Location

Location ANSS

2018/11/30 19:26:28 61.359 -149.926 29.0 4.9 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2018/11/30 19:26:28:0  61.36 -149.93  29.0 4.9 Alaska
 
 Stations used:
   AK.CAPN AK.HIN AK.PWL AK.RAG AK.RC01 AK.SAW AK.SCM AK.SKN 
   AV.ILSW TA.M22K TA.M24K 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.62e+23 dyne-cm
  Mw = 4.74 
  Z  = 50 km
  Plane   Strike  Dip  Rake
   NP1      200    55   -65
   NP2      341    42   -121
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.62e+23      7     272
    N   0.00e+00     20       5
    P  -1.62e+23     69     165

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.99e+22
       Mxy    -1.38e+21
       Mxz     5.41e+22
       Myy     1.58e+23
       Myz    -3.38e+22
       Mzz    -1.38e+23
                                                     
                                                     
                                                     
                                                     
                     ##------------                  
                 ###########---########              
              ##############---###########           
             #############-------##########          
           ##############----------##########        
          #############-------------##########       
         #############---------------##########      
        #############-----------------##########     
        ############-------------------#########     
          ##########--------------------#########    
        T #########---------------------#########    
          #########---------------------#########    
       ###########----------   ----------########    
        ##########---------- P ----------#######     
        ##########----------   ----------#######     
         #########----------------------#######      
          ########----------------------######       
           #######----------------------#####        
             #####---------------------####          
              #####-------------------####           
                 ###-----------------##              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.38e+23   5.41e+22   3.38e+22 
  5.41e+22  -1.99e+22   1.38e+21 
  3.38e+22   1.38e+21   1.58e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20181130192628/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 200
      DIP = 55
     RAKE = -65
       MW = 4.74
       HS = 50.0

The NDK file is 20181130192628.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2018/11/30 19:26:28:0  61.36 -149.93  29.0 4.9 Alaska
 
 Stations used:
   AK.CAPN AK.HIN AK.PWL AK.RAG AK.RC01 AK.SAW AK.SCM AK.SKN 
   AV.ILSW TA.M22K TA.M24K 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.62e+23 dyne-cm
  Mw = 4.74 
  Z  = 50 km
  Plane   Strike  Dip  Rake
   NP1      200    55   -65
   NP2      341    42   -121
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.62e+23      7     272
    N   0.00e+00     20       5
    P  -1.62e+23     69     165

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.99e+22
       Mxy    -1.38e+21
       Mxz     5.41e+22
       Myy     1.58e+23
       Myz    -3.38e+22
       Mzz    -1.38e+23
                                                     
                                                     
                                                     
                                                     
                     ##------------                  
                 ###########---########              
              ##############---###########           
             #############-------##########          
           ##############----------##########        
          #############-------------##########       
         #############---------------##########      
        #############-----------------##########     
        ############-------------------#########     
          ##########--------------------#########    
        T #########---------------------#########    
          #########---------------------#########    
       ###########----------   ----------########    
        ##########---------- P ----------#######     
        ##########----------   ----------#######     
         #########----------------------#######      
          ########----------------------######       
           #######----------------------#####        
             #####---------------------####          
              #####-------------------####           
                 ###-----------------##              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.38e+23   5.41e+22   3.38e+22 
  5.41e+22  -1.99e+22   1.38e+21 
  3.38e+22   1.38e+21   1.58e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20181130192628/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0   355    45    85   4.01 0.2430
WVFGRD96    4.0   305    60   -20   4.00 0.2795
WVFGRD96    6.0   310    50     5   4.09 0.3192
WVFGRD96    8.0   310    50     5   4.17 0.3426
WVFGRD96   10.0   310    50     0   4.21 0.3488
WVFGRD96   12.0   310    50     0   4.24 0.3420
WVFGRD96   14.0   310    50     0   4.27 0.3286
WVFGRD96   16.0   310    50    -5   4.28 0.3115
WVFGRD96   18.0   310    50    -5   4.30 0.2921
WVFGRD96   20.0   310    45    -5   4.32 0.2726
WVFGRD96   22.0   220    75   -40   4.34 0.2703
WVFGRD96   24.0   220    80   -40   4.37 0.2936
WVFGRD96   26.0   220    80   -40   4.40 0.3180
WVFGRD96   28.0   220    80   -40   4.42 0.3396
WVFGRD96   30.0   220    80   -40   4.44 0.3563
WVFGRD96   32.0   215    70   -45   4.48 0.3746
WVFGRD96   34.0   215    70   -45   4.49 0.3888
WVFGRD96   36.0   210    65   -50   4.53 0.4042
WVFGRD96   38.0   205    60   -55   4.56 0.4144
WVFGRD96   40.0   200    60   -65   4.65 0.4223
WVFGRD96   42.0   205    60   -60   4.66 0.4297
WVFGRD96   44.0   205    60   -60   4.68 0.4336
WVFGRD96   46.0   200    55   -65   4.71 0.4357
WVFGRD96   48.0   200    55   -65   4.72 0.4377
WVFGRD96   50.0   200    55   -65   4.74 0.4381
WVFGRD96   52.0   200    55   -65   4.75 0.4350
WVFGRD96   54.0   195    55   -70   4.76 0.4319
WVFGRD96   56.0   190    55   -70   4.78 0.4274
WVFGRD96   58.0   190    55   -70   4.78 0.4210
WVFGRD96   60.0   190    55   -75   4.78 0.4126
WVFGRD96   62.0   190    55   -75   4.79 0.4054
WVFGRD96   64.0   185    50   -85   4.78 0.3966
WVFGRD96   66.0   185    50   -85   4.78 0.3898
WVFGRD96   68.0     0    40   -95   4.78 0.3860
WVFGRD96   70.0    40    55   -40   4.73 0.3871
WVFGRD96   72.0    25    45   -60   4.76 0.3878
WVFGRD96   74.0    40    55   -45   4.74 0.3903
WVFGRD96   76.0    40    55   -45   4.75 0.3918
WVFGRD96   78.0    40    55   -45   4.75 0.3929
WVFGRD96   80.0    40    55   -45   4.75 0.3938
WVFGRD96   82.0    45    60   -35   4.74 0.3948
WVFGRD96   84.0    45    60   -35   4.75 0.3946
WVFGRD96   86.0    45    60   -35   4.75 0.3945
WVFGRD96   88.0    45    60   -35   4.76 0.3933
WVFGRD96   90.0    45    60   -35   4.76 0.3919
WVFGRD96   92.0    45    60   -35   4.76 0.3916
WVFGRD96   94.0    50    65   -30   4.76 0.3918
WVFGRD96   96.0    50    65   -30   4.77 0.3923
WVFGRD96   98.0    50    65   -30   4.77 0.3923

The best solution is

WVFGRD96   50.0   200    55   -65   4.74 0.4381

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Fri Nov 30 13:48:33 CST 2018