The Relation between m_{bLg} and M_w and between $m_{Lg}(f)$ and M_w Using Recent US Earthquakes and Random Vibration Theory

C. Rigsby, Saint Louis University, crigsby@slu.edu; R. B. Herrmann, Saint Louis University, rbh@eas.slu.edu

Background

- The Lg phase is a superposition of higher-mode surface waves with a group velocity between 3.2 and 3.5 s and with a period between 0.7 and 1.3 s.
- Nuttli (1973) developed the m_{bLg} magnitude scale to quantify the size of an earthquake from 1-second-period Lg waves on WWSSN short-period vertical seismograms.
- Nuttli (1986) reformulated the original m_L formula in terms of ground motion at 10 km and accounted for different coefficients of anelastic attenuation.
- Herrmann and Kijko (1983) modified the m_{bLg} scale to account for the frequency of the observed Lg waves. In this study, 2 methods are employed for each calculation of m_{bLg} and $m_{Lg}(f)$. The poster presents only the SLU Method, the method that attempts to replicate the USGS procedure for calculating m_{bLg}.

Objectives

- Derive relationship between m_{bLg} and M_w from earthquake data and RVFT
- Derive relationship between $m_{Lg}(f)$ and M_w from earthquake data and RVFT
- Address whether a single y is appropriate for the central and eastern United States

Methods

- Processing procedure for SLU computation of m_{bLg}
- The regression analysis uses linear least squares regression for Figure A
- Figure A depicts the relationship between the published M_{bLg} magnitudes and the Lg m_{bLg} magnitudes
- Figure B depicts the relationship between the SLU M_{bLg} magnitudes and the $SLU m_{bLg}$ magnitudes
- Figure C depicts the relationship between the SLU P_{Lg} magnitudes and the $SLU M_{Lg}$ magnitudes
- Figures A-C: the red line is the regression line, the blue line is the best confidence band on the regression line, and the blue dotted lines are the 95% confidence bands on the lines.

Conclusions

- The regression analysis and modeling support a linear relationship between m_{bLg} and M_w and between $m_{Lg}(f)$ and M_w for $3.0 < M < 4.2 $
- The lack of data for larger events prevents confident predictions for larger m_{bLg} or $m_{Lg}(f)$
- We have confidence in using m_{bLg} and $m_{Lg}(f)$ to estimate M_w for smaller events
- A single y is probably not appropriate for the central and eastern United States.