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Abstract

The mLg( f ) magnitude is an important regional magnitude scale because of the 

ease of its calculation and because the Lg phase is a prominent phase observed in 

eastern North America as a result of paths in the continental platform and the Canadian 

Shield. A variant of mLg( f ) employed by the National Earthquake Information Center 

(NEIC) of the United States Geological Survey (USGS) is mbLg, a magnitude scale that 

uses the Lg phase but does not explicitly include the frequency of the phase in the 

computation. 

We derive empirical relationships between Mw and mbLg and between Mw and  mLg(

f ). We use random vibration theory to model the relationships between Mw and mbLg and

between Mw and mLg( f ) in order to address seismic source scaling and in order to 

determine the Lg magnitude range over which the empirical predictive relationships are 

valid. We address whether a single-valued γ , a measure of anelastic attenuation, is 

appropriate for the central and eastern United States. 

1



AN INVESTIGATION OF THE RELATIONSHIPS BETWEEN 

mbLg  AND Mw AND BETWEEN mLg( f ) AND Mw USING 

RECENT UNITED STATES EARTHQUAKES 

AND RANDOM VIBRATION THEORY

Christopher Rigsby, B.S.

A Thesis Presented to the Graduate Faculty of 
Saint Louis University in Partial Fulfillment 

of the Requirements for the Degree of 
Master of Science (Research)

2012



COMMITTEE IN CHARGE OF CANDIDACY

Professor Robert B. Herrmann
Chairperson and Advisor

Associate Professor Lupei Zhu

Assistant Professor Linda M. Warren

i



Acknowledgements

I wish to thank Dr. Robert B. Herrmann for his tireless patience, thorough 

explanations, and dedication to teaching and research. Without his vast knowledge of 

geophysics, physics, geology, programming, and mathematics, among other fields, I 

would not have been able to complete this thesis nor gain as much as I have from the 

graduate program.

I wish to thank Dr. Linda M. Warren and Dr. Lupei Zhu for their time and helpful 

comments in order to improve this writing. 

I wish to thank Dr. David J. Crossley for his advice and especially for his teaching

of Time Series in Geophysics.

I wish to thank Dr. John P. Encarnación for his clear geological explanations and 

for his delightful analogies.

I wish to thank Laurie Hausmann and Karen Nydegger for their help and their 

diligence.

I wish to thank my fellow graduate students who aided me in classes and 

research.

Finally, I wish to thank my friend and partner, Jennifer Stone, for her support and 

tolerance during my graduate years.

ii



Table of Contents

List of Tables ................................................................................................................... v

List of Figures ................................................................................................................. vi

Chapter 1: Introduction ...............................................................................................  1
1.1 Purpose of Current Study........................................................................... 1
1.2 Review of Literature ................................................................................... 1

Chapter 2: Method 1 Calculation of mbLg and mLg( f ) ................................................... 8
2.1 Empirical Data Set ..................................................................................... 8
2.2 Method 1 Calculation of mbLg for Central and Eastern US Earthquakes .... 8
2.3 Method 1 Calculation of mLg( f ) ............................................................... 13
2.4 Method 1 mbLg Results and Discussion .................................................... 15
2.5 Method 1 mLg( f ) Results and Discussion ................................................ 19
2.6 Comparisons of Method 1 mbLg, Method 1 mLg( f ), and published mbLg .... 22
2.7 Adjustments to the Method 1 Lg magnitude relationships ....................... 25
2.8 Residuals for Method 1 mbLg and mLg( f ) ................................................. 29

Chapter 3: Method 2 Calculation of mbLg and mLg( f ) ................................................. 34
3.1 Empirical Data Set ................................................................................... 34
3.2 Method 2 Calculation of mbLg for Central and Eastern US Earthquakes .. 34
3.3 Method 2 Calculation of mLg( f ) ............................................................... 38
3.4 Method 2 mbLg Results and Discussion .................................................... 40
3.5 Method 2 mLg( f ) Results and Discussion ................................................ 42
3.6 Comparisons of Method 1 mbLg, Method 1 mLg( f ), Method 2 mbLg, and 

Method 2 mLg( f ) ...................................................................................... 44
3.7 Adjustments to the Method 2 Lg magnitude relationships ....................... 44

Chapter 4: Modeling .................................................................................................. 50
4.1 Stochastic Method ................................................................................... 50
4.2 Random Vibration Theory ........................................................................ 51
4.3 Models ..................................................................................................... 53
4.4 Modeling mbLg versus Mw ......................................................................... 54
4.5 Modeling mLg( f ) versus Mw ..................................................................... 61
4.6 Modeling a modified mbLg versus Mw ........................................................ 65
4.7 Modeling a modified mLg( f ) versus Mw ................................................... 69

Chapter 5: An Examination of γ ............................................................................. 73
5.1 Model for Ground Motion ......................................................................... 73
5.2 Results and Discussion ........................................................................... 74

Chapter 6: Summary and Conclusions ..................................................................... 88

iii



References ................................................................................................................... 91

Vita Auctoris .................................................................................................................. 94

iv



List of Tables

Table 2.1: The table lists the parameters for the WWSSN short-period velocity 
response ................................................................................................   11

Table 2.2: The table lists the parameters for the WWSSN short-period displacement 
response .................................................................................................. 12

.Table 3.1: The table lists the parameters for the WWSSN short-period velocity 
response .................................................................................................. 37

Table 4.1: Frankel et al. hard-rock model parameters ...............................................55

Table 4.2: Frankel et al. modified hard-rock model parameters. The modified hard-
rock model contains a different site effect term ....................................... 56

Table 4.3: Atkinson and Boore model parameters ................................................... 57

Table 5.1: Earthquake dates, Mw, Method 1 mbLg, Method 1 mLg( f ), and associated 
coefficients of anelastic attenuation. The last 2 columns gives coefficients 
of anelastic attenuation for different distance ranges .............................. 75

v



List of Figures

Figure 2.1: A map of the locations of the epicenters (yellow stars) of the 38 
earthquakes for which magnitudes were calculated. The stations (red dots)
include every station that recorded motion from any of the earthquakes. 
The Method 1 calculation of magnitudes eliminated many seismograms, 
and thus only a subset of stations was used for any given earthquake ...  9

Figure 2.2: The velocity response of the WWSSN short-period instrument. ............. 11

Figure 2.3: The displacement response of the WWSSN short-period instrument. The 
constant was adjusted so that the gain at 1 Hz is 1. Note that the 
displacement response D ( f ) = ( i2π f )V ( f ) where V( f ) is the complex
velocity response for the instrument ...........................................................   12

Figure 2.4: Flowchart for Method 1 calculation of mbLg ............................................... 14

Figure 2.5: Regression analysis for Method 1 mbLg. The red line is the regression line, 
the inner blue lines are the confidence intervals, and the outer blue lines 
are the prediction intervals ...................................................................... 16

Figure 2.6:  A comparison of the regression analyses for Method 1 mbLg and the 
published data for the NEIC mbLg ............................................................. 18

Figure 2.7: Regression analysis for Method 1 mLg( f ). The red line is the regression 
line, the inner blue lines are the confidence intervals, and the outer blue 
lines are the prediction intervals .............................................................. 20

Figure 2.8: A comparison of the regression analyses for Method 1 mLg( f ) and the 
published data for the NEIC mbLg ............................................................. 21

Figure 2.9: A plot of the Method 1 mbLg versus the published NEIC mbLg for the 19 
earthquakes common to both groups. A 1-to-1 reference line is shown .. 23

Figure 2.10: A plot of the Method 1 mLg( f ) versus the published NEIC mbLg for the 19 
earthquakes common to both groups. A 1-to-1 reference line is shown .. 24

Figure 2.11: A plot of the Method 1 mbLg versus the Method 1 mLg( f ) for all 38 
earthquakes used in Method 1. A 1-to-1 reference line is shown ............ 26

Figure 2.12: A regression graph of the Mw (SLU) versus the Method 1 mbLg based on a 
bilinear division. Modeling, described in Chapter 4, and empirical iterations
of a regression program suggest that the regression line slope change at 
around mbLg = 4.5. For the regression line for smaller magnitudes, the 

vi



slope is fixed at 2/3. For the regression line for larger magnitudes, the 
slope is determined by the data ............................................................... 27

Figure 2.13: A regression graph of the the Mw (SLU) versus the Method 1 mLg( f )   
based on a bilinear division. Modeling, described in Chapter 4, and 
empirical iterations of a regression program suggest that the regression 
line slope change at around mLg( f ) = 4.5 ................................................ 28

Figure 2.14:  A regression analysis of Method 1 mbLg in which the maximum peak-to-
peak amplitude, rather than the third-largest peak-to-peak amplitude, is 
used in the calculation of mbLg .................................................................. 30

Figure 2.15: A regression analysis of Method 1 mLg( f ) in which the maximum peak-to-
peak amplitude, rather than the third-largest peak-to-peak amplitude, is 
used in the calculation of mLg( f ) ............................................................. 31

Figure 2.16: The Method 1 mbLg residuals for each individual earthquake are overlaid 
(top), and the standard deviation of those residuals is given. The Method 1
mLg( f ) residuals for each individual earthquake are overlaid (bottom), and 
the the standard deviation of those residuals is given ............................ 32

Figure 3.1: A map of the locations of the epicenters (yellow stars) of the 35 
earthquakes for which magnitudes were calculated. The stations (red dots)
include every station that recorded motion from any of the earthquakes. 
The Method 2 calculation of magnitudes eliminated many seismograms, 
and thus only a subset of stations was used for any given earthquake .. 35

Figure 3.2: The velocity response of the WWSSN short-period instrument .............. 37

Figure 3.3:  Flowchart for Method 2 calculation of mbLg .............................................. 39

Figure 3.4: Regression analysis for the Method 2 mbLg compared against the 
regression analysis for the Method 1 mbLg. The red line is the regression 
line, the inner blue lines are the confidence intervals, and the outer blue 
lines are the prediction intervals .............................................................. 41

Figure 3.5: Regression analysis for Method 2 mLg( f ) compared against the regression
analysis for Method 1 mLg( f ). The red line is the regression line, the inner 
blue lines are the confidence intervals, and the outer blue lines are the 
prediction intervals ................................................................................... 43

Figure 3.6: A plot of the Method 2 mbLg versus the Method 1 mbLg for the 35 
earthquakes common to both groups ...................................................... 45

vii



Figure 3.7:  A plot of the Method 2 mLg( f ) versus the Method 1 mLg( f ) for the 35 
earthquakes common to both groups .....................................................  46

Figure 3.8:  A regression graph of the Mw (SLU) versus the Method 2 mbLg based on a 
bilinear division. Modeling, described in Chapter 4, and empirical iterations
of a regression program suggest that the regression line slope change at 
around mbLg = 4.3. For the regression line for smaller magnitudes, the 
slope is fixed at 2/3. For the regression line for larger magnitudes, the 
slope is determined by the data ............................................................... 47

Figure 3.9: A regression graph of the Mw (SLU) versus the Method 2 mLg( f ) based on 
a bilinear division. Modeling, described in Chapter 4, and empirical 
iterations of a regression program suggest that the regression line slope 
change at around mLgi( f ) = 4.4 ............................................................... 49

