Location

Location ANSS

The ANSS event ID is us10006jxs and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/us10006jxs/executive.

2016/09/03 12:02:44 36.425 -96.929 5.6 5.8 Oklahoma

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2016/09/03 12:02:44:0  36.42  -96.93   5.6 5.8 Oklahoma
 
 Stations used:
   GS.KAN01 GS.KAN05 GS.KAN06 GS.KAN08 GS.KAN09 GS.KAN10 
   GS.KAN12 GS.KAN13 GS.KAN14 GS.KAN16 GS.KAN17 GS.KS20 
   GS.KS21 GS.OK025 GS.OK029 GS.OK030 GS.OK031 GS.OK035 
   GS.OK038 GS.OK040 GS.OK043 N4.R32B N4.S39B N4.T35B N4.U38B 
   OK.BCOK OK.CCOK OK.CHOK OK.CROK OK.DEOK OK.ELIS OK.FNO 
   OK.HTCH OK.U32A OK.X37A TA.TUL1 US.CBKS US.KSU1 US.MIAR 
   US.WMOK 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.025 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 2.66e+24 dyne-cm
  Mw = 5.55 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      195    90   180
   NP2      285    90    -0
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.66e+24     -0     330
    N   0.00e+00     90     195
    P  -2.66e+24     -0      60

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.33e+24
       Mxy    -2.30e+24
       Mxz    -3.01e+16
       Myy    -1.33e+24
       Myz     1.12e+17
       Mzz    -0.00e+00
                                                     
                                                     
                                                     
                                                     
                     ############--                  
                 T ##############------              
              ##   #############----------           
             ###################-----------          
           ####################-------------         
          #####################------------- P       
         #####################--------------         
        ######################------------------     
        ---##################-------------------     
       -----------###########--------------------    
       ------------------###---------------------    
       ---------------------###------------------    
       --------------------###########-----------    
        -------------------##################---     
        ------------------######################     
         -----------------#####################      
          ---------------#####################       
           --------------####################        
             -----------###################          
              ----------##################           
                 ------################              
                     --############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -0.00e+00  -3.01e+16  -1.12e+17 
 -3.01e+16   1.33e+24   2.30e+24 
 -1.12e+17   2.30e+24  -1.33e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160903120244/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 105
      DIP = 90
     RAKE = 0
       MW = 5.55
       HS = 8.0

The NDK file is 20160903120244.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
GCMT
USGSW
 USGS/SLU Moment Tensor Solution
 ENS  2016/09/03 12:02:44:0  36.42  -96.93   5.6 5.8 Oklahoma
 
 Stations used:
   GS.KAN01 GS.KAN05 GS.KAN06 GS.KAN08 GS.KAN09 GS.KAN10 
   GS.KAN12 GS.KAN13 GS.KAN14 GS.KAN16 GS.KAN17 GS.KS20 
   GS.KS21 GS.OK025 GS.OK029 GS.OK030 GS.OK031 GS.OK035 
   GS.OK038 GS.OK040 GS.OK043 N4.R32B N4.S39B N4.T35B N4.U38B 
   OK.BCOK OK.CCOK OK.CHOK OK.CROK OK.DEOK OK.ELIS OK.FNO 
   OK.HTCH OK.U32A OK.X37A TA.TUL1 US.CBKS US.KSU1 US.MIAR 
   US.WMOK 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.025 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 2.66e+24 dyne-cm
  Mw = 5.55 
  Z  = 8 km
  Plane   Strike  Dip  Rake
   NP1      195    90   180
   NP2      285    90    -0
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.66e+24     -0     330
    N   0.00e+00     90     195
    P  -2.66e+24     -0      60

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.33e+24
       Mxy    -2.30e+24
       Mxz    -3.01e+16
       Myy    -1.33e+24
       Myz     1.12e+17
       Mzz    -0.00e+00
                                                     
                                                     
                                                     
                                                     
                     ############--                  
                 T ##############------              
              ##   #############----------           
             ###################-----------          
           ####################-------------         
          #####################------------- P       
         #####################--------------         
        ######################------------------     
        ---##################-------------------     
       -----------###########--------------------    
       ------------------###---------------------    
       ---------------------###------------------    
       --------------------###########-----------    
        -------------------##################---     
        ------------------######################     
         -----------------#####################      
          ---------------#####################       
           --------------####################        
             -----------###################          
              ----------##################           
                 ------################              
                     --############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -0.00e+00  -3.01e+16  -1.12e+17 
 -3.01e+16   1.33e+24   2.30e+24 
 -1.12e+17   2.30e+24  -1.33e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160903120244/index.html
	
