Location

Location ANSS

The ANSS event ID is ci37510616 and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/ci37510616/executive.

2016/01/06 14:42:34 33.959 -116.888 16.7 4.39 California

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2016/01/06 14:42:34:0  33.96 -116.89  16.7 4.4 California
 
 Stations used:
   AZ.BZN AZ.CRY AZ.FRD AZ.KNW AZ.LVA2 AZ.RDM AZ.SND AZ.SOL 
   AZ.TRO AZ.WMC BK.KCC CI.ADO CI.ARV CI.BAR CI.BBR CI.BC3 
   CI.BEL CI.BFS CI.CCC CI.CGO CI.CHF CI.CWC CI.DAN CI.DEC 
   CI.DGR CI.EDW2 CI.FOX2 CI.FUR CI.GRA CI.GSC CI.HEC CI.IKP 
   CI.ISA CI.LMR2 CI.LRL CI.MPM CI.MTP CI.NEE2 CI.OSI CI.PASC 
   CI.PLM CI.PMD CI.RRX CI.RVR CI.SHO CI.SLA CI.SPG2 CI.SVD 
   CI.TUQ CI.VCS CI.VTV CI.WAS2 CI.WCS2 CI.WOR II.PFO IU.TUC 
   LB.TPH NN.LHV NN.OMMB NN.Q09A NN.UNVG NN.V12A PY.BPH03 
   PY.BPH04 PY.BPH05 PY.BPH09 US.WUAZ UU.KNB UU.SZCU YN.JFN4 
   YN.JORD YN.TR01 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 3.55e+22 dyne-cm
  Mw = 4.30 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1       65    60    45
   NP2      308    52   141
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.55e+22     52     281
    N   0.00e+00     38      92
    P  -3.55e+22      5     185

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.45e+22
       Mxy    -5.64e+21
       Mxz     6.07e+21
       Myy     1.28e+22
       Myz    -1.67e+22
       Mzz     2.17e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------------------------------          
           ###############-------------------        
          ####################----------------       
         ########################--------------      
        ###########################-----------##     
        #############################--------###     
       ##########   ###################-----#####    
       ########## T ####################--#######    
       ##########   ####################-########    
       ###############################----#######    
        ###########################--------#####     
        ########################------------####     
         ###################----------------###      
          -----####-------------------------##       
           ---------------------------------#        
             ------------------------------          
              ----------------------------           
                 --------   -----------              
                     ---- P -------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.17e+22   6.07e+21   1.67e+22 
  6.07e+21  -3.45e+22   5.64e+21 
  1.67e+22   5.64e+21   1.28e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160106144234/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion or first motion observations is

      STK = 65
      DIP = 60
     RAKE = 45
       MW = 4.30
       HS = 18.0

The NDK file is 20160106144234.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to those provided by others. The purpose is to look for major differences and also to note slight differences that might be inherent to the processing procedure. For completeness the USGS/SLU solution is repeated from above.
SLU
SCAL
 USGS/SLU Moment Tensor Solution
 ENS  2016/01/06 14:42:34:0  33.96 -116.89  16.7 4.4 California
 
 Stations used:
   AZ.BZN AZ.CRY AZ.FRD AZ.KNW AZ.LVA2 AZ.RDM AZ.SND AZ.SOL 
   AZ.TRO AZ.WMC BK.KCC CI.ADO CI.ARV CI.BAR CI.BBR CI.BC3 
   CI.BEL CI.BFS CI.CCC CI.CGO CI.CHF CI.CWC CI.DAN CI.DEC 
   CI.DGR CI.EDW2 CI.FOX2 CI.FUR CI.GRA CI.GSC CI.HEC CI.IKP 
   CI.ISA CI.LMR2 CI.LRL CI.MPM CI.MTP CI.NEE2 CI.OSI CI.PASC 
   CI.PLM CI.PMD CI.RRX CI.RVR CI.SHO CI.SLA CI.SPG2 CI.SVD 
   CI.TUQ CI.VCS CI.VTV CI.WAS2 CI.WCS2 CI.WOR II.PFO IU.TUC 
   LB.TPH NN.LHV NN.OMMB NN.Q09A NN.UNVG NN.V12A PY.BPH03 
   PY.BPH04 PY.BPH05 PY.BPH09 US.WUAZ UU.KNB UU.SZCU YN.JFN4 
   YN.JORD YN.TR01 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 3.55e+22 dyne-cm
  Mw = 4.30 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1       65    60    45
   NP2      308    52   141
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.55e+22     52     281
    N   0.00e+00     38      92
    P  -3.55e+22      5     185