Figure 4.1: The Method 1 mbLg data points lie over the mbLg versus Mw relationship 
derived from the Frankel hard-rock model. The green, red, and black 
curves give the relationships between mbLg and Mw for different constant 
epicentral distances. The model uses the instrument-corrected maximum 
zero-to-peak amplitude, while the Method 1 mbLg points use half the 
instrument-corrected third-largest peak-to-peak amplitude ..................... 58

Figure 4.2: The Method 1 mbLg data points lie over the mbLg versus Mw relationship 
derived from the Frankel modified hard-rock model. The green, red, and 
black curves give the relationships between mbLg and Mw for different 
constant epicentral distances. The model uses the instrument-corrected 
maximum zero-to-peak amplitude, while the Method 1 mbLg points use half 
the instrument-corrected third-largest peak-to-peak amplitude................ 59

Figure 4.3: The Method 1 mbLg data points lie over the mbLg versus Mw relationship 
derived from the Atkinson-Boore model. The green, red, and black curves 
give the relationships between mbLg and Mw for different constant epicentral
distances. The model uses the instrument-corrected maximum zero-to-
peak amplitude, while the Method 1 mbLg points use half the instrument-
corrected third-largest peak-to-peak amplitude ....................................... 59

Figure 4.4: The Method 1 mLg( f ) data points lie over the mLg( f ) versus Mw 
relationship derived from the Frankel hard-rock model. The green, red, and
black curves give the relationship between mLg( f ) and Mw for different 
constant epicentral distances. The model uses the instrument-corrected 
maximum zero-to-peak amplitude, while the Method 1 mLg( f ) points use 
half the instrument-corrected third-largest peak-to-peak amplitude ........ 62

Figure 4.5: The Method 1 mLg( f ) data points lie over the mLg( f ) versus Mw 

viii



relationship derived from the modified Frankel hard-rock model. The 
green, red, and black curves give the relationship between mLg( f ) and Mw 
for different constant epicentral distances. The model uses the instrument-
corrected maximum zero-to-peak amplitude, while the Method 1 mLg( f ) 
points use half the instrument-corrected third-largest peak-to-peak 
amplitude ................................................................................................ 63

Figure 4.6: The Method 1 mLg( f ) data points lie over the mLg( f ) versus Mw 
relationship derived from the Atkinson-Boore model. The green, red, and 
black curves give the relationships between mLg( f ) and Mw for different 
constant epicentral distances. The model uses the instrument-corrected 
maximum zero-to-peak amplitude, while the Method 1 mLg( f ) points use 
half the instrument-corrected third-largest peak-to-peak amplitude ........ 64

Figure 4.7: The Method 1 mbLg data points lie over the mbLg versus Mw relationship 
derived from the Frankel hard-rock model. The green, red, and black 
curves give the relationships between mbLg and Mw for different constant 
epicentral distances. The model uses the instrument-corrected maximum 
zero-to-peak amplitude, while the Method 1 mbLg points use half the 
instrument-corrected maximum peak-to-peak amplitude ........................ 66

Figure 4.8: The Method 1 mbLg data points lie over the mbLg versus Mw relationship 
derived from the modified Frankel hard-rock model. The green, red, and 
black curves give the relationships between mbLg and Mw for different 
constant epicentral distances. The model uses the instrument-corrected 
maximum peak-to-peak amplitude, while the Method 1 mbLg points use half
the instrument-corrected maximum peak-to-peak amplitude .................. 67

Figure 4.9: The Method 1 mbLg data points lie over the mbLg versus Mw relationship 
derived from the Atkinson-Boore model. The green, red, and black curves 
give the relationships between mbLg and Mw for different constant epicentral
distances. The model uses the instrument-corrected maximum zero-to-
peak amplitude, while the Method 1 mbLg points use half the instrument-
corrected maximum peak-to-peak amplitude .......................................... 68

Figure 4.10: The Method 1 mLg( f ) data points lie over the mLg( f ) versus Mw r
elationship derived from the modified Frankel hard-rock model. The green,
red, and black curves give the relationships between mLg( f ) and Mw for 
different constant epicentral distances. The model uses the instrument-
corrected maximum zero-to-peak amplitude, while the Method 1 mLg( f ) 
points use half the instrument-corrected maximum peak-to-peak 
amplitude ................................................................................................. 70

Figure 4.11: The Method 1 mLg( f ) data points lie over the mLg( f ) versus Mw 

ix



relationship derived from the Frankel hard-rock model. The green, red, and
black curves give the relationships between mLg( f ) and Mw for different 
constant epicentral distances. The model uses the instrument-corrected 
maximum zero-to-peak amplitude, and the Method 1 mLg( f ) points use 
half the instrument-corrected maximum peak-to-peak amplitude ............ 71

Figure 4.12: The Method 1 mLg( f ) data points lie over the mLg( f ) versus Mw 
relationship derived from the Atkinson-Boore model. The green, red, and 
black curves give the relationships between mLg( f ) and Mw for different 
constant epicentral distances. The model uses the instrument-corrected 
maximum zero-to-peak amplitude, while the Method 1 mLg( f ) points use 
half the instrument-corrected maximum peak-to-peak amplitude ............ 72

Figure 5.1: The linear least-squares regression analysis is shown for the 15 January 
2010 earthquake. Two distance ranges, 50-1200 km (top) and all 
distances (bottom), are illustrated, and the accompanying Mw, Method 1 
mbLg, and Method 1 mLg( f ) are given....................................................... 77

Figure 5.2: The linear least-squares regression analysis is shown for the 27 February 
2010 earthquake. Two distance ranges, 50-1200 km (top) and all 
distances (bottom), are illustrated, and the accompanying Mw, Method 1 
mbLg, and Method 1 mLg( f ) are given ....................................................... 78

Figure 5.3: The linear least-squares regression analysis is shown for the 13 October 
2010 earthquake. Two distance ranges, 50-1200 km (top) and all 
distances (bottom), are illustrated, and the accompanying Mw, Method 1 
mbLg, and Method 1 mLg( f ) are given ....................................................... 79

Figure 5.4: The linear least-squares regression analysis is shown for the 20 
November 2010 earthquake. Two distance ranges, 50-1200 km (top) and 
all distances (bottom), are illustrated, and the accompanying Mw, Method 1
mbLg, and Method 1 mLg( f ) are given. ...................................................... 80

Figure 5.5: The linear least-squares regression analysis is shown for the 24 
November 2010 earthquake. Two distance ranges, 50-1200 km (top) and 
all distances (bottom), are illustrated, and the accompanying Mw, Method 1
mbLg, and Method 1 mLg( f ) are given ....................................................... 81

Figure 5.6: The linear least-squares regression analysis is shown for the 18 February 
2011 earthquake. Two distance ranges, 50-1200 km (top) and all distances
(bottom), are illustrated, and the accompanying Mw, Method 1 mbLg, and 
Method 1 mLg( f ) are given ...................................................................... 82

Figure 5.7: The linear least-squares regression analysis is shown for the 28 February 

x



2011 earthquake. Two distance ranges, 50-1200 km (top) and all distances
(bottom), are illustrated, and the accompanying Mw, Method 1 mbLg, and 
Method 1 mLg( f ) are given ...................................................................... 83

Figure 5.8: The linear least-squares regression analysis is shown for the 6 November 
2011 earthquake. Two distance ranges, 50-1200 km (top) and all distances
(bottom), are illustrated, and the accompanying Mw, Method 1 mbLg, and 
Method 1 mLg( f ) are given ...................................................................... 84

Figure 5.9: The linear least-squares regression analysis is shown for the 5 November 
2011 earthquake. Two distance ranges, 50-1200 km (top) and all distances
(bottom), are illustrated, and the accompanying Mw, Method 1 mbLg, and 
Method 1 mLg( f ) are given ...................................................................... 85

Figure 5.10: The linear least-squares regression analysis is shown for the 8 November 
2011 earthquake. Two distance ranges, 50-1200 km (top) and all distances
(bottom), are illustrated, and the accompanying Mw, Method 1 mbLg, and 
Method 1 mLg( f ) are given ...................................................................... 86

xi



CHAPTER 1: Introduction

1.1 Purpose of Current Study

The mLg( f ) magnitude is an important regional magnitude scale because of the 

ease of its calculation and because the Lg phase is a prominent phase observed in 

eastern North America as a result of paths in the continental platform and the Canadian 

Shield. A variant of mLg( f ) employed by the National Earthquake Information Center 

(NEIC) of the United States Geological Survey (USGS) is mbLg, a magnitude scale that 

uses the Lg phase but does not explicitly include the frequency of the phase in the 

computation. 

Since the preferred magnitude scale of the NEIC is the moment magnitude MW, 

which is the basis for the ShakeMap and other products of the NEIC, determining 

associations between Mw and the NEIC mbLg and between Mw and mLg( f ) is extremely 

important.  Thus, the primary aims of the current study are (1) to understand the 

relationship between Mw  and mbLg and (2) to understand the relationship between      

mLg( f ) and Mw. Other objectives are (1) to model the relationships between MW and  

mbLg and between Mw and mLg( f ) using random vibration theory simulations in a way 

that addresses seismic source scaling and (2) to answer the question of whether a 

single-valued γ , a measure of anelastic attenuation, is appropriate for the central and 

eastern United States. 

1.2 Review of Literature
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Press and Ewing (1952) first identified two large-amplitude surface waves on 

seismograms from Palisades, New York. One of the surface waves had an onset period 

of 0.5 – 6 seconds, a group velocity of 3.44 – 3.58 km/s, and movement primarily in the 

vertical and transverse directions (Press and Ewing, 1952). Because the velocity was 

consistent with Love waves and appeared only for continental crustal paths, Press and 

Ewing (1952) labeled the waves Lg. Oliver and Ewing (1957, 1958) recognized that the 

Lg phase contains P-SV and SH motion. Ewing et al. (1957) noted that the efficient 

transmission of energy indicated a coherent waveguide and that a lateral length of as 

little as 220 km of oceanic crustal path could prevent the formation of the phase.

Subsequent investigators refined the characteristics of the Lg wave. Herrmann 

and Kijko (1983b) modeled the vertical motion of a World-Wide Standard Seismograph 

Network (WWSSN) short-period seismogram and showed that higher-mode Rayleigh 

waves accounted for the vertical motion. Kennett (1983, 1986) showed that synthetic 

seismograms from higher-mode surface waves, both Rayleigh and Love, matched 

observed seismograms well and that changes in the continental crustal thickness, 

especially decreasing the thickness, significantly attenuated or eliminated the phase. 

Using finite-difference modeling and normal-mode analysis, Zhang and Lay (1995) 

explained the absence of Lg waves in the oceanic crust as a result of fewer modes, in 

the frequency range 0.3 – 2 Hz, for a nominal 6 km thick oceanic crust; they also 

demonstrated that 15 km thick continental crust is typically sufficiently stable for the 

development of the Lg phase.

Nuttli (1973) defined a magnitude scale by associating an Lg amplitude, with a 
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frequency near 1 Hz observed on a WWSSN short-period seismograph, with an mb 

magnitude. The resulting magnitude was called mbLg:

mbLg = 3.75 + 0.90log10( Δ ) + log10(
A
T

) for 0.5˚ ≤ ∆ ≤ 4˚            (1.1)

mbLg = 3.30 + 1.66log10( Δ ) + log10 (
A
T

) for 4.0˚ ≤ ∆ ≤ 30˚          (1.2)

where ∆ is the epicentral distance in degrees, A is the instrument-corrected third-largest

zero-to-peak amplitude in μm, and T is the period in s. In addition to developing the mbLg

scale, Nuttli (1973) determined that γ , the coefficient of anelastic attenuation, had an 

average value of 0.0006 km-1 for the central United States.  

