curve

(Figure 5.23) shows almost no interference from noise. The GSDF

inversion result is shown in Figure 5.25 and its associated waveform

fit is shown in Figure 5.24. The second station used is WMOK. The
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Fig. 5.22. The measurements of four GSDF functionals for the model shown on figure
5.18.

hypocentral distance is very short, only about 650 km. The dispersion

curve (Figure 5.26) is not as clean as CBKS, only the 8-30 second fun-

damental mode can be identified due to a spectral hole near 30 sec-

onds. The waveform fit is shown as Figure 5.27 and the model is

shown as Figure 5.28. Although the waveform fits for both CBKS and

WMOK are not perfect for higher modes, they do have correct ampli-

tudes. The data do not require frequency dependent Q to fit the ampli-

tudes of both fundamental and higher modes. But compared to CCM,
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these two models all have high crustal Q values. There are two possi-

bilities for this:

(1). The frequency dependent Q behavior is not observable for short

distance stations. Also, as noted by Mitchell (1980), frequency

dependence of Q could only be observed using higher mode ampli-

tudes at periods less than 4 seconds.

(2). The observed frequency dependent Q at CCM is an artifact due to

improper source radiation pattern which creates large amplitude

synthetics and forces the crustal Q to decrease to compensate for

this effect and the frequency dependent Q behavior is then

required to match the higher mode amplitude.

Although, there is no conclusive answer to this problem, but this ques-

tion arises when trying to determine fundamental earth structure

through waveform modeling.

By comparing models of the crust and upper mantle beneath

CCM, CBKS, and WMOK, we see that all three models have a velocity

transition zone in the uppermost mantle. Durrheim and Mooney

(1994) use seismic and geochemical data to constrain the evolution of

Precambrian lithosphere evolution. Their conclusion is that under-

plating occurs at the Proterozonic, but not at Archean crust-mantle

boundaries. The seismic signature of underplating is a basal layer

with high P-velocity (7.0-7.6 km/sec). In our study, the source is

located between the Proterozonic platform and Rocky mountains, and

the stations CCM, CBKS, and WMOK lay inside the Proterozonic plat-

form, therefore the propagation paths sample the relatively uniform
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Fig. 5.23. The group velocity dispersion curve and spectrum amplitudes for station
CBKS.
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Fig. 5.24. The waveform fit for station CBKS at frequency band 0.01-0.5 Hz.
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Fig. 5.25. The fine-tuning model for station CBKS which is based on the GSDF inver-
sion result.

platform. With fixed Poisson’s ratio in the inversion, the transitional

velocity zone between 40 and 60 km shown in each model may be the

evidence of an underplating process. It would be interesting to study

an Archean region using waveform modeling techniques to see

whether a basal layer exists or not.

A question remains unanswered. That is what are those signals

that arrive between 430 and 470 seconds on the vertical component

CCM data. We have no answer for this. But from Figure 5.9(b), the

dispersion curve inversion result, we see a clue.
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Fig. 5.26. The group velocity dispersion curve and spectral amplitudes for station
WMOK.
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Fig. 5.27. The waveform fit at 0.01-0.5 Hz of station WMOK for the model shown on
figure 5.28.
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Fig. 5.28. The fine-tuning model for WMOK which based on GSDF inversion result.

From results of reflection and refraction studies of continental

lithosphere, it has been observed that a reflective region occurs in the

lower crust (e.g. Mooney and Brocher, 1987). Such seismic reflectors

can be related to geological interpretations such as thrust stack,

duplex, and so on (Hatcher, 1986). Braile and Chiang (1986) conduct

numerical experiments to study what kind structure can produce the

reflective Moho. Their tests show that a Moho transition zone with

many fine layers which have small velocity variations (ZIG-ZAG pat-

tern) is feasible.

During a trial and error modeling process, we manually kept the

velocity model as smooth as possible and removed any low velocity
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zones. The layer thickness of the model is 5 km for the top 60 km. For

such a layer thickness and smooth velocity curve, it will only generate

a smooth fundamental mode. Therefore, a fine-layer velocity model

with small perturbations is a possible origin for those signals.

5.6 Discussion

In this chapter, we applied four different algorithms to model the

surface-wave waveform. The results show that each algorithm can

provide different waveform fit result which emphasizes different parts

of waveform because of their different criteria and formulations. For

example, the GA search algorithm can find models that match the

most energetic phase, the fundamental mode in this case, but it lacks

the ability to match the other less energetic phases such as higher

modes. The reason is simple because of the criteria used. In a similar

fashion, the linear waveform inversion is also controlled by the large

residuals which might be artifacts caused by improper source descrip-

tion. Using different windows and filters to force the inversion to focus

on different part of waveform is a possible solution, but the controlling

mechanism will strongly depend on the user’s expertise. The tradi-

tional dispersion curve inversion also has its own problems such as the

accuracy in phase velocity measurements and the data density used in

inversion. Like the traditional dispersion curve inversion, GSDF

inversion also suffers from a data density problem because both of

them utilize the different remeasurements from waveform.
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All four algorithms can provide reasonable model with waveform

fits as good as up to 0.1 Hz. However, since more structural informa-

tion is revealed in higher frequency contents, the design of a model

refining algorithm will be the task for seismologists. From this study,

we believe that a multi-isolation-filters GSDF inversion algorithm may

be a possible improvement.

