THE DISTANCE DUE TO A LINE SOURCE IN A
INFINITELY LARGE, EARTHY MEDIUM.

(10 October 1948)

R. F. G. LAVWOOD, Professor of Geodesy and Geophysics, University of Liverpool.

THE DISTANCE DUE TO A LINE SOURCE IN A
INFINITELY LARGE, EARTHY MEDIUM.

W. N. DAVY, F. R. ASHBY, AND W. J. MEREDITH

REFERENCES

(Alch.)

[63]
A LINE SOURCE IN A SEMI-INFINITE ELASTIC MEDIUM

E. A. LAPWOOD ON THE DISTANCE DUE TO
We next consider a function which will represent a wave traveling towards the source.

The equation for motion of a point of a medium due to a point source is given by

\[\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \]

where \(c \) is the wave speed and \(u \) is the displacement of the medium at a point \((x, t) \).

The solution to this equation for a point source is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(P \) is the source strength, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

2. Equations of Motion - Boundary Conditions and Displacement Potentials

We shall use the following coordinates obtained by integrating particular values of \(u \) in

\[\frac{\partial u}{\partial x} = A \text{ given by (7.4)} \]

where \(A \) is the amplitude of the wave.

The solution to this equation for a point source is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.

The solution to the problem of motion of a point in the medium is given by

\[u(x, t) = \frac{P}{4\pi ct} \frac{1}{r} \exp(-\frac{r}{c}) \]

where \(c \) is the wave speed, \(r = \sqrt{x^2 + t^2} \), and \(\exp(x) \) is the exponential function.
In a line source in a semi-infinite elastic medium, the displacement due to a point load at a distance r from the source is given by

$u(r) = \frac{P}{4\pi \rho c^2} \int_0^r \frac{x}{(r^2 + x^2)^{3/2}} dx$,

where P is the point load, ρ is the density, and c is the wave speed.

If the source is at $x=0$, the solution for $u(x)$ is

$u(x) = \frac{P}{4\pi \rho c^2} \int_0^x \frac{x}{(x^2 + x^2)^{3/2}} dx$.

When the line source is a point source in a semi-infinite elastic medium, the displacement is

$u(x) = \frac{P}{4\pi \rho c^2} \int_0^x \frac{x}{(x^2 + x^2)^{3/2}} dx$.

The displacement due to a force P at a distance r from the source is

$u(r) = \frac{P}{4\pi \rho c^2} \int_0^r \frac{x}{(r^2 + x^2)^{3/2}} dx$.

In the case of a line source in a semi-infinite elastic medium, the displacement is

$u(x) = \frac{P}{4\pi \rho c^2} \int_0^x \frac{x}{(x^2 + x^2)^{3/2}} dx$.

When the line source is a point source in a semi-infinite elastic medium, the displacement is

$u(x) = \frac{P}{4\pi \rho c^2} \int_0^x \frac{x}{(x^2 + x^2)^{3/2}} dx$.

\[
\frac{\partial}{\partial t} \left(\rho \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\rho \frac{\partial \phi}{\partial y} \right) = \frac{\partial}{\partial x} \left(\mu \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial \phi}{\partial y} \right) = 0
\]

\[
F(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x', y') \delta(x-x') \delta(y-y') dx' dy'
\]
A LINE SOURCE IN A SEMI-INFINITE ELASTIC MEDIUM.

\[
\begin{align*}
(\phi - 4) & \quad \frac{\partial^2 \phi}{\partial r^2} + \frac{2}{r} \frac{\partial \phi}{\partial r} + \frac{\partial^2 \phi}{\partial z^2} = 0 \\
(\phi - 4) & \quad \frac{\partial^2 \phi}{\partial r^2} + \frac{2}{r} \frac{\partial \phi}{\partial r} + \frac{\partial^2 \phi}{\partial z^2} = 0
\end{align*}
\]

From the initial conditions, we have:

\[
\phi(0, z) = 0 \quad \text{and} \quad \frac{\partial \phi}{\partial r}(0, z) = 0
\]

The solution to the diffusion equation for a line source in a semi-infinite elastic medium is given by the Green's function approach. The Green's function for a line source in an infinite medium is:

\[
G(r, z; r', z') = \frac{1}{4\pi} \exp \left\{ \frac{r^2 + z^2}{4\epsilon} \right\}
\]

where \(\epsilon \) is the shear modulus of the medium.

The Green's function approach allows us to solve for the stress and displacement fields due to a line source in an infinite medium.

6. POINTS OF INTERSECTION OF THE BLAZE SURFACE.

E. LAPWOOD ON THE DISTANCE DUE TO...
10. Evaluation of Integrals for Real x

They may differ in the accuracy of approximation obtained by the complex methods should it result in additional saving in time and effort. However, the complex methods are not always suitable for the evaluation of integrals. It is often more practical to resort to tabulated values or to approximate methods. In some cases, it may be necessary to evaluate a definite integral by numerical methods such as the trapezoidal rule or Simpson's rule. In general, the choice of method depends on the specific requirements and constraints of the problem.