Because the original Nuttli (1973) definition of the mbLg was valid only for 1 Hz Lg 

waves recorded on a WWSSN short-period seismograph and because some 

seismologists noted potential problems with the definition, Herrmann and Kijko (1983a) 

revised the definition to account for the instrument-corrected amplitude at a given 

frequency, labeling the revised magnitude mLg( f ) to explicitly emphasize the frequency 

used. Further, they dropped the b subscript in order to avoid the implication that the   

mLg( f ) is equivalent to the teleseismic body wave magnitude. Herrmann and Kijko 

(1983a) defined mLg( f ) as

mLg ( f ) = 2.94 + 0.8333log10(
r

10
) + .4342γ r + log10 A    (1.3)

where f is the frequency in Hz, r is the epicentral distance in km, γ is the coefficient of 

anelastic attenuation in km-1, and A is the instrument-corrected ground amplitude in μm. 

For the central United States, Herrmann and Kijko (1983) used γ = 0.001f 0.7 .

3



Herrmann (1987) studied broadband magnitudes from Lg data and suggested 

that the mLg( f ) must be modified if the objective is to learn about source spectrum 

scaling:

mLg ( f )mod = mLg ( f ) + log10T
1
2                                      (1.4)

where the parameters are the same as in mLg( f ). The mLg( f )mod is expected to vary as 

logS( f ) where S( f ) is the source spectrum.

While devising an estimate of mb and yield for explosions using Lg waves, Nuttli 

(1986a, 1986b) measured Lg waves observed on WWSSN short-period seismograms in

the group velocity window of 3.2 to 3.6 km/s and found that the associated periods were

always between 0.7 and 1.3 s; he then defined an Lg magnitude of 5 as having 115 μm 

of motion for a seismograph 10 km away from the source. The NEIC currently employs 

a version of the Herrmann-Kijko mLg( f ) and calls its magnitude mbLg:

mbLg = 2.96 + 0.8333log10(
r

10
) + .4343 γ r + log10 A for 50 km ≤ r ≤ 1110 km      (1.5) 

where r is the epicentral distance in km, γ = 0.00063km−1 , and A is half the 

instrument-corrected third-largest peak-to-peak amplitude in μm as measured on a 

seismogram emulating the response of the WWSSN short-period instrument with group 

velocity in the range 3.2─3.6 km/s and periods 0.7─1.3 s (Magnitude WG, 2011). 

Aki (1966) defined the moment of an earthquake as the following:

M0 = μ AD                                                (1.6)

in which  μ is the shear modulus of the rock in dyne/cm2, A is the area of the rupture in 

cm2, D is the average displacement in cm, and M0 is the scalar seismic moment in dyne-
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cm. Hanks and Kanamori (1979) developed a magnitude scale in order to estimate 

radiated seismic energy and to avoid the saturation problems associated with other 

magnitudes. The moment magnitude Mw is related to M0 by the definition

Mw = 2
3

log10M0 − 10.7 .                                         (1.7)

Since the observed Lg wave is an ensemble of many ray paths through the crust,

its characteristics may be modeled by considering the statistics of random noise 

representing ground motion filtered by a seismograph. Cartwright and Longuet-Higgins 

(1956) studied the statistical distribution of the extrema of a function, applying the 

results to ocean waves. Iyengar and Iyengar (1969) modeled strong-motion 

accelerograms by multiplying a stationary process by a deterministic function and noted 

that certain characteristics, such as frequency of zero crossings, could be quantitatively 

found. Vanmarcke and Lai (1980) used random vibration theory to derive a relationship 

between the maximum acceleration and the root-mean-square acceleration, observing 

that random vibration theory is applicable to earthquake studies because strong ground 

motion can be modeled as a finite-duration, stationary, stochastic process. By 

examining acceleration time series, Hanks and McGuire (1981) confirmed that strong 

ground motion can be modeled as a finite-duration, stationary, stochastic process in the 

S-wave arrival window; they further developed a relationship between the root-mean-

square acceleration and the spectral corner frequency of acceleration. Boore (1983, 

2003) extended Cartwright and Longuet-Higgins's work to peak earthquake ground 

motions by incorporating seismic source and propagation and site effects. Boore (1983, 

2003) showed that random vibration theory could be used to quickly estimate peak 
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ground motion parameters consistent with more time consuming spectrally shaped 

white noise simulations. By predicting peak motions based on the moments of the 

frequency spectrum, random vibration theory is a convenient tool that closely matches 

characteristics from simulations (Boore 1983, 2003). Using synthetic seismograms, 

Herrmann (1985) demonstrated that, as epicentral distance increases, the signal 

duration of an earthquake also increases because of wave propagation effects; he 

suggested the following formula for signal duration:

T = 1
f c

+ .05 r                                               (1.8)

where T is the signal duration in s, fc is the corner frequency of the far-field S-wave 

displacement spectra in Hz, and r is the epicentral distance in km. 

In addition to random vibration theory, Boore (1983, 2003) used a stochastic 

method for time-domain simulations. He windowed and normalized white noise, 

multiplied the spectrum of the noise by a source spectrum, and transformed the 

resulting spectrum back to the time domain.

Assuming similarity between small and large earthquakes, Aki (1967) used an ω-

squared dislocation model in order to compare earthquakes having the same 

propagational paths but different surface wave magnitudes Ms; he determined that the 

corner frequencies for the various magnitudes lie on a straight line on a logarithmic plot.

Brune (1970, 1971) developed a spectral model for S-waves that gives relations among 

source duration, spectral corner frequency, seismic moment, source duration, and 

stress drop. Frankel (1996) used this source spectrum model to estimate peak motions 

for the national probabilistic seismic hazard maps. Using a stochastic model and a 
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source model with two corner frequencies, Atkinson and Boore (1995) developed 

ground-motion relations for eastern North America for various distances and 

frequencies.  
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CHAPTER 2: Method 1 Calculation of mbLg and mLg( f )

2.1 Empirical Dataset

The initial dataset is comprised of 42 United States earthquakes from the years 

2010 and 2011 with 3.01 ≤ Mw ≤ 5.65, with Mw determined at Saint Louis University from 

regional moment tensor inversion (Herrmann et al., 2011). The majority of earthquakes 

occurred in Oklahoma and Arkansas. The Virginia Mw = 5.65 on August 23, 2011, and 

the Oklahoma Mw = 5.59 on June 6, 2011, both included in the dataset, are the largest 

recorded in the eastern United States. The number of mLg magnitude estimates per 

earthquake varies from 4 to 661 for the earthquakes in the dataset. 

After an initial check on the signal-to-noise ratio for all earthquakes, 4 

earthquakes were excluded as having an insufficient number of acceptable 

observations with which to calculate the appropriate magnitudes. Thus, 38 earthquakes 

met the threshold criteria in order to calculate mbLg and mLg( f ) (Figure 2.1). For 19 of the

38 earthquakes, the USGS published mLg magnitudes, which are used to compare with 

those determined with our dataset.

2.2 Method 1 Calculation of mbLg for Central and Eastern US Earthquakes

The goal of Method 1 is to replicate NEIC's methodology in the calculation of its 

mbLg. The following procedure describes the magnitude-calculation steps for each 

earthquake  from its associated stations. To begin Method 1, ground velocity from each 

station, derived by deconvolving the original instrument response, is convolved with the 
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Figure 2.1. A map of the locations of the epicenters (yellow stars) of the 38 earthquakes
for which magnitudes were calculated. The stations (red dots) include every station that 
recorded motion from any of the earthquakes. The Method 1 calculation of magnitudes 
eliminated many seismograms, and thus only a subset of stations was used for any 
given earthquake.
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velocity response of the WWSSN short-period instrument in order to form the 

seismogram. Table 2.1 lists the parameters of the WWSSN short-period velocity 

response, and Figure 2.2 plots the velocity response. 

For each waveform, a signal-to-noise test eliminates those stations with 

insufficiently distinguishable signals. Frequencies between 0.12 and 0.25 Hz are 

rejected in order to eliminate microseisms that would affect our procedure for 

determining the Lg amplitudes. The last 100 seconds of the seismogram are cut and 

labeled as noise. The part of the seismogram in the group velocity window between 3.2 

and 3.6 km/s is labeled as signal. The positive peak amplitudes for both the noise and 

the signal are found. A trace is rejected if the peak signal amplitude is less than 3 times 

the peak noise amplitude.

 Next, the absolute value of the seismogram is taken to yield a rectified trace, 

from which all peaks are found. Because the computation of mbLg requires half the 

instrument-corrected peak-to-peak ground displacement, all peak-to-peak amplitudes 

are found by adding adjacent peaks of the rectified trace. The period is inferred as twice

the time between rectified peaks used, and the frequency is the inverse of the period. 

Given a tabulation of peak-to-peak amplitudes, the third-largest is identified.

If the frequency of the third-largest peak-to-peak amplitude is between 0.77 and 

1.43 Hz, the gain at that frequency is obtained from the WWSSN short-period 

displacement response; otherwise, the seismogram is rejected from further processing. 

Table 2.2 gives the parameters for the WWSSN short-period displacement response, 

and Figure 2.3 plots the response. For those seismograms containing third-largest 
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Table 2.1. The table lists the parameters for the WWSSN short-period velocity 
response.

CONSTANT 532.1425

ZEROS

0.000 0.000

0.000 0.000

POLES

-3.725 6.220

-3.725 -6.220

-5.612 0.000

-13.240 0.000

-21.080 0.000

Figure 2.2. The velocity response of the WWSSN short-period instrument. 
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Table 2.2. The table lists the parameters for the WWSSN short-period displacement 
response.

CONSTANT 532.1425

ZEROS

0.000 0.000

0.000 0.000

0.000 0.000

POLES

-3.725 6.220

-3.725 -6.220

-5.612 0.000

-13.240 0.000

-21.080 0.000

Figure 2.3. The displacement response of the WWSSN short-period instrument. The 
constant was adjusted so that the gain at 1 Hz is 1. Note that the displacement response

D ( f ) = ( i2π f )V ( f ) where V( f ) is the complex velocity response for the instrument.
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peak-to-peak amplitudes in the appropriate frequency range, half the third-largest peak-

to-peak amplitude is divided by the displacement gain at that frequency in order to 

compute the instrument-corrected ground displacement A in μm. The mbLg is then 

calculated for each station from the definition used by the NEIC

mbLg = 2.96 + 0.8333log10(
r

10
) + .4343γ r + log10 A for 50 km ≤ r ≤ 1200 km  (2.1)

where γ is set at 0.00063 km-1.. A 25% trimmed mean is employed in order to 

determine a single magnitude for an earthquake. In the 25% trimmed mean method, 

magnitude estimates are sorted in increasing order, and the top 25% and the bottom 

25% of values are cut. The remaining values each have equal weighting in the average.

See Figure 2.4 for a flowchart of the procedure for Method 1.