September 3, 2016, OKLAHOMA, MW=5.8

Meredith Nettles
Goran Ekstrom

CENTROID-MOMENT-TENSOR  SOLUTION
GCMT EVENT:     C201609031202A
DATA: II LD IU CU IC MN G  GE DK
 XF KP
L.P.BODY WAVES:120S, 223C, T= 40
MANTLE WAVES:   62S,  70C, T=125
SURFACE WAVES: 154S, 345C, T= 50
TIMESTAMP:      Q-20160903155757
CENTROID LOCATION:
ORIGIN TIME:      12:02:47.9 0.1
LAT:36.52N 0.01;LON: 96.86W 0.01
DEP: 18.9  0.5;TRIANG HDUR:  1.9
MOMENT TENSOR: SCALE 10**24 D-CM
RR=-0.348 0.048; TT= 3.510 0.050
PP=-3.160 0.053; RT= 0.255 0.108
RP=-1.220 0.113; TP= 4.590 0.043
PRINCIPAL AXES:
1.(T) VAL=  5.866;PLG= 3;AZM=153
2.(N)      -0.098;    77;     49
3.(P)      -5.766;    13;    243
BEST DBLE.COUPLE:M0= 5.82*10**24
NP1: STRIKE=287;DIP=79;SLIP=  -7
NP2: STRIKE= 19;DIP=83;SLIP=-169

            ###########
        ###############----
      ################-------
    ##################---------
   ##################-----------
  ###################------------
  ------############-------------
 ---------------####--------------
 ------------------###------------
 ------------------#######--------
 -----------------############----
  -   -----------################
  - P -----------################
      ----------################
    -----------################
      --------#########   ###
        -----########## T #
            ###########
        
W-phase Moment Tensor (Mww)
Moment	4.667e+17 N-m
Magnitude	5.7 Mww
Depth	11.5 km
Percent DC	87 %
Half Duration	4 s
Catalog	US
Data Source	US1
Contributor	US1
Nodal Planes
Plane	Strike	Dip	Rake
NP1	23	84	177
NP2	113	87	6
Principal Axes
Axis	Value	Plunge	Azimuth
T	4.816e+17 N-m	7	338
N	-0.314e+17 N-m	83	141
P	-4.502e+17 N-m	2	248

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

mLg Magnitude


Left: mLg computed using the IASPEI formula. Center: mLg residuals versus epicentral distance ; the values used for the trimmed mean magnitude estimate are indicated. Right: residuals as a function of distance and azimuth.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.025 n 3 
lp c 0.07 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   110    75    10   5.18 0.3033
WVFGRD96    2.0   110    75    15   5.31 0.4083
WVFGRD96    3.0   285    90     0   5.36 0.4799
WVFGRD96    4.0   105    90     0   5.41 0.5320
WVFGRD96    5.0   285    90     0   5.45 0.5674
WVFGRD96    6.0   285    90     0   5.49 0.5910
WVFGRD96    7.0   105    90     0   5.52 0.6076
WVFGRD96    8.0   105    90     0   5.55 0.6202
WVFGRD96    9.0   285    90     0   5.56 0.6146
WVFGRD96   10.0   105    90     0   5.58 0.6009
WVFGRD96   11.0   285    90     0   5.59 0.5819
WVFGRD96   12.0   105    90     0   5.59 0.5600
WVFGRD96   13.0   285    85     0   5.60 0.5415
WVFGRD96   14.0   290    85    10   5.59 0.5272
WVFGRD96   15.0   290    85    10   5.60 0.5193
WVFGRD96   16.0   290    85    10   5.61 0.5127
WVFGRD96   17.0   290    85    10   5.62 0.5061
WVFGRD96   18.0   290    85    10   5.62 0.5002
WVFGRD96   19.0   290    85    10   5.63 0.4943
WVFGRD96   20.0   290    85    10   5.64 0.4887
WVFGRD96   21.0   290    85    10   5.65 0.4836
WVFGRD96   22.0   290    85    10   5.65 0.4777
WVFGRD96   23.0   290    85    10   5.66 0.4722
WVFGRD96   24.0   110    80    10   5.66 0.4644
WVFGRD96   25.0   110    80    10   5.66 0.4623
WVFGRD96   26.0   110    80    15   5.67 0.4611
WVFGRD96   27.0   110    80    15   5.68 0.4614
WVFGRD96   28.0   110    80    15   5.69 0.4622
WVFGRD96   29.0   110    80    15   5.69 0.4632

The best solution is

WVFGRD96    8.0   105    90     0   5.55 0.6202

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.025 n 3 
lp c 0.07 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 08:56:36 PM CDT 2024