An interesting aspect of the integrals evaluated in this section is their connection to the error function, which is defined as:

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt.$$

The error function plays a significant role in various fields of science and engineering, especially in probability and statistics, where it is used to evaluate probabilities in the normal distribution. It is also used in the solution of differential equations and in the study of wave propagation.
The image contains a page of text with mathematical expressions and diagrams. The text appears to be a continuation of a scientific or mathematical discussion, possibly related to the derivation or explanation of a formula or theorem. The page includes graphs and equations, suggesting a detailed explanation or proof of a concept. The text is dense with mathematical symbols, indicating a technical or academic context. Without further context, the specific content or the field of study cannot be accurately determined from the image alone.
$$\sum_{i=1}^{\infty} \frac{x^n}{(2i-1)^2} = \frac{\pi^2}{6} \left[\log(1+x) \right]$$

where \((2i-1)^2 \) is the square of the source point.

On squares opposite the source point would be:

$$\left(\frac{H^2}{\varepsilon} \right)^\prime - \left(\frac{\Phi}{\varepsilon} \right)^\prime = 0$$

and hence the dimension of the source, in the position case:

$$\sum_{i=1}^{\infty} \frac{x^n}{(2i-1)^2} = \frac{\pi^2}{6} \left[\log(1+x) \right]$$

We shall also the additional symbols \(H, \Phi \) defined by:

$$\Phi = x^2 - (\gamma x - (1 - \gamma z) + 2)$$

and

$$\Phi = x^2 - (\gamma x - (1 - \gamma z) + 2)$$

on the boundary:

$$\Phi = x^2 - (\gamma x - (1 - \gamma z) + 2)$$

Since we are taking the positive logarithm for the expression to vary much nearer the remainder

$$\sum_{i=1}^{\infty} \frac{x^n}{(2i-1)^2} = \frac{\pi^2}{6} \log(1+x)$$

Next consider

The expression for the same type of the initial point, but of degree with which

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \left[\log(1+x) \right]$$

and

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

The expression for the same type of the initial point, but of degree with which

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

where \((2i-1)^2 \) is the square of the source point.

From the same way and when they are,

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

the expression for the same type of the initial point, but of degree with which

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

where \((2i-1)^2 \) is the square of the source point.

From the same way and when they are,

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

and when they are,

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

From the same way and when they are,

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

with the expression for the same type of the initial point, but of degree with which

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

and when they are,

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

From the same way and when they are,

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

with the expression for the same type of the initial point, but of degree with which

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

and when they are,

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

From the same way and when they are,

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

with the expression for the same type of the initial point, but of degree with which

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

and when they are,

$$\left(\frac{x^n}{(2i-1)^2} \right)^\prime = \frac{\pi^2}{6} \log(1+x)$$

From the same way and when they are,
\[(6.11) \]

\[(6.11) \]

\[(6.11) \]

\[(6.11) \]

\[(6.11) \]

\[(6.11) \]

\[(6.11) \]

\[(6.11) \]

\[(6.11) \]

\[(6.11) \]

\[(6.11) \]
\[\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \frac{\partial \phi}{\partial t} \]

where

\((1-1) \)

\[\psi(x, y) - \psi(x-1, y) = \frac{\partial \phi}{\partial t} \]

\[(1-2) \]

\[(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y}) \psi(x, y) = \beta \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \psi(x, y) = \lambda \psi(x, y) \]

\[(8-2) \]

\[\psi(x, y) = e^{i \lambda(x^2 + y^2)} \]

\[(8-3) \]

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \frac{1}{V} \frac{\partial \psi}{\partial t} \]

\[(9-1) \]

\[\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = M \]

\[(9-2) \]

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \Omega \]

\[(9-3) \]
The problem of reflections within the elastic medium is addressed. The reflections at interfaces and their impact on the wavefronts are discussed. The reflection coefficients and phase changes are calculated using the equations:

\[R = \frac{Z_2 - Z_1}{Z_2 + Z_1} \]

where \(Z_1 \) and \(Z_2 \) are the wave impedances of the two media.

The equations for wave propagation in the medium are:

\[\nabla \times \mathbf{H} = \mu \frac{\partial \mathbf{E}}{\partial t} \]

\[\nabla \times \mathbf{E} = -\varepsilon \frac{\partial \mathbf{H}}{\partial t} \]

where \(\mathbf{H} \) and \(\mathbf{E} \) are the magnetic and electric fields, \(\mu \) is the magnetic permeability, and \(\varepsilon \) is the electric permittivity.

The boundary conditions at the interface between the two media are:

\[\mathbf{E}_1 \times \mathbf{n} = \mathbf{E}_2 \times \mathbf{n} \]

\[\mathbf{H}_1 \times \mathbf{n} = \mathbf{H}_2 \times \mathbf{n} \]

where \(\mathbf{n} \) is the normal vector at the interface.