2.3 Method 1 Calculation of mLg( f )

The procedure for calculating mLg( f ) using Method 1 is the same as the 

procedure for calculating mbLg using Method 1 except for one difference: the frequency f 

is used to derive the coefficient of anelastic attenuation γ . The following formula is 

used for γ , as determined appropriate for the central United States by Herrmann and 

Kijko (1983a),

γ = 0.001 f 0.7 .     (2.2)
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Figure 2.4. Flowchart for Method 1 calculation of mbLg.
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2.4 Method 1 mbLg Results and Discussion

Figure 2.5  compares the Mw (SLU) versus Method 1 mbLg. The linear regression 

estimate of Mw (SLU) for a given Method 1 mbLg is

Mw = 0.60 + 0.81mbLg .    (2.3)

The slope error is 0.047, which is about 6% of the estimated slope from Equation (2.3), 

and the intercept error is 0.189, which is about 32% of the estimated intercept from 

Equation (2.3). The sample variance is 0.012, implying low variability and a relatively 

good fit for the linear estimate. The coefficient of determination r2 is 0.97, indicating that 

97% of the variation in the predicted Mw (SLU) is explained by a linear relationship 

between Method 1 mbLg and Mw (SLU). The red line in Figure 2.5 is the regression 

equation. The inner blue lines represent the 95% confidence interval on the regression 

line, and the outer blue lines represent the 95% prediction interval for new observations.

Although Equation (2.3) seems to closely fit the data, one caution in solely using  

Equation (2.3) for a Method 1 mbLg above 5 is the lack of data for larger values of mbLg. 

As described in Chapter 4, modeling suggests that the relationship between Method 1 

mbLg and Mw (SLU) is not linear. Thus, using Method 1 mbLg to predict Mw (SLU) for mbLg 

greater than 5.3 is unlikely to produce an accurate prediction for Mw (SLU).

For Method 1 mbLg between 3 and 5.3, though, Equation (2.3) produces useful 

results. The tight clustering of data points in the range Method 1 mbLg 3.2─3.8 causes 

the 95% confidence interval on the regression line to be the narrowest between those 

limits. Thus, especially in the reduced range, Equation (2.3) can be a valuable and valid 

predictor of Mw (SLU) from mbLg. 
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Figure 2.5. Regression analysis for Method 1 mbLg. The red line is the regression line, 
the inner blue lines are the confidence intervals, and the outer blue lines are the 
prediction intervals.  

16



 Figure 2.6 compares the regression analysis of Method 1 mbLg to the regression 

analysis for the published USGS mbLg. The linear regression estimate of Mw (SLU)

for a given NEIC mbLg is

Mw = 0.39 + 0.85mbLg .                                    (2.4)

The slope error is 0.076, which is about 9% of the estimated slope from Equation (2.4), 

and the intercept error is 0.324, which is about 83% of the estimated intercept from 

Equation (2.4). The sample variance is 0.017, which is not practically different than the 

Method 1 sample variance 0.012. The coefficient of determination r2 is 0.97, indicating 

that 97% of the variation in the predicted Mw (SLU) is explained by a linear relationship 

between the USGS mbLg and Mw (SLU). The red line in Figure 2.6 is the regression 

equation. The inner blue lines represent the 95% confidence interval on the regression 

line, and the outer blue lines represent the 95% prediction interval for new data.

Although Equations (2.3) and (2.4) both have r2 = 0.97, there are three 

primary reasons that Equation (2.3) may be more appropriate than Equation (2.4)

and, thus, to prefer Equation (2.3) over Equation (2.4). First, the regression 

analysis of Method 1 mbLg has twice the data points of the NEIC dataset, while at 

the same time containing all the earthquakes in the NEIC dataset. Second, 

nearly all of the additional earthquake magnitudes in the Method 1 dataset and 

not in the NEIC dataset are less than mbLg = 4.5, giving a narrower 95% 

confidence interval and a 95% prediction interval. Finally, the errors in the slope 

and particularly the intercept for the Method 1 mbLg regression are much smaller  
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Figure 2.6. A comparison of the regression analyses for Method 1 mbLg and the 
published data for the NEIC mbLg.
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than in the regression for the NEIC mbLg. 

The conclusion, then, is that Equation (2.3) is an accurate predictor of Mw 

(SLU) for a frequency-independent γ , even if, as subsequent sections show, a 

constant-valued γ is not strictly correct.

2.5 Method 1 mLg( f ) Results and Discussion

Figure 2.7 compares the Mw (SLU) versus Method 1 mLg( f ). The linear regression

estimate of Mw (SLU) for a given Method 1 mLg( f ) is

Mw = 0.68 + 0.78mLg ( f ) .    (2.5)

The slope error is 0.051, which is about 7% of the estimated slope from Equation (2.5), 

and the intercept error is 0.205, which is about 30% of the estimated intercept from 

Equation (2.5). The sample variance is 0.015, not practically different than Equations 

(2.3) and (2.4). The coefficient of determination r2 is 0.96, indicating that 96% of the 

variation in the predicted Mw (SLU) is explained by a linear relationship between Method

1 mLg( f ) and Mw (SLU). The red line in Figure 2.7 is the regression equation. The inner 

blue lines represent the 95% confidence interval on the regression line, and the outer 

blue lines represent the 95% prediction interval for new data. The Method 1 mbLg caveat 

about larger mbLg also applies to the Method 1 mLg( f ).

Figure 2.8 compares the regression analysis of Method 1 mLg( f ) against the 

regression analysis for the published NEIC mbLg. Even though Equations (2.4) and (2.5) 

are similar and have comparable coefficients of correlation, Method 1 mLg( f ) would be 

preferable to the NEIC mbLg if the actual γ is frequency dependent.
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Figure 2.7. Regression analysis for Method 1 mLg( f ). The red line is the regression line,
the inner blue lines are the confidence intervals, and the outer blue lines are the 
prediction intervals.
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Figure 2.8. A comparison of the regression analyses for Method 1 mLg( f ) and the 
published data for the NEIC mbLg.
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Equations (2.3), (2.4), and (2.5) give Mw (SLU) predictions within a few tenths of a

magnitude unit of one another, and all three equations have validity. Among the three 

equations, though, Equation (2.5) is still preferable because the frequency-dependent

γ incorporates some physics of the wave propagation. Future work may adjust the 

mLg( f ) formula in order to have γ contribute substantially more to the final magnitude 

calculation.

2.6 Comparisons of Method 1 mbLg, Method 1 mLg( f ), and published mbLg

Figure 2.9 compares the Method 1 mbLg versus the published NEIC mbLg for the 19

common events. The line indicates a 1-to-1 relationship if the Method 1 mbLg were equal 

to the published NEIC mbLg. The goal of Figure 2.9 is to determine whether the Method 1

mbLg methodology replicates the NEIC mbLg methodology. For the most part, the Method 

1 mbLg methodology actually replicates the NEIC mbLg methodology. For 16 of the 19 

common events, the calculated Method 1 mbLg and the NEIC mbLg are similar, and the 

remaining three events are within 0.5 magnitude units of one another. One important 

difference in the calculation of Method 1 mbLg compared to the NEIC mbLg is the number 

of stations used in the magnitude calculation: for most events, Method 1 has more 

stations in its magnitude calculation than the NEIC calculation.

Figure 2.10 compares the Method 1 mLg( f ) versus the published NEIC mbLg for 

the 19 common events. The reference line shows a 1-to-1 relationship.. Figures 2.10 is 

virtually the same as Figure 2.9. One implication is that γ does not substantially 

affect the final magnitude computation for this dataset. 

22



Figure 2.9. A plot of the Method 1 mbLg versus the published NEIC mbLg for the 19 
earthquakes common to both groups. A 1-to-1 reference line is shown.
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Figure 2.10. A plot of the Method 1 mLg( f ) versus the published NEIC mbLg for the 19 
earthquakes common to both groups. A 1-to-1 reference line is shown.
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Figure 2.11 compares the Method 1 mLg( f ) versus the Method 1 mbLg for all

38 earthquakes. The reference line shows a 1-to-1 relationship.  It is seen that the 

Method 1 mLg( f ) is larger than the Method 1 mbLg by 0.05 to 0.1 magnitude units for the 

same event and that there is a slight dependence on earthquake size. The offset in 

Figure 2.11 indicates that the Method 1 mLg( f ) is fundamentally different from the 

Method 1 mbLg.

2.7 Adjustments to the Method 1 Lg magnitude relationships

Figure 2.12 shows an attempt to fit the Mw (SLU) as a function of mbLg using a 

bilinear relationship. In fitting the data at smaller magnitudes, an expected slope of 2/3, 

based on source-scaling relations, is used as a guide in selecting the magnitude range. 

The slope used for larger magnitudes is compatible with the data and not well 

constrained by the modeling of Chapter 4. The equations are

Mw = 1.10 + 0.67mbLg for 2.0 < mbLg < 4.5    (2.6)

Mw = −0.15 + 0.95mbLg for 4.5 < mbLg < 7.0    (2.7)

where the breakpoint mbLg = 4.5 was chosen based on modeling (Chapter 4) and 

empirical iterations of a regression program.

Figure 2.13 shows an attempt to fit the Mw (SLU) as a function of mLg( f ) using a 

bilinear relationship. No expected slope or intercept is used as a guide for the 

regression equations; the data determine both. The equations are

Mw = 1.11 + 0.66mLg ( f ) for 2.0 < mLg( f ) < 4.5    (2.8)

Mw = −0.20 + 0.95mLg ( f ) for 4.5 < mLg( f ) < 7.0    (2.9)
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Figure 2.11. A plot of the Method 1 mbLg versus the Method 1 mLg( f ) for all 38 
earthquakes used in Method 1. A 1-to-1 reference line is shown.
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Figure 2.12. A regression graph of the Mw (SLU) versus the Method 1 mbLg based on a 
bilinear division. Modeling, described in Chapter 4, and empirical iterations of a 
regression program suggest that the regression line slope change at around mbLg = 4.5. 
For the regression line for smaller magnitudes, the slope is fixed at 2/3. For the 
regression line for larger magnitudes, the slope is determined by the data.
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Figure 2.13. A regression graph of the the Mw (SLU) versus the Method 1 mLg( f )   
based on a bilinear division. Modeling, described in Chapter 4, and empirical iterations 
of a regression program suggest that the regression line slope change at around mLg( f )
= 4.5.
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where the breakpoint mLg( f ) = 4.5 was chosen based on modeling (Chapter 4) and 

empirical iterations of a regression program.

Figures 2.14 and 2.15 show the Method 1 mbLg and mLg( f ), respectively, using 

half the maximum peak-to-peak amplitude rather than half the third-largest peak-to-peak

amplitude. One reason for creating Figures 2.14 and 2.15 is that determining the 

maximum peak-to-peak amplitude is easier than determining the third-largest peak-to-

peak amplitude. In addition, using the maximum peak-to-peak amplitude permits the 

use of random vibration theory in Chapter 4 to simulate the magnitude scaling with 

seismic moment and a direct comparison between the modeling relationships and 

Figures 2.14 and 2.15. 

Because the Method 1 mbLg and mLg( f ) using half the maximum peak-to-peak 

amplitude are equal to or greater than the Method 1 mbLg and mLg( f ) using half the third-

largest peak-to-peak amplitude, respectively, relating the corresponding magnitudes to 

one another is important. The equations are

( mbLg )max = ( mbLg )3rd + 0.11                                     (2.10)

( mLg ( f ) )max = ( mLg( f ) )3rd + 0.20                                 (2.11)

where the constant offsets are averages of the residuals. We will use the offsets 

in the Chapter 4 modeling.