What is a good criterion for waveform modeling? So far, there is

no answer to this question. But we know what are not good criteria.

To measure a simple pulse, several widely used criteria like cross-cor-

relation and L2-norm can serve the purpose. However, to judge the

similarity of a complicated waveform, all these criteria will not give a

satisfactory answer. The cross-correlation can only tell the similarity

of the most energetic phase. The L2-norm will behave as a oscillatory

wavelet, like cross-correlation, when the cycle-skipping problem is

involved. Therefore, we believe that the success of waveform inversion

algorithms will depend on how the criteria have been designed.

When a good model is obtained, without tectonic interpretation, it

is just a model. We would like outline the possible contributions from

interpreting waveform modeling results. First we would ask what is

the physical process happen that formed the continental lithosphere?

So far, evidence from all branchs of geoscience is too sparse to provide

a complete answer. So we will ask what kind seismic evidence can we

provide on this topic?

Jordan (1975) proposed the continental tectosphere hypothesis.

The continental tectosphere has a cool thick root (up to 400 km).
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Using numerical modeling, the influence of such thick tectosphere on

the geodynamic processes of the mantle and on the plate motion has

been modeled (e.g. Stoddard and Abbott, 1996). Therefore, the first

question is how to determine the thickness of the continental litho-

sphere?

As described previously, the evolutionary model of Precambrian

lithosphere proposed by Durrheim and Mooney (1994) suggests that

the Archean lithosphere is thicker than Proterozonic lithosphere.

Some mantle processes, such as underplating, only happened on the

Proterozonic crust-mantle boundary. Therefore, the second question

will be: Can we observe the fundamental difference of these two

regions from seismological studies?

Sato et al. (1989) suggested that seismic velocity and Q models

can be used to estimate the temperature gradient and partial melt

fraction in the upper mantle. The temperature gradient can be

inferred from waveform modeling results. This could be another indi-

rect constraint besides the heat flow measurements for continental

lithosphere evolution.

Anisotropy is a commonly observed phenomenon in the Earth. By

observing the SKS and SKKS splitting, Silver and Chan (1991) sug-

gested that the anisotropy is caused by the subcontinental upper man-

tle deformations during the different tectonic episodes. Therefore,

anisotropy can be another indicator to the evolutionary history of the

continental lithosphere.



CHAPTER 6

DISCUSSION AND CONCLUSION

In this study, several algorithms have been used to model surface-

wave waveforms. Each algorithm has different advantages and weak-

nesses. One of the most important conclusions is that, through careful

waveform modeling, both body waves and surface waves can be mod-

eled using 1-D model. Waveform modeling can also provide more

detailed structure information than can be obtained by fitting gross

data sets such as surface wave dispersion data.

The differences among tested algorithms are mainly in the "data"

preparation for inversion. The linear inversion scheme used requires

no a priori information (Lawson and Hanson, 1974). Issues associated

with incorporating a priori information (Tarantola and Valette, 1982),

and constrained inversion (Carrion, 1989) have not been tested in this

study.

Another issue related to inversion schemes is that of the weight-

ing functions. For linear inversion, each parameter acts acting as a

free parameter, and the inversion will become unstable due to the

parameterization and data density used in inversion. Russell (1987)

introduced a "differential" weighting function to constrain the

160
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inversion. However, when dealing with teleseismic records or a many

layers parameterization, this weighting function will not be able to

avoid producing some funny low-velocity zones in model. Therefore, a

Nolet style weighting function (Nolet, 1990; Snoke et al., 1997) could

be tested in the future to see can it stablize the inversion result.

What can be done in future? For methodology improvement con-

sider the following: First of all, from this study, we notice that the

envelope of surface wave is a good indicator for Q structure. We

believe formulating an algorithm to invert Q structure from different

bandpassed surface wave envelopes will be a useful tool to study upper

mantle Q structure. A similar idea has already been reported by Cara

et al. (1987) and Nolet (1990). Second, a fine tunning algorithm is

needed to match the less energetic higher mode waveforms without

destroy the fit to the well matched fundamental mode. We believe it

can be implemented by constructing a multiple isolation filters in the

GSDF inversion scheme which will utilize information from different

wavegroups simultaneously. Another alternative will be a multi-win-

dowed linear waveform inversion. Implementation of an inversion for

an anisotropic model is required. Finally, invent an inversion tech-

nique using both both surface and body waves.

For possible uses of these algorithms consider the following: We

strongly feel that waveform inversion techniques can be very powerful

tools to study regional events. First, regional events have their energy

concentrated in short time windows which may have less influence by

multi-pathing effects. The GA search results shown in Chapter 4



162

support this argument. Second, the propagation path is more likely

travel through the same geological region. Although such modeling

may only provide information on average crustal structure, but it can

be applied to many regions. It would be interesting to apply waveform

inversion methods to smaller regions.

With respect to global search techniques: The major thing to be

done is to find a better criteria of waveform fit. An additional effort is

required to combine GA search and gradient information to speed up

the process. This will increase the application of global search tech-

nique.
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