Location

Location ANSS

The ANSS event ID is nc72592705 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/nc72592705/executive.

2016/02/16 23:27:30 37.202 -118.400 15.1 4.31 California

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2016/02/16 23:27:30:0  37.20 -118.40  15.1 4.3 California
 
 Stations used:
   AZ.CRY AZ.KNW AZ.PFO AZ.SND AZ.TMSP BK.BKS BK.BRK BK.CMB 
   BK.HELL BK.JRSC BK.KCC BK.MHC BK.PACP BK.PKD BK.SAO BK.SUTB 
   BK.VAK BK.WENL CI.ADO CI.ARV CI.BAK CI.BBR CI.BCW CI.BEL 
   CI.CCC CI.CGO CI.CHF CI.CIA CI.CWC CI.DAN CI.DEC CI.DGR 
   CI.DJJ CI.EDW2 CI.FMP CI.FOX2 CI.FUR CI.GMR CI.GRA CI.GSC 
   CI.HEC CI.IRM CI.ISA CI.LMR2 CI.LPC CI.LRL CI.MLAC CI.MOP 
   CI.MPM CI.MPP CI.MTP CI.MUR CI.MWC CI.NEE2 CI.OAT CI.OSI 
   CI.PASC CI.RRX CI.RVR CI.SBC CI.SLA CI.SMM CI.SPG2 CI.SVD 
   CI.TFT CI.TUQ CI.VCS CI.VOG CI.VTV CI.WAS2 CI.WCS2 CI.WLH2 
   CI.WOR IM.NV31 LB.BMN LB.TPH NC.BBGB NC.MCB NC.MDY NC.MINS 
   NC.MMLB NC.PMPB NN.BEK NN.CMK6 NN.CTC NN.DSP NN.EMB NN.GWY 
   NN.LCH NN.LHV NN.MOHS NN.MPK NN.OUT1 NN.PAH NN.PNT NN.PRN 
   NN.Q09A NN.Q12A NN.QSM NN.REDF NN.RUB NN.RYN NN.S11A NN.SHP 
   NN.SPR3 NN.UNVG NN.V12A NN.VCN NN.WDEM NN.WTNK NN.YER 
   NP.PLA PB.B082A SN.HEL TA.R11A US.TPNV UU.CCUT UU.VRUT 
   YN.BCCC YN.GVAR1 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.79e+22 dyne-cm
  Mw = 4.23 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1       30    90    10
   NP2      300    80   180
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.79e+22      7     255
    N   0.00e+00     80      30
    P  -2.79e+22      7     165

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.38e+22
       Mxy     1.37e+22
       Mxz     2.42e+21
       Myy     2.38e+22
       Myz    -4.19e+21
       Mzz    -4.23e+14
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ---------------------#              
              -----------------------#####           
             -----------------------#######          
           ------------------------##########        
          #-----------------------############       
         ########----------------##############      
        #############-----------################     
        #################------#################     
       #####################--###################    
       ######################--##################    
       ####################-------###############    
       #   ###############-----------############    
         T ##############---------------########     
           #############------------------######     
         ##############---------------------###      
          ############------------------------       
           ##########------------------------        
             #######-----------------------          
              #####-----------------------           
                 #--------------   ----              
                     ----------- P                   
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.23e+14   2.42e+21   4.19e+21 
  2.42e+21  -2.38e+22  -1.37e+22 
  4.19e+21  -1.37e+22   2.38e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160216232730/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 30
      DIP = 90
     RAKE = 10
       MW = 4.23
       HS = 18.0

The NDK file is 20160216232730.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
UCB
 USGS/SLU Moment Tensor Solution
 ENS  2016/02/16 23:27:30:0  37.20 -118.40  15.1 4.3 California
 