2.8 Residuals for Method 1 mbLg and mLg( f ) 

Figure 2.16 plots the magnitude residuals as a function of distance from each 

individual earthquake for both Method 1 mbLg and mLg( f ). The mbLg residual plot is based
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Figure 2.14. A regression analysis of Method 1 mbLg in which the maximum peak-to-
peak amplitude, rather than the third-largest peak-to-peak amplitude, is used in the 
calculation of mbLg. 
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Figure 2.15. A regression analysis of Method 1 mLg( f ) in which the maximum peak-to-
peak amplitude, rather than the third-largest peak-to-peak amplitude, is used in the 
calculation of mLg( f ).

31



 

Figure 2.16. The Method 1 mbLg residuals for each individual earthquake are overlaid (top), and 
the standard deviation of those residuals is given. The Method 1 mLg( f ) residuals for each 
individual earthquake are overlaid (bottom), and the the standard deviation of those residuals is 
given.
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on γ fixed at 0.00063 km-1, and the mLg( f ) is plot is based on γ = 0.001 f0.7 for 

each station. The purposes of Figure 2.16 are to discern whether the magnitudes are 

empirically consistent within the magnitude's definition and to determine whether one 

magnitude is more reliable than the other. For the mLg( f ) residuals plot, even though

γ and f is neither constant across earthquakes nor within a single earthquake, the 

definition of mLg( f ) accounts for the frequency of the observed wave and allows a 

meaningful comparison of residuals. 

Figure 2.16 shows that the residuals are relatively symmetric about the zero line 

from 150 km to around 1300 km, suggesting that 150 km is the lower epicentral 

distance limit and that 1300 km is the upper epicentral distance limit for which the 

Method 1 mbLg and mLg( f ) should be calculated for these paths in North America.

In addition to Figures 2.5, 2.7, and 2.11, Figure 2.16 implies that there is no 

empirical preference for either the Method 1 mbLg or mLg( f ). Equations (2.3) and (2.5) 

both valuably estimate Mw (SLU), and Equations (2.6) and (2.8) are particularly useful 

for Method 1 mbLg  or mLg( f ), respectively, less than or equal to 4.5.   
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CHAPTER 3: Method 2 Calculation of mbLg and mLg( f )

3.1 Empirical Data Set

The initial dataset is comprised of 42 United States earthquakes from the years 

2010 and 2011 with 3.01 ≤ Mw ≤ 5.65, with Mw determined at Saint Louis University from 

regional moment tensor inversion (Herrmann et al., 2011). The majority of earthquakes 

occurred in Oklahoma and Arkansas. The Virginia Mw = 5.65 on August 23, 2011, and 

the Oklahoma Mw = 5.59 on June 6, 2011, both included in the dataset, are the largest 

recorded earthquakes in the eastern United States. The number of mLg magnitude 

estimates vary from 4 to 661 for the earthquakes in the dataset. 

After an initial check on the signal-to-noise ratio for all earthquakes, 7 

earthquakes were excluded for an insufficient number of acceptable observations with 

which to calculate the appropriate magnitudes. Thus, 35 earthquakes met the threshold 

criteria in order to calculate mbLg and mLg( f ) (Figure 3.1). For 19 of the 35 earthquakes, 

the USGS published mLg magnitudes, which are used to compare with those determined

with our dataset.

3.2 Method 2 Calculation of mbLg for Central and Eastern US Earthquakes

The goal of Method 2 is to estimate the NEIC mbLg without explicitly finding the 

third-largest peak-to-peak amplitude. The following procedure describes the magnitude-

calculation steps for each earthquake  from its associated stations. To begin Method 1, 

ground velocity from each station, derived by deconvolving the original instrument
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Figure 3.1. A map of the locations of the epicenters (yellow stars) of the 35 earthquakes
for which magnitudes were calculated. The stations (red dots) include every station that 
recorded motion from any of the earthquakes. The Method 2 calculation of magnitudes 
eliminated many seismograms, and thus only a subset of stations was used for any 
given earthquake.
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response, is convolved with the velocity response of the WWSSN short-period 

instrument in order to form the seismogram. Table 3.1 lists the parameters of the 

WWSSN short-period velocity response, and Figure 3.2 plots the velocity response. 

For each waveform, a signal-to-noise test eliminates those stations with 

insufficiently distinguishable signals. Frequencies between 0.12 and 0.25 Hz are 

rejected in order to eliminate microseisms. The last 100 seconds of the seismogram are 

cut and labeled as noise. The part of the seismogram in the group velocity window 

between 3.2 and 3.6 km/s is labeled as signal. The positive peak amplitudes for both 

the noise and the signal are found. A trace is rejected if the peak signal amplitude is less

than 3 times the peak noise amplitude.

 For those seismograms that are selected, the peak positive amplitude and the 

peak negative amplitude are found. An estimate of half the maximum peak-to-peak 

amplitude is

Az - p =
∣Ap∣ + ∣An∣

2
       (3.1)

where Ap is the maximum peak and An is the lowest trough. There is no requirement that

the Ap and An be measured from the same signal cycle. Since the calculation of the 

NEIC mbLg requires half the instrument-corrected third-largest peak-to-peak amplitude, a 

factor reduces Az-p for the estimation. The factor was determined by empirically 

ascertaining an approximate ratio between  Az-p and A:

A = 0.7 Az - p    (3.2)

where A is an estimate of half the third-largest instrument-corrected peak-to-peak 

amplitude..
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Table 3.1. The table lists the parameters for the WWSSN short-period velocity 
response.

CONSTANT 532.1425

ZEROS

0.000 0.000

0.000 0.000

POLES

-3.725 6.220

-3.725 -6.220

-5.612 0.000

-13.240 0.000

-21.080 0.000

Figure 3.2. The velocity response of the WWSSN short-period instrument. 

37



An estimate of the frequency is the frequency of zero crossings from spectral moments, 

described in Chapter 4. If the frequency of zero crossings is between 0.77 and 1.43 Hz, 

the seismogram proceeds; otherwise, the seismogram is rejected from further 

processing. For those seismograms containing an A in the appropriate frequency range,

the mbLg is then calculated for each station from

mbLg = 2.96 + 0.8333log10 (
r

10
) + .4343 γ r + log10 A for 50 km ≤ r ≤ 1110 km  (3.3)

where γ is set at 0.00063 km-1. A 25% trimmed mean is employed in order to 

determine a single magnitude for an earthquake. In the 25% trimmed mean method, 

magnitude estimates are sorted in increasing order, and the top 25% and the bottom 

25% of values are cut. The remaining values each have equal weighting in the average.

See figure 3.3 for a flowchart of the procedure for Method 2. 

3.3 Method 2 Calculation of mLg( f )

The procedure for calculating mLg( f ) using Method 2 is the same as the procedure for 

calculating mbLg using Method 2 except for one difference: the frequency f is used to 

derive the coefficient of anelastic attenuation γ . The following formula is used, as 

determined appropriate for the central United States by Herrmann and Kijko (1983a),

γ = 0.001 f 0.7 .        (3.4)
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Figure 3.3. Flowchart for Method 2 calculation of mbLg.
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3.4 Method 2 mbLg Results and Discussion

Figure 3.4 compares the regression analysis for Mw (SLU) versus Method 2 mbLg 

to the regression analysis for Mw (SLU) versus Method 1 mbLg. Rather than compare 

Method 2 to the published NEIC data, a comparison between Method 2 and Method 1 is

more pertinent because Method 1, as Figure 2.9 shows, adequately replicates the NEIC

procedure. In addition, the datasets of Methods 1 and 2 have more earthquakes in 

common than the datasets of Method 2 and the NEIC. The linear regression estimate of

Mw (SLU) for a given Method 2 mbLg is

Mw = 0.31 + 0.86mbLg .    (3.5)

The slope error is 0.067, which is about 8% of the estimated slope from Equation (3.5), 

and the intercept error is 0.279, which is about 90% of the estimated intercept from 

Equation (3.5). The sample variance is 0.02. The coefficient of determination r2 is 0.95, 

indicating that 95% of the variation in the predicted Mw (SLU) is explained by a linear 

relationship between Method 2 mbLg and Mw (SLU). The red line in Figure 3.4 is the 

regression equation. The inner blue lines represent the 95% confidence interval on the 

regression line, and the outer blue lines represent the 95% prediction interval for new 

observations.

The errors in the Method 2 mbLg regression analysis are larger than the errors in 

the Method 1 mbLg regression. However, Equation (3.5) produces Mw (SLU) predictions 

that are within 0.1 magnitude units of Equation (2.3) for lower mbLg and within .05 

magnitudes units at the larger mbLg. As an example, for Mw = 4 Equation (2.3) requires 

mbLg = 4.20 and Equation (3.5) requires mbLg = 4.29. Because data are sparse at larger 
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Figure 3.4. Regression analysis for the Method 2 mbLg compared against the regression 
analysis for the Method 1 mbLg. The red line is the regression line, the inner blue lines 
are the confidence intervals, and the outer blue lines are the prediction intervals.
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magnitudes, little weight should be placed on the predictive ability of Method 2 mbLg at 

those magnitudes. Thus, at the lower magnitudes, in the range in which the mbLg versus 

Mw (SLU) relation is the most important, Equation (2.3) is superior to Equation (3.5). 

3.5 Method 2 mLg( f ) Results and Discussion

Figure 3.5 compares the regression analysis for Mw (SLU) versus Method 2     mLg(

f ) against the regression analysis for Mw (SLU) versus Method 1 mbLg. The linear 

regression estimate of Mw (SLU) for a given Method 2 mLg( f ) is

Mw = 0.31 + 0.83mbLg .    (3.6)

The slope error is 0.073, which is about 9% of the estimated slope from Equation (3.6), 

and the intercept error is 0.311, which is about 100% of the estimated intercept from 

Equation (3.6). The sample variance is 0.025. The coefficient of determination r2 is 0.94,

indicating that 94% of the variation in the predicted Mw (SLU) is explained by a linear 

relationship between Method 2 mLg( f ) and Mw (SLU). The red line in Figure 3.5 is the 

regression equation. The inner blue lines represent the 95% confidence interval on the 

regression line, and the outer blue lines represent the 95% prediction interval for new 

data.

Compared to Equation (2.5), Equation (3.6) is inferior in predicting Mw (SLU) at 

the lower end magnitudes. One advantage of Method 2 mLg( f ) over Method 1 mLg( f ) 

might be the computation time, since Method 2 does not use the WWSSN short-period 

displacement response to ascertain the third-largest peak-to-peak amplitude. However, 

computing the frequency of zero crossings requires additional time, and the total 
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Figure 3.5. Regression analysis for Method 2 mLg( f ) compared against the regression 
analysis for Method 1 mLg( f ). The red line is the regression line, the inner blue lines are 
the confidence intervals, and the outer blue lines are the prediction intervals.
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computation time for both Methods 1 and 2 is similar. Thus, Method 2 mLg( f ) should not

be used if Method 1 mLg( f ) is feasible.