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.45e+22
       Mxy    -5.64e+21
       Mxz     6.07e+21
       Myy     1.28e+22
       Myz    -1.67e+22
       Mzz     2.17e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------------------------------          
           ###############-------------------        
          ####################----------------       
         ########################--------------      
        ###########################-----------##     
        #############################--------###     
       ##########   ###################-----#####    
       ########## T ####################--#######    
       ##########   ####################-########    
       ###############################----#######    
        ###########################--------#####     
        ########################------------####     
         ###################----------------###      
          -----####-------------------------##       
           ---------------------------------#        
             ------------------------------          
              ----------------------------           
                 --------   -----------              
                     ---- P -------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.17e+22   6.07e+21   1.67e+22 
  6.07e+21  -3.45e+22   5.64e+21 
  1.67e+22   5.64e+21   1.28e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20160106144234/index.html
	
TMTS
Moment	4.458e+15 N-m
Magnitude	4.37
Depth	14.0 km
Percent DC	85%
Half Duration	–
Catalog	CI (ci37510616)
Data Source	CI2
Contributor	CI2
Nodal Planes
Plane	Strike	Dip	Rake
NP1	313	47	158
NP2	58	74	45
Principal Axes
Axis	Value	Plunge	Azimuth
T	4.269	42	285
N	0.358	43	73
P	-4.626	17	179

        

Magnitudes

Given the availability of digital waveforms for determination of the moment tensor, this section documents the added processing leading to mLg, if appropriate to the region, and ML by application of the respective IASPEI formulae. As a research study, the linear distance term of the IASPEI formula for ML is adjusted to remove a linear distance trend in residuals to give a regionally defined ML. The defined ML uses horizontal component recordings, but the same procedure is applied to the vertical components since there may be some interest in vertical component ground motions. Residual plots versus distance may indicate interesting features of ground motion scaling in some distance ranges. A residual plot of the regionalized magnitude is given as a function of distance and azimuth, since data sets may transcend different wave propagation provinces.

ML Magnitude


Left: ML computed using the IASPEI formula for Horizontal components. Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.


Left: ML computed using the IASPEI formula for Vertical components (research). Center: ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot. Right: Residuals from new relation as a function of distance and azimuth.

Context

The left panel of the next figure presents the focal mechanism for this earthquake (red) in the context of other nearby events (blue) in the SLU Moment Tensor Catalog. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors). Thus context plot is useful for assessing the appropriateness of the moment tensor of this event.

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.10 n 3 
The results of this grid search are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   265    45   -85   3.72 0.2122
WVFGRD96    2.0    25    45   -95   3.91 0.3104
WVFGRD96    3.0   255    50    75   3.94 0.2798
WVFGRD96    4.0   240    85   -40   3.90 0.2892
WVFGRD96    5.0   235    85   -45   3.94 0.3338
WVFGRD96    6.0    55    90    40   3.97 0.3811
WVFGRD96    7.0    60    85    40   4.00 0.4251
WVFGRD96    8.0    55    85    45   4.07 0.4638
WVFGRD96    9.0    60    80    45   4.10 0.5055
WVFGRD96   10.0    60    75    40   4.14 0.5458
WVFGRD96   11.0    60    75    40   4.16 0.5826
WVFGRD96   12.0    65    65    45   4.20 0.6180
WVFGRD96   13.0    65    65    45   4.22 0.6472
WVFGRD96   14.0    60    65    40   4.24 0.6707
WVFGRD96   15.0    60    65    40   4.26 0.6882
WVFGRD96   16.0    60    65    40   4.27 0.7001
WVFGRD96   17.0    65    60    45   4.29 0.7065
WVFGRD96   18.0    65    60    45   4.30 0.7082
WVFGRD96   19.0    60    60    45   4.31 0.7066
WVFGRD96   20.0    60    60    45   4.32 0.7019
WVFGRD96   21.0    60    60    45   4.33 0.6929
WVFGRD96   22.0    60    60    45   4.33 0.6819
WVFGRD96   23.0    60    60    45   4.34 0.6678
WVFGRD96   24.0    60    60    45   4.34 0.6521
WVFGRD96   25.0    60    60    45   4.35 0.6345
WVFGRD96   26.0    55    65    40   4.34 0.6159
WVFGRD96   27.0    55    65    40   4.35 0.5964
WVFGRD96   28.0    50    90    40   4.34 0.5767
WVFGRD96   29.0    50    90    45   4.34 0.5660

The best solution is

WVFGRD96   18.0    65    60    45   4.30 0.7082

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample.

Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    
Last Changed Fri Apr 26 12:38:58 PM CDT 2024