 Stations used:
   AZ.CRY AZ.KNW AZ.PFO AZ.SND AZ.TMSP BK.BKS BK.BRK BK.CMB 
   BK.HELL BK.JRSC BK.KCC BK.MHC BK.PACP BK.PKD BK.SAO BK.SUTB 
   BK.VAK BK.WENL CI.ADO CI.ARV CI.BAK CI.BBR CI.BCW CI.BEL 
   CI.CCC CI.CGO CI.CHF CI.CIA CI.CWC CI.DAN CI.DEC CI.DGR 
   CI.DJJ CI.EDW2 CI.FMP CI.FOX2 CI.FUR CI.GMR CI.GRA CI.GSC 
   CI.HEC CI.IRM CI.ISA CI.LMR2 CI.LPC CI.LRL CI.MLAC CI.MOP 
   CI.MPM CI.MPP CI.MTP CI.MUR CI.MWC CI.NEE2 CI.OAT CI.OSI 
   CI.PASC CI.RRX CI.RVR CI.SBC CI.SLA CI.SMM CI.SPG2 CI.SVD 
   CI.TFT CI.TUQ CI.VCS CI.VOG CI.VTV CI.WAS2 CI.WCS2 CI.WLH2 
   CI.WOR IM.NV31 LB.BMN LB.TPH NC.BBGB NC.MCB NC.MDY NC.MINS 
   NC.MMLB NC.PMPB NN.BEK NN.CMK6 NN.CTC NN.DSP NN.EMB NN.GWY 
   NN.LCH NN.LHV NN.MOHS NN.MPK NN.OUT1 NN.PAH NN.PNT NN.PRN 
   NN.Q09A NN.Q12A NN.QSM NN.REDF NN.RUB NN.RYN NN.S11A NN.SHP 
   NN.SPR3 NN.UNVG NN.V12A NN.VCN NN.WDEM NN.WTNK NN.YER 
   NP.PLA PB.B082A SN.HEL TA.R11A US.TPNV UU.CCUT UU.VRUT 
   YN.BCCC YN.GVAR1 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.79e+22 dyne-cm
  Mw = 4.23 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1       30    90    10
   NP2      300    80   180
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.79e+22      7     255
    N   0.00e+00     80      30
    P  -2.79e+22      7     165

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.38e+22
       Mxy     1.37e+22
       Mxz     2.42e+21
       Myy     2.38e+22
       Myz    -4.19e+21
       Mzz    -4.23e+14
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ---------------------#              
              -----------------------#####           
             -----------------------#######          
           ------------------------##########        
          #-----------------------############       
         ########----------------##############      
        #############-----------################     
        #################------#################     
       #####################--###################    
       ######################--##################    
       ####################-------###############    
       #   ###############-----------############    
         T ##############---------------########     
           #############------------------######     
         ##############---------------------###      
          ############------------------------       
           ##########------------------------        
             #######-----------------------          
              #####-----------------------           
                 #--------------   ----              
                     ----------- P                   
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -4.23e+14   2.42e+21   4.19e+21 
  2.42e+21  -2.38e+22  -1.37e+22 
  4.19e+21  -1.37e+22   2.38e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160216232730/index.html
	
TMTS
Moment	3.577e+15 N-m
Magnitude	4.30
Depth	18.0 km
Percent DC	90%
Half Duration	–
Catalog	NC (nc72592705)
Data Source	NC1
Contributor	NC1
Nodal Planes
Plane	Strike	Dip	Rake
NP1	298	77	-178
NP2	208	88	-13
Principal Axes
Axis	Value	Plunge	Azimuth
T	3.482	8	254
N	0.184	77	19
P	-3.665	11	162

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   210    90    -5   3.76 0.2914
WVFGRD96    2.0   210    80   -15   3.89 0.3844
WVFGRD96    3.0   210    85   -15   3.93 0.4278
WVFGRD96    4.0   210    90   -20   3.98 0.4605
WVFGRD96    5.0    30    90    20   4.01 0.4898
WVFGRD96    6.0   210    85   -20   4.04 0.5184
WVFGRD96    7.0    30    90    20   4.06 0.5473
WVFGRD96    8.0    30    90    20   4.10 0.5781
WVFGRD96    9.0   210    85   -20   4.12 0.6033
WVFGRD96   10.0   210    85   -20   4.14 0.6242
WVFGRD96   11.0   210    85   -15   4.15 0.6423
WVFGRD96   12.0    30    90    15   4.17 0.6588
WVFGRD96   13.0    30    90    15   4.18 0.6718
WVFGRD96   14.0    30    90    15   4.19 0.6822
WVFGRD96   15.0    30    90    10   4.20 0.6895
WVFGRD96   16.0   210    90   -10   4.21 0.6952
WVFGRD96   17.0   210    90   -10   4.22 0.6983
WVFGRD96   18.0    30    90    10   4.23 0.6991
WVFGRD96   19.0   210    90   -10   4.24 0.6979
WVFGRD96   20.0    30    90    10   4.24 0.6952
WVFGRD96   21.0    30    90    10   4.25 0.6911
WVFGRD96   22.0   210    90   -10   4.26 0.6860
WVFGRD96   23.0    30    90    10   4.27 0.6798
WVFGRD96   24.0   210    90   -10   4.27 0.6728
WVFGRD96   25.0   210    90   -10   4.28 0.6654
WVFGRD96   26.0   210    90   -10   4.28 0.6576
WVFGRD96   27.0   210    90   -10   4.29 0.6491
WVFGRD96   28.0    30    90    10   4.30 0.6403
WVFGRD96   29.0    30    90    10   4.30 0.6311

The best solution is

WVFGRD96   18.0    30    90    10   4.23 0.6991

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 02:11:53 PM CDT 2024