3.6 Comparisons of Method 1 mbLg, Method 1 mLg( f ), Method 2 mbLg, and 
Method 2 mLg( f )

Figure 3.6 compares the Method 2 mbLg versus the Method 1 mbLg for the 35 

common events. The reference line shows a 1-to-1 relationship. Figure 3.6 confirms that

the Method 2 mbLg is at least 0.1 magnitude units larger than the Method 1 mbLg for the 

smaller magnitudes and also shows a dependence on magnitude. The relationship 

provides further support for the use of the Method 1 mbLg over the simplified Method 2 

mbLg for smaller magnitudes.

Figures 3.7 compares the Method 2 mLg( f ) versus the Method 1 mLg( f ) for the 

35 common events. The reference line shows a 1-to-1 relationship. Figure 3.7 shows 

that nearly every Method 2 mLg( f ) is larger than the corresponding Method 1 mLg( f ). 

This noticeable disparity corroborates the use of Method 1 mLg( f ) over Method 2      

mLg( f ).

3.7 Adjustments to the Method 2 Lg magnitude relationships

Figure 3.8 shows an attempt to the fit the Mw (SLU) as a function of the Method 2 

mbLg using a bilinear relationship. In fitting the data at smaller magnitudes, an expected 

slope of 2/3 is used as a guide in selecting the magnitude range. The slope used for 

larger magnitudes is compatible with the data. The equations are

Mw = 1.02 + 0.67mbLg for 2.0 < mbLg < 4.3    (3.7)
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Figure 3.6. A plot of the Method 2 mbLg versus the Method 1 mbLg for the 35 earthquakes
common to both groups.
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Figure 3.7. A plot of the Method 2 mLg( f ) versus the Method 1 mLg( f ) for the 35 
earthquakes common to both groups.
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Figure 3.8. A regression graph of the Mw (SLU) versus the Method 2 mbLg based on a 
bilinear division. Modeling, described in Chapter 4, and empirical iterations of a 
regression program suggest that the regression line slope change at around mbLg = 4.3.
For the regression line for smaller magnitudes, the slope is fixed at 2/3. For the 
regression line for larger magnitudes, the slope is determined by the data.
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Mw = −0.04 + 0.93mbLg for 4.3 < mbLg < 7.0    (3.8)

where the breakpoint mbLg = 4.3 was chosen based on modeling (Chapter 4) and 

empirical iterations of a regression program.

Figure 3.9 shows an attempt to fit the Mw (SLU) as a function of mLg( f ) using a 

bilinear relationship. No expected slope or intercept is used as a guide for the 

regression equations; the data determine both. The equations are

Mw = 0.90 + 0.68mLg( f ) for 2.0 < mLg( f ) < 5.0    (3.9)

Mw = −0.16 + 0.92mLg ( f ) for 5.0 < mLg( f ) < 7.0              (3.10)

where the breakpoint mLg( f ) = 5.0 was chosen based on modeling (Chapter 4) and 

empirical iterations of a regression program.
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Figure 3.9. A regression graph of the Mw (SLU) versus the Method 2 mLg( f ) based on a 
bilinear division. Modeling, described in Chapter 4, and empirical iterations of a 
regression program suggest that the regression line slope change at around mLgi( f ) = 
4.4.
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CHAPTER 4: Modeling

Boore (1983) developed the primary components of the stochastic method for 

estimating peak earthquake ground motion parameters, and Boore (2003) improved the 

method to make the method compatible with other implementations. The description of 

the stochastic method and random vibration theory equations used in this thesis follow 

the development in Boore (2003). 

4.1 Stochastic Method 

The spectrum of ground motion can be represented as

A (M0 , r , f ) = E (M0 ,f )P ( r , f )G( f ), where                   (4.1)

E( M0, f ) is the source spectrum,
P( r, f ) describes the propagation effects,
G( f ) is a local site modification which can separated into an amplification term and a 
frequency-dependent attenuation term of the form (1 + (f / (fmax)8)-1/2 or e-πfκ,
M0 is the seismic moment in dyne-cm,
r is the epicentral distance in km, and
f is the frequency in Hz.

The source spectrum E( M0, f ) can be represented as

E ( M0 , f ) = CM0 S (M0 ,f ) , where                      (4.2)

C =
<Rθϕ>VF

4πρsβs
3 R0

S( M0, f ) is the displacement source spectrum,
<RθΦ> is the average radiation pattern,
V accounts for the partition of amplitude onto the horizontal components ,
F is the free surface effect, typically 2,
ρs is the density at the source in kg/km3,
βs is the S-wave velocity at the source in km/s, and
R0 is a reference distance, usually 1 km.
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The path effect P( r, f ) can be represented as 

P ( r , f ) = Z ( r )e
−π fr

Q( f )cQ ,  where                                    (4.3)

Z( r ) is a geometrical spreading function,
Q( f ) is the quality factor Q( f ) = Q0f η , and
cQ is the group velocity of the phase.

The site modification G( f ) is a factor that accounts for both amplification and 

attenuation due to the shallow structure beneath the observation point. Even though    

P( r, f ) might possibly incorporate the local site effects, having a separate term G( f ) 

allows modifications for particularly disparate conditions, such as loose sediments or a 

specific rock suite. 

If passed through an instrument, the spectrum of the recorded motion 

A (M0 , r , f ) = Y ( f ) I ( f ) , where                                (4.4)

Y( f ) accounts for the source spectrum and the site and propagation effects and
I( f ) is a filter function.

The filter function I( f ) can be used for generic ground motion or as the representation 

of a particular instrument. If used for ground motion parameters, 

I ( f ) = ( 2π fi )n , where                       (4.5)

n = 0, 1, and 2 are used for ground displacement, velocity or acceleration, respectively. 

In this study, I( f ) is the frequency representation of the WWSSN short-period 

instrument. 

4.2 Random Vibration Theory

Random vibration theory is the study of non-periodic, stochastic functions in 

order to predict peak motions, without having or requiring the ability to determine a 
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specific measurement at a specific time. Random vibration theory assumes a stationary 

process, and although seismic waves are nonstationary, random vibration theory 

satisfactorily predicts peak motions; thus, seismic waves can be modeled as stationary 

processes.

Given the spectrum of the observed signal and the duration, the following 

equations (Cartwright and Longuet-Higgins, 1956) are used to predict the peak motion 

of interest. The ratio of the peak motion to the root-mean-square is a function of the 

spectrum and duration:

 
amax

a rms

= ∫−∞

∞
{ 1−[1−ξe−z

2

]Ne }dz , where                        (4.6)

Nz is the number of zero crossings during the studied time frame,
Ne is the number of extrema during the same interval, and

ξ =
Nz

Ne

.

For sinusoidal motion N z = Ne , but otherwise Ne > Nz.

Nz ,e = 2f z ,e T                                                 (4.7)

The two frequencies f z , e are predominant frequencies given by the two equations:

f z = 1
2π

( m2/m0 )1/2 and                                      (4.8)

f e = 1
2π

( m4/m2 )1/2 .                                           (4.9)

The root-mean-square is given by

arms = ( m0/T )1/2 .                                           (4.10)

The mk in the above equations are various statistical moments calculated from the 

spectrum A( f )
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mk = ∫−∞

∞
( 2π f )k∣A2( f )∣df .                                   (4.11)

Note that the estimations of the Lg frequency used in the Method 2 mbLg and mLg( f ) 

computations of Chapter 3 were determined from Equation (4.8).

4.3 Models

For the stochastic method simulations and random vibration theory estimates, 3 

models were employed. Two of the models come from Frankel (1996) and the other 

model is from Atkinson and Boore (1995). Tables 4.1─4.3 give summaries of the 

models. The biggest differences among the models occur in the distance-dependent 

duration, site response, and number of corner frequencies. The model in Table 4.3 has 

five distance-dependent duration terms, and the models in Tables 4.1 and 4.2 only have

two. The model from Table 4.1 has seven site response terms, and the other two 

models have a maximum of two. Finally, the model in Table 4.3 assumes two corner 

frequencies for an earthquake waveform.

Tables 4.1 and 4.2 include a stress drop Δσ that is related to the corner 

frequency of the acceleration spectrum by

f c = 4.9(106 )βs (Δ σ/M0 )1 /3
where                          (4.12)

βs is the shear-wave velocity near the source in km/s,
Δσ is the stress drop in bars, and
M0  is the seismic moment in dyne-cm.

The geometrical spreading function Z( r ) in Tables 4.1─4.3 is
r−1 1 ⩽ r < 70 km

Z ( r ) = r0 70 ⩽ r < 130 km
r 1 130 km ⩽ r

where                     (4.13)
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r is the epicentral distance in km.

The ground-motion duration represented by the models in Tables 4.1 and 4.2 is 

the sum of 1/fc and a distance-dependent function based on a linear interpolation of the 

three segments shown in Tables 4.1 and 4.2. The ground-motion duration represented 

by the model in Table 4.3 is the sum of 0.5/fc and a distance-dependent function based 

on a linear interpolation of the five segments shown in Table 4.3.

The source spectra for Tables 4.1─4.3 include the displacement source spectra 

S( M0, f ). For the models represented by Tables 4.1 and 4.2, 

S ( M0 , f ) = 1
1 + ( f /f c )2                                      (4.14)

For the model represented by Table 4.3,

S ( M0 , f ) = 1−ϵ
1 + ( f /f a )2 + ϵ

1 + ( f / f b )2 where           (4.15)

ϵ is a dimensionless parameter,
fa is one corner frequency in Hz, and
fb is another corner frequency in Hz. 

4.4 Modeling mbLg versus Mw 

Figures 4.1─4.3 compare the Method 1 mbLg data points to the simualted mbLg 

versus Mw relationship for the models described in Tables 4.1─4.3. The colored curves 

in Figures 4.1─4.3 define the relationships among the magnitudes at three different 

distances. In order to derive the relationships between mbLg and Mw, the models use the 

instrument-corrected maximum zero-to-peak amplitude in the magnitude computations, 

while the Method 1 mbLg points use half the instrument-corrected third-largest peak-to-

peak amplitude. The adjustment given in (2.10) is not applied to the simulated mbLg.
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Table 4.1. Frankel et al. hard-rock model parameters. 
κ (s-1) 0.006

Qo and η 680      0.36

cQ (km/s) 3.6

 βs Source shear velocity (km/s) 3.6

ρs Source density (gm/cm3) 2.8

Distance-dependent duration 
Distance (km)                                                      Duration (s)

0.000 0.000

1000.00 50.000

Geometrical Spreading
Distance (km)                                                      Power

1.000 -1.000

70.000 0.000

130.000 -0.500

Site Response 
Frequency (Hz)                                                     Amplification

0.1000 1.000

0.4079 1.074

0.8524 1.120

1.6300 1.154

3.5600 1.177

7.0250 1.187

13.9500 1.193

fmax (Hz) 100.0

V, Partition of amplitude onto horizontal 
components

0.71

F, Free surface effect 2.00

<Rθφ>, Radiation 0.55

Δσ, Stress drop (bars) 150
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Table 4.2. Frankel et al. modified hard-rock model parameters. The modified hard-rock 
model contains a different site effect term.

