The ANSS event ID is usp000gxkz and the event page is at https://earthquake.usgs.gov/earthquakes/eventpage/usp000gxkz/executive.
2009/05/28 13:57:30 66.300 -135.110 20.0 4 Yukon, Canada
USGS/SLU Moment Tensor Solution
ENS 2009/05/28 13:57:30:0 66.30 -135.11 20.0 4.0 Yukon, Canada
Stations used:
CN.DAWY CN.INK CN.WHY IU.COLA US.EGAK
Filtering commands used:
hp c 0.02 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 8.04e+21 dyne-cm
Mw = 3.87
Z = 12 km
Plane Strike Dip Rake
NP1 226 62 112
NP2 5 35 55
Principal Axes:
Axis Value Plunge Azimuth
T 8.04e+21 66 175
N 0.00e+00 19 35
P -8.04e+21 14 300
Moment Tensor: (dyne-cm)
Component Value
Mxx -5.06e+20
Mxy 3.14e+21
Mxz -3.96e+21
Myy -5.68e+21
Myz 1.91e+21
Mzz 6.19e+21
-----------###
------------------####
----------------------######
------------------------#-----
----------------------######------
- ---------------###########------
-- P -------------#############-------
--- -----------################-------
---------------##################-------
--------------#####################-------
------------#######################-------
-----------########################-------
----------########################--------
--------########### ###########-------
-------############ T ##########--------
-----############# ##########-------
----#########################-------
--#########################-------
########################------
#####################-------
################------
#########-----
Global CMT Convention Moment Tensor:
R T P
6.19e+21 -3.96e+21 -1.91e+21
-3.96e+21 -5.06e+20 -3.14e+21
-1.91e+21 -3.14e+21 -5.68e+21
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090528135730/index.html
|
STK = 5
DIP = 35
RAKE = 55
MW = 3.87
HS = 12.0
The NDK file is 20090528135730.ndk The waveform inversion is preferred.
![]() |
The focal mechanism was determined using broadband seismic waveforms. The location of the event (star) and the stations used for (red) the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green's functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
hp c 0.02 n 3 lp c 0.10 n 3The results of this grid search are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 0.5 145 55 -50 3.59 0.4853
WVFGRD96 1.0 140 50 -55 3.63 0.5019
WVFGRD96 2.0 135 45 -60 3.74 0.4848
WVFGRD96 3.0 325 75 -55 3.73 0.4400
WVFGRD96 4.0 235 40 -5 3.70 0.4541
WVFGRD96 5.0 0 20 45 3.85 0.4846
WVFGRD96 6.0 5 25 55 3.85 0.5156
WVFGRD96 7.0 5 25 55 3.85 0.5413
WVFGRD96 8.0 5 30 50 3.83 0.5584
WVFGRD96 9.0 10 30 60 3.84 0.5715
WVFGRD96 10.0 10 30 60 3.87 0.5735
WVFGRD96 11.0 5 30 55 3.88 0.5791
WVFGRD96 12.0 5 35 55 3.87 0.5800
WVFGRD96 13.0 5 35 55 3.88 0.5772
WVFGRD96 14.0 5 35 55 3.88 0.5708
WVFGRD96 15.0 315 60 -60 3.80 0.5639
WVFGRD96 16.0 315 60 -60 3.81 0.5551
WVFGRD96 17.0 85 30 60 3.79 0.5427
WVFGRD96 18.0 85 30 60 3.80 0.5331
WVFGRD96 19.0 85 30 60 3.81 0.5221
WVFGRD96 20.0 85 30 60 3.84 0.5124
WVFGRD96 21.0 80 30 55 3.85 0.4990
WVFGRD96 22.0 80 30 55 3.85 0.4840
WVFGRD96 23.0 80 30 50 3.86 0.4680
WVFGRD96 24.0 85 30 60 3.87 0.4521
WVFGRD96 25.0 85 30 60 3.87 0.4355
WVFGRD96 26.0 80 35 45 3.88 0.4183
WVFGRD96 27.0 85 35 50 3.88 0.4018
WVFGRD96 28.0 85 35 50 3.89 0.3853
WVFGRD96 29.0 85 35 50 3.89 0.3693
The best solution is
WVFGRD96 12.0 5 35 55 3.87 0.5800
The mechanism corresponding to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed, the velocity model used in the predictions may not be perfect and the epicentral parameters may be be off. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
hp c 0.02 n 3 lp c 0.10 n 3
|
| Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated. The time scale is relative to the first trace sample. |
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to the waveforms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The CUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows (The format is in the model96 format of Computer Programs in Seismology).
MODEL.01 CUS Model with Q from simple gamma values ISOTROPIC KGS FLAT EARTH 1-D CONSTANT VELOCITY LINE08 LINE09 LINE10 LINE11 H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS 1.0000 5.0000 2.8900 2.5000 0.172E-02 0.387E-02 0.00 0.00 1.00 1.00 9.0000 6.1000 3.5200 2.7300 0.160E-02 0.363E-02 0.00 0.00 1.00 1.00 10.0000 6.4000 3.7000 2.8200 0.149E-02 0.336E-02 0.00 0.00 1.00 1.00 20.0000 6.7000 3.8700 2.9020 0.000E-04 0.000E-04 0.00 0.00 1.00 1.00 0.0000 8.1500 4.7000 3.3640 0.194E-02 0.431E-02 0.00 0.00 1.00 1.00