The transmission coefficients are given by:

\[T = \frac{Z_2}{Z_1} \]

The phase shift due to reflection is given by:

\[\Delta \phi = \frac{2\pi}{\lambda} (n_1 - n_2) d \]

where \(n_1 \) and \(n_2 \) are the refractive indices of the two media, and \(d \) is the thickness of the interface.

The energy reflectivity and transmissivity are:

\[R = \frac{|T|^2}{|T|^2 + |R|^2} \]

\[T = \frac{|T|^2}{|T|^2 + |R|^2} \]

where \(T \) and \(R \) are the transmission and reflection coefficients, respectively.

The solutions for wave propagation in the medium are derived using these equations and boundary conditions.

These solutions are then applied to specific cases, such as reflection and transmission at a single interface.

The final section discusses the implications of these findings for practical applications, such as in geophysics and acoustics.
A LINK SOURCE IN A SEMI-INFINITE ELASTIC MEDIUM

\(f(y) \) = \(y^{3/2} \)

and the value of the maximum and minimum are

\(y^{3/2} \) when \(y \) is small

and \(y \) when \(y \) is large

The value of the function at the point where the derivative is equal to zero is

\(y = 0 \)

and is \(f(0) = 0 \)

The derivative of the function is equal to zero at the point

\(f'(y) = 0 \)

or

\(y = 0 \)

The function is decreasing for \(y < 0 \) and increasing for \(y > 0 \)

The graph of the function is shown in Figure 11.1.1.

\[(z + y)g(z) + \frac{\phi}{\sqrt{z}} = 0 \]

where

\[\phi = \phi_0 \]

and \(z > 0 \)

The function \(g(z) \) is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

In the neighborhood of the point where the derivative is equal to zero, the graph of the function is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

The function \(g(z) \) is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

In the neighborhood of the point where the derivative is equal to zero, the graph of the function is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

The function \(g(z) \) is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

In the neighborhood of the point where the derivative is equal to zero, the graph of the function is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

The function \(g(z) \) is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

In the neighborhood of the point where the derivative is equal to zero, the graph of the function is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

The function \(g(z) \) is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

In the neighborhood of the point where the derivative is equal to zero, the graph of the function is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

The function \(g(z) \) is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

In the neighborhood of the point where the derivative is equal to zero, the graph of the function is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

The function \(g(z) \) is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

In the neighborhood of the point where the derivative is equal to zero, the graph of the function is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

The function \(g(z) \) is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

In the neighborhood of the point where the derivative is equal to zero, the graph of the function is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

The function \(g(z) \) is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

In the neighborhood of the point where the derivative is equal to zero, the graph of the function is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

The function \(g(z) \) is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

In the neighborhood of the point where the derivative is equal to zero, the graph of the function is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

The function \(g(z) \) is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

In the neighborhood of the point where the derivative is equal to zero, the graph of the function is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

The function \(g(z) \) is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

In the neighborhood of the point where the derivative is equal to zero, the graph of the function is shown in Figure 11.1.1.

\[\frac{\partial^2 f}{\partial y^2} + \frac{\partial f}{\partial y} \]

where \(f \) is the temperature function.

The function \(g(z) \) is shown in Figure 11.1.1.
The wave shape of the plate is distorted in M as with NN
\[\frac{\partial^2 u}{\partial t^2} - \nabla \cdot \left(\mu \nabla u \right) = f \] with $u = 0$ and $\frac{\partial u}{\partial n} = 0$.

We observe changes in the plate's shape due to the presence of the source. By the method of characteristics, we can solve the wave equation.

If the source is a line source in a semi-infinite medium, the wave equation becomes
\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial z^2} = 0, \]
where u is the displacement of the plate.

When we approach the edge of the plate, we obtain
\[\frac{\partial u}{\partial x} + \frac{\partial u}{\partial z} = 0, \]
and
\[\frac{\partial u}{\partial x} \bigg|_{x=0} = \phi, \quad \frac{\partial u}{\partial z} \bigg|_{z=0} = 0. \]
A LINE SOURCE IN A SEMI-INFINITE ELASTIC MEDIUM
THE CALCULATION OF THE ABSOLUTE STRENGTHS

[101]

COMMUNICATION BY H. S. W. MASSEY, B.A.

UNIVERSITY COLLEGE, LONDON

F.R.S.

13 December 1918

COMMUNICATIONS ON THE ABSOLUTE STRENGTHS OF SPECIAL LINES

DATE: 3 Dec 1949

\[\frac{\gamma - \gamma_0}{\gamma_0} = \nu \]

\[\frac{\gamma - \gamma_0}{\gamma_0} = \frac{f}{f_0} \]

The accompanying figures may be of similar theory.

COMMUNICATIONS ON THE ABSOLUTE STRENGTHS OF SPECIAL LINES

1. INTRODUCTION

2. EXPERIMENTS

3. RESULTS

4. DISCUSSION

5. CONCLUSIONS