κ  (s-1) 0.006

Q0 and η 680      0.36

cQ (km/s) 3.6

 βs, Source shear velocity (km/s) 3.6

ρs, Source density (gm/cm3) 2.8

Distance-dependent duration
Distance (km)                                                     Duration (s)

0.000 0.000

1000.00 50.000

Geometrical Spreading
Distance (km)                                                     Power

1.000 -1.000

70.000 0.000

130.000 -0.500

Site Response 
Frequency (Hz)                                                    Amplification

100.0 1.0

fmax (Hz) 100.0

V, Partition of amplitude onto horizontal 
components

0.71

F, Free surface effect 2.00

<Rθφ>, Radiation 0.55

Δσ, Stress drop (bars) 150
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Table 4.3. Atkinson and Boore model parameters. 
κ (s-1) 0.000

Q0 and η 680      0.36

cQ (km/s) 3.8

 βs, Source shear velocity (km/s) 3.8

ρs, Source density (gm/cm3) 2.8

Distance-dependent duration 
Distance (km)                                                      Duration (s)

0.000 0.000

10.00 0.000

70.00 9.600

130.00 7.800

1000.0 42.60

Geometrical Spreading
Distance (km)                                                      Power

1.000 -1.000

70.000 0.000

130.000 -0.500

Site Response
Frequency (Hz)                                                    Amplification

0.010 1.000

100.000 1.000

fmax (Hz) 100.0

V, partition of amplitude onto horizontal 
components

0.71

F, free surface effect 2.00

<Rθφ>,radiation 0.55

Mw Range logfa logfb log ϵ
Mw ≥ 4 2.41 − 0.533Mw 1.43 − 0.188Mw 2.52 − 0.637Mw

Mw < 4 2.678 − 0.5Mw 2.678 − 0.5Mw 0.0
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Figure 4.1. The Method 1 mbLg data points lie over the mbLg versus Mw relationship 
derived from the Frankel hard-rock model. The green, red, and black curves give the 
relationships between mbLg and Mw for different constant epicentral distances. The model
uses the instrument-corrected maximum zero-to-peak amplitude, while the Method 1 
mbLg points use half the instrument-corrected third-largest peak-to-peak amplitude.
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Figure 4.2. The Method 1 mbLg data points lie over the mbLg versus Mw relationship 
derived from the Frankel modified hard-rock model. The green, red, and black curves 
give the relationships between mbLg and Mw for different constant epicentral distances. 
The model uses the instrument-corrected maximum zero-to-peak amplitude, while the 
Method 1 mbLg points use half the instrument-corrected third-largest peak-to-peak 
amplitude.
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Figure 4.3. The Method 1 mbLg data points lie over the mbLg versus Mw relationship 
derived from the Atkinson-Boore model. The green, red, and black curves give the 
relationships between mbLg and Mw for different constant epicentral distances. The model
uses the instrument-corrected maximum zero-to-peak amplitude, while the Method 1 
mbLg points use half the instrument-corrected third-largest peak-to-peak amplitude.
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A conspicuous feature of Figures 4.1─4.3 is the effect of distance on the 

relationship between mbLg and Mw. For the primary mbLg range of interest, mbLg less than 

5.0, an Mw prediction can vary by up 0.5 magnitude units depending upon the distance 

curve. In addition, the general trend is that an mbLg observed at 50 km produces a 

smaller Mw prediction than the same mbLg observed at 1200 km. The distance effect on 

the relationship between mbLg and Mw suggests that computing a composite mbLg based 

on a 25% trimmed mean may be problematic to model. A possible solution to this 

problem is binning mbLg by distance and then computing an average for each bin; 

however, for the solution to be feasible, sufficient station coverage at several epicentral 

distances is necessary. The distinguishing feature of the three ground motion models, 

which are based on measured ground motion, is that γ = πf/cqQ( f ) is not 

independent of frequency.

4.5 Modeling mLg( f ) versus Mw

Figures 4.4─4.6 compare the observed Method 1 mLg( f ) data points to the 

simulated mLg( f ) versus Mw relationship for the different models described in Tables 

4.1─4.3. The colored curves in Figures 4.4─4.6 define the relationships among the 

magnitudes for three different distances. In order to derive the relationships between 

mLg( f ) and Mw, the models use the instrument-corrected maximum zero-to-peak 

amplitude in the magnitude computations, while the Method 1 mbLg points use half the 

instrument-corrected third-largest peak-to-peak amplitude. 

There are two conspicuous features of Figures 4.4─4.6, especially compared to 
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Figure 4.4. The Method 1 mLg( f ) data points lie over the mLg( f ) versus Mw relationship 
derived from the Frankel hard-rock model. The green, red, and black curves give the 
relationship between mLg( f ) and Mw for different constant epicentral distances. The 
model uses the instrument-corrected maximum zero-to-peak amplitude, while the 
Method 1 mLg( f ) points use half the instrument-corrected third-largest peak-to-peak 
amplitude.
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Figure 4.5. The Method 1 mLg( f ) data points lie over the mLg( f ) versus Mw relationship 
derived from the modified Frankel hard-rock model. The green, red, and black curves 
give the relationship between mLg( f ) and Mw for different constant epicentral distances. 
The model uses the instrument-corrected maximum zero-to-peak amplitude, while the 
Method 1 mLg( f ) points use half the instrument-corrected third-largest peak-to-peak 
amplitude.
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Figure 4.6. The Method 1 mLg( f ) data points lie over the mLg( f ) versus Mw relationship 
derived from the Atkinson-Boore model. The green, red, and black curves give the 
relationships between mLg( f ) and Mw for different constant epicentral distances. The 
model uses the instrument-corrected maximum zero-to-peak amplitude, while the 
Method 1 mLg( f ) points use half the instrument-corrected third-largest peak-to-peak 
amplitude.
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Figures 4.1─4.3. First, the distance effect is less for smaller magnitudes; the difference 

in magnitude can be up to 0.2 magnitudes units depending on the mLg( f ) observed at a 

distance, which is compatible with the empirical offset given in Equation (2.11). Second, 

there is an mLg( f ), between about 5.0 and 6.0, at which an mLg( f ) observed at 50 km 

predicts a larger Mw than the same mLg( f ) observed at 1200 km.  

These two features suggest that computing a composite mLg( f ) using 

observations at various distances for smaller events is not as problematic as for mbLg. A 

further implication is that predicting an Mw for larger mLg( f ) is more prone to error, 

because a small error in mLg( f ) corresponds to a large error in Mw. Finally, other than 

the obvious bias between predicted and observed mLg( f ), this exercise shows a great 

stability in the relation to Mw: for small magnitudes, Mw ~ (2/3)mLg( f ) and for larger 

magnitudes Mw ~ (3/2)mLg( f )

4.6 Modeling a modified mbLg versus Mw

Figures 4.7─4.9 are similar to Figures 4.1─4.3 except that the Method 1 mbLg 

data points in Figures 4.7─4.9 use half the instrument-corrected maximum peak-to-peak

amplitude rather than the instrument-corrected third-largest peak-to-peak amplitude. 

The modified Method 1 (mbLg)peak is in better agreement with the models than the regular 

Method 1 mbLg. The better agreement suggests that mbLg can be simulated using random

vibration theory if a correction factor is applied to convert from instrument-corrected 

maximum zero-to-peak amplitude to half the instrument-corrected third-largest peak-to-

peak amplitude. Thus, the simulations can be used to learn more about the expected 
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Figure 4.7. The Method 1 mbLg data points lie over the mbLg versus Mw relationship 
derived from the Frankel hard-rock model. The green, red, and black curves give the 
relationships between mbLg and Mw for different constant epicentral distances. The model
uses the instrument-corrected maximum zero-to-peak amplitude, while the Method 1 
mbLg points use half the instrument-corrected maximum peak-to-peak amplitude.
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Figure 4.8. The Method 1 mbLg data points lie over the mbLg versus Mw relationship 
derived from the modified Frankel hard-rock model. The green, red, and black curves 
give the relationships between mbLg and Mw for different constant epicentral distances. 
The model uses the instrument-corrected maximum peak-to-peak amplitude, while the 
Method 1 mbLg points use half the instrument-corrected maximum peak-to-peak 
amplitude.
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Figure 4.9. The Method 1 mbLg data points lie over the mbLg versus Mw relationship 
derived from the Atkinson-Boore model. The green, red, and black curves give the 
relationships between mbLg and Mw for different constant epicentral distances. The model
uses the instrument-corrected maximum zero-to-peak amplitude, while the Method 1 
mbLg points use half the instrument-corrected maximum peak-to-peak amplitude.
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relation between Mw and mbLg, which was used to constrain the regressions leading to 

Equations (2.6), (2.7), (2.8), and (2.9).

4.7 Modeling a modified mLg( f ) versus Mw

Figures 4.10─4.12 are similar to Figures 4.4─4.6 except that the Method 1      mLg(

f ) data points in Figures 4.10─4.12 use half the instrument-corrected maximum peak-

to-peak amplitude. The modified Method 1 mLg( f ) is in better agreement with the 

models than the regular Method 1 mLg(  f ) . The better agreement suggests that mLg( f ) 

can be simulated using random vibration theory if a correction factor is applied to 

convert from instrument-corrected maximum zero-to-peak amplitude to half the 

instrument-corrected third-largest peak-to-peak amplitude. 
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Figure 4.10. The Method 1 mLg( f ) data points lie over the mLg( f ) versus Mw 
relationship derived from the modified Frankel hard-rock model. The green, red, and 
black curves give the relationships between mLg( f ) and Mw for different constant 
epicentral distances. The model uses the instrument-corrected maximum zero-to-peak 
amplitude, while the Method 1 mLg( f ) points use half the instrument-corrected maximum
peak-to-peak amplitude.
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Figure 4.11. The Method 1 mLg( f ) data points lie over the mLg( f ) versus Mw relationship
derived from the Frankel hard-rock model. The green, red, and black curves give the 
relationships between mLg( f ) and Mw for different constant epicentral distances. The 
model uses the instrument-corrected maximum zero-to-peak amplitude, and the Method
1 mLg( f ) points use half the instrument-corrected maximum peak-to-peak amplitude.
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Figure 4.12. The Method 1 mLg( f ) data points lie over the mLg( f ) versus Mw 
relationship derived from the Atkinson-Boore model. The green, red, and black curves 
give the relationships between mLg( f ) and Mw for different constant epicentral distances.
The model uses the instrument-corrected maximum zero-to-peak amplitude, while the 
Method 1 mLg( f ) points use half the instrument-corrected maximum peak-to-peak 
amplitude.
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CHAPTER 5: An Examination of γ

5.1 Model for Ground Motion

For a spherical Earth with a point source, the peak amplitudes of Lg waves for 

the Airy phase can be modeled as

A (Δ ) = C1Δ
−1 /3( sinΔ )−1/2e−γ Δ , where             (5.1)

C1 is a constant, ∆ is the distance in degrees, and γ is the coefficient of anelastic 

attenuation (Ewing et al., 1957). The relation between γ and the quality factor Q is

γ = π f
cQQ( f )

, where       (5.2)

f is the frequency in Hz and cQ is the group velocity used to determine Q in km/s (Nuttli, 

1973). 

When the Earth can be modeled as being flat, as is appropriate for regional 

distances, the model for peak amplitudes simplifies. The simplified model for peak 

vertical ground amplitude on a short-period instrument as a function of epicentral 

distance at regional distances is 

A ( r ) = C2 r−ζ e−γ r , where               (5.3)

A is peak ground displacement, C2 is a constant related to the source, r is epicentral 

distance in km, ζ is the geometrical spreading factor, and γ is the coefficient of 

anelastic attenuation in km-1 (Yang, 2002). For the Airy phase, an appropriate value for

ζ is 5/6, and the model uses that value. Because mbLg and mLg( f ) use half the third-

largest peak-to-peak amplitude, those are the values that are modeled.
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Linear least-squares regression derives values of γ for the 10 earthquakes 

with the most observations. For those 10 earthquakes, the Method 1 amplitudes that 

passed the earlier signal-to-noise test are used in the regression. In order to linearize 

the model, the natural logarithm of each side is taken and the terms are rearranged. 

The resulting form is

Y ' = B + (−γ ) r , where                               (5.4)

Y ' = ln ( A ) + 0.8333ln( r ) and
B = ln( C1 ) .

5.2 Results and Discussion

Table 5.1 gives the Mw, Method 1 mbLg, Method 1 mLg( f ), and the associated γ

values for the 10 earthquakes with the most observations. Two different γ values are 

computed for each earthquake, one based on data from distances between 50 and 

1200 km and the other based on data from all distances. 

Table 5.1 shows that half of the listed earthquakes have negative γ values 

between 50 and 1200 km. Because the linear least-squares regression cannot 

simultaneously determine the best fits for geometrical spreading and γ ,  an assumed 

geometrical spreading value is required for the γ determination. Thus, one 

interpretation of a negative γ value is that the assumed geometrical spreading in the 

model is too large, because amplitudes typically decrease with distance and both 

geometrical spreading and anelastic attenuation usually contribute to the observed 

decrease.

Another interpretation of a negative γ is that over the given distance range the 
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Table 5.1. Earthquake dates, Mw, Method 1 mbLg, Method 1 mLg( f ), and associated 
coefficients of anelastic attenuation. The last 2 columns gives coefficients of anelastic 
attenuation for different distance ranges.
 

Date Mw mbLg mLg( f ) γ (km-1)
50-1200 km

γ (km-1)
All distances

15 January 2010 3.81 4.02 4.06 -0.00061 0.00008

27 February 2010 4.15 4.41 4.42 0.00023 0.00085

13 October 2010 4.33 4.74 4.75 0.00026 0.00099

20 November 2010 3.87 4.15 4.29 0.00030 0.00057

24 November 2010 3.93 4.22 4.24 -0.00020 0.00040

18 February 2011 4.07 4.35 4.44 -0.00014 0.00009

28 February 2011 4.65 5.08 5.12 -0.00010 0.00084

5 November 2011 4.70 5.23 5.23 0.00007 0.00130

6 November 2011 5.59 5.74 5.74 0.00031 0.00150

8 November 2011 4.83 5.27 5.29 -0.00042 0.00118
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anelastic attenuation term in the amplitude model in fact contributes to an increase in 

amplitude rather than a decrease. For these 5 earthquakes, there are reasons to 

believe that the assumed geometrical spreading is sufficient and that the apparent 

negative γ values are correct. Since the earthquakes occurred in Oklahoma and 

Arkansas, stations located along southern propagational paths near the Gulf Coast may

have higher amplitudes because of amplification through the increasing thickness of 

sediments. The γ values in Table 5.1 are averages of all appropriate amplitudes from 

all propagational paths, so there is the possibility that stations in southern propagational

paths contribute to negative γ values while propagational paths in all other directions 

exhibit the usual decrease in amplitude with distance and thus contribute to positive γ

values. 

Table 5.1 also indicates that, when all appropriate amplitudes at all distances are 

used, the γ values are positive. Even after accounting for all distances, though, the

γ values range from 0.0008 to 0.00150 km-1
. The calculated values for γ for 50 to 

1200 km and for all distances suggest that a single-valued γ for the central and 

eastern United States may not be appropriate. 

Figures 5.1─5.10 show the regression analyses for the 10 earthquakes with the 

most observations. One prominent feature of several of the figures is the bifurcation of 

the dependent variable as distance increases. Figure 5.3 may show a bifurcation of     

ln( A ) + (5/6)ln( r ) beyond 1600  km. While the possible upper branch rises slowly with 

distance relative to the regression line, the possible lower branch decreases rapidly with

distance relative to the regression line. The propagational paths of the waves, especially
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Figure 5.1. The linear least-squares regression analysis is shown for the 15 January 2010 
earthquake. Two distance ranges, 50-1200 km (top) and all distances (bottom), are illustrated, 
and the accompanying Mw, Method 1 mbLg, and Method 1 mLg( f ) are given.
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Figure 5.2. The linear least-squares regression analysis is shown for the 27 February 2010 
earthquake. Two distance ranges, 50-1200 km (top) and all distances (bottom), are illustrated, 
and the accompanying Mw, Method 1 mbLg, and Method 1 mLg( f ) are given.
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Figure 5.3. The linear least-squares regression analysis is shown for the 13 October 2010 
earthquake. Two distance ranges, 50-1200 km (top) and all distances (bottom), are illustrated, 
and the accompanying Mw, Method 1 mbLg, and Method 1 mLg( f ) are given.
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Figure 5.4. The linear least-squares regression analysis is shown for the 20 November 2010 
earthquake. Two distance ranges, 50-1200 km (top) and all distances (bottom), are illustrated, 
and the accompanying Mw, Method 1 mbLg, and Method 1 mLg( f ) are given.
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Figure 5.5. The linear least-squares regression analysis is shown for the 24 November 2010 
earthquake. Two distance ranges, 50-1200 km (top) and all distances (bottom), are illustrated, 
and the accompanying Mw, Method 1 mbLg, and Method 1 mLg( f ) are given.
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Figure 5.6. The linear least-squares regression analysis is shown for the 18 February 2011 
earthquake. Two distance ranges, 50-1200 km (top) and all distances (bottom), are illustrated, 
and the accompanying Mw, Method 1 mbLg, and Method 1 mLg( f ) are given.
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Figure 5.7. The linear least-squares regression analysis is shown for the 28 February 2011 
earthquake. Two distance ranges, 50-1200 km (top) and all distances (bottom), are illustrated, 
and the accompanying Mw, Method 1 mbLg, and Method 1 mLg( f ) are given.
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Figure 5.8. The linear least-squares regression analysis is shown for the 6 November 
2011earthquake. Two distance ranges, 50-1200 km (top) and all distances (bottom), are 
illustrated, and the accompanying Mw, Method 1 mbLg, and Method 1 mLg( f ) are given.
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Figure 5.9. The linear least-squares regression analysis is shown for the 5 November 2011 
earthquake. Two distance ranges, 50-1200 km (top) and all distances (bottom), are illustrated, 
and the accompanying Mw, Method 1 mbLg, and Method 1 mLg( f ) are given.
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Figure 5.10. The linear least-squares regression analysis is shown for the 8 November 2011 
earthquake. Two distance ranges, 50-1200 km (top) and all distances (bottom), are illustrated, 
and the accompanying Mw, Method 1 mbLg, and Method 1 mLg( f ) are given.
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to the south, and any particular site effects may explain the possible bifurcation. Figures

5.8─5.10 show distinctive spreading of ln( A) + (5/6).8333ln( r ) beyond 1500 km. For 

these earthquakes, the propagational paths surely affect the bifurcation. Figure 5.7 for 

an Arkansas earthquake is the most interesting figure, because there are two instances 

of bifurcation. One bifurcation seems to occur from 600 to 1200 km, and the other 

bifurcation occurs beyond 1800 km. 

Figures 5.1─5.10 corroborate the use of mbLg and mLg( f ) for a limited distance 

range, but those figures may suggest that the upper limit on epicentral distance could 

be greater than 1200 km. 
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CHAPTER 6: Summary and Conclusions

This thesis studies the relationships between mbLg and Mw and between mLg( f ) 

and Mw by using two different methods for recent United States earthquakes and by 

modeling the relationships with random vibration theory. Method 1 attempts to replicate 

the NEIC methodology in its computation of mbLg. Method 2 attempts to estimate the 

NEIC computations by using a proxy for the frequency of the Lg wave and by employing

an empirical relation to obtain an estimate of half the instrument-corrected third-largest 

peak-to-peak amplitude. Random vibration theory predicts peak motion and the 

frequency of zero crossings through the computation of various moments in Method 2.

Based on the empirical work from Chapters 2 and 3 and the simulations from 

Chapter 4, either Equations (2.4)(mbLg) and (2.5)(mLg( f )) or Equations (2.6)          

(bilinear mbLg) and (2.8)(bilinear mLg( f )) can be used to stably predict Mw for mbLg or   

mLg( f ) equal to or less than 4.5. This predictive ability allows an estimate of Mw for 

earthquakes for which independent Mw from moment tensor inversion is not possible. 

For mbLg or mLg( f ) between 4.5 and 5.5, the modeling from Chapter 4 supports a 

judicious use of the bilinear equations, Equations (2.6) and (2.8), if other estimates of 

Mw are not possible. For mbLg or mLg( f ) greater than 5.5, the modeling from Chapter 4 

cautions against the use of any of the regression equations, because a small error in 

mbLg or mLg( f ) produces a large error in the Mw estimate.  

The empirical work from Chapters 2 and 3 does not support a preference for 

either mbLg or mLg( f ) as a predictor of Mw, as long as the definitions of the respective 
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magnitudes are followed closely. In addition, Figure 2.16 suggests that the distance 

range over which mbLg and mLg( f ) can be calculated is 150─1350 km rather than the 

approximate 50─1100 km range used by the NEIC. However, if γ is frequency-

dependent, as Chapter 5 suggests, then the simulations from Chapter 4 support the use

of mLg( f ) over mbLg. The simulations permit an understanding of Mw versus mLg( f ) as a 

function of earthquake size, without placing nearly as much significance on the distance

of the observation as mbLg does.

Modeling relationships between mbLg and Mw and between mLg( f ) and Mw leads 

to two conclusions. First, mbLg and mLg( f ) averages calculated within certain distance 

bins may lead to better theoretical relationships and allow better predictions. Second, 

the use of a correction factor between half the instrument-corrected maximum peak-to-

peak amplitude and half the instrument-corrected third-largest amplitude for the 

computations of mbLg and mLg( f ) may contribute to better modeling and understanding 

of the Lg magnitudes. Equations (2.10) and (2.11) relate (mbLg)max to (mbLg)3rd and       

(mLg( f ))max to (mLg( f ))3rd, respectively.

Examining the coefficient of anelastic attenuation γ shows that a single-valued

γ is probably inappropriate for the central and eastern United States. Instead, the 

empirically determined γ varies widely depending on the region and the size of the 

earthquake (only an empirical observation because of the different frequencies of a 

large earthquake versus a smaller earthquake), the distance of observations, and the 

propagational path of the waves. A frequency-dependent γ , even though its 

contribution to the magnitude computation is minimal, is a better parameter. The 
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investigation of a frequency-dependent γ emphasizes the need for further study of 

amplitude modeling and attenuation in the central and eastern United States if the 

purpose is to predict amplitudes as a function of earthquake magnitude.

This investigation recommends the following modifications to the NEIC procedure

so that mbLg can be used to robustly estimate Mw:

1) Use observations in the 150─1350 km range rather than the approximate 

     50─1200 km epicentral range.

2) Use Equations (2.6) and (2.7) to estimate Mw

3) Do not attempt to estimate Mw if mbLg is greater than 5.3.
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