Location

Location ANSS

2018/03/09 07:32:37 59.752 -153.110 100.5 5.1 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2018/03/09 07:32:37:0  59.75 -153.11 100.5 5.1 Alaska
 
 Stations used:
   AK.BRLK AK.CAPN AK.CNP AK.FIRE AK.GHO AK.HOM AK.RC01 AK.SCM 
   AK.SKN AK.SSN AK.SWD AT.PMR AT.SVW2 AV.ILSW II.KDAK TA.L19K 
   TA.M19K TA.M20K TA.M22K TA.N17K TA.N18K TA.N19K TA.O16K 
   TA.O18K TA.O19K TA.P18K TA.P19K TA.Q19K TA.Q20K 
 
 Filtering commands used:
   cut o DIST/3.4 -20 o DIST/3.4 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 3.13e+23 dyne-cm
  Mw = 4.93 
  Z  = 112 km
  Plane   Strike  Dip  Rake
   NP1      299    64   146
   NP2       45    60    30
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.13e+23     41     260
    N   0.00e+00     49      86
    P  -3.13e+23      3     353

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.02e+23
       Mxy     6.77e+22
       Mxz    -4.05e+22
       Myy     1.67e+23
       Myz    -1.51e+23
       Mzz     1.35e+23
                                                     
                                                     
                                                     
                                                     
                     --- P --------                  
                 -------   ------------              
              ----------------------------           
             ------------------------------          
           --------------------------------##        
          #########-----------------------####       
         #################----------------#####      
        ######################-----------#######     
        #########################--------#######     
       #############################----#########    
       ##########################################    
       ########   ###################---#########    
       ######## T ##################------#######    
        #######   ################---------#####     
        ########################-------------###     
         #####################----------------#      
          ##################------------------       
           #############---------------------        
             #######-----------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.35e+23  -4.05e+22   1.51e+23 
 -4.05e+22  -3.02e+23  -6.77e+22 
  1.51e+23  -6.77e+22   1.67e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180309073237/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 45
      DIP = 60
     RAKE = 30
       MW = 4.93
       HS = 112.0

The NDK file is 20180309073237.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2018/03/09 07:32:37:0  59.75 -153.11 100.5 5.1 Alaska
 
 Stations used:
   AK.BRLK AK.CAPN AK.CNP AK.FIRE AK.GHO AK.HOM AK.RC01 AK.SCM 
   AK.SKN AK.SSN AK.SWD AT.PMR AT.SVW2 AV.ILSW II.KDAK TA.L19K 
   TA.M19K TA.M20K TA.M22K TA.N17K TA.N18K TA.N19K TA.O16K 
   TA.O18K TA.O19K TA.P18K TA.P19K TA.Q19K TA.Q20K 
 
 Filtering commands used:
   cut o DIST/3.4 -20 o DIST/3.4 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 3.13e+23 dyne-cm
  Mw = 4.93 
  Z  = 112 km
  Plane   Strike  Dip  Rake
   NP1      299    64   146
   NP2       45    60    30
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.13e+23     41     260
    N   0.00e+00     49      86
    P  -3.13e+23      3     353

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.02e+23
       Mxy     6.77e+22
       Mxz    -4.05e+22
       Myy     1.67e+23
       Myz    -1.51e+23
       Mzz     1.35e+23
                                                     
                                                     
                                                     
                                                     
                     --- P --------                  
                 -------   ------------              
              ----------------------------           
             ------------------------------          
           --------------------------------##        
          #########-----------------------####       
         #################----------------#####      
        ######################-----------#######     
        #########################--------#######     
       #############################----#########    
       ##########################################    
       ########   ###################---#########    
       ######## T ##################------#######    
        #######   ################---------#####     
        ########################-------------###     
         #####################----------------#      
          ##################------------------       
           #############---------------------        
             #######-----------------------          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.35e+23  -4.05e+22   1.51e+23 
 -4.05e+22  -3.02e+23  -6.77e+22 
  1.51e+23  -6.77e+22   1.67e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20180309073237/index.html
	

Regional Moment Tensor (Mwr)
Moment	3.212e+16 N-m
Magnitude	4.9 Mwr
Depth	102.0 km
Percent DC	75 %
Half Duration	–
Catalog	US
Data Source	US3
Contributor	US3
Nodal Planes
Plane	Strike	Dip	Rake
NP1	299	57	148
NP2	48	63	37
Principal Axes
Axis	Value	Plunge	Azimuth
T	3.402e+16 N-m	44	266
N	-0.421e+16 N-m	45	79
P	-2.981e+16 N-m	4	172

        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.4 -20 o DIST/3.4 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    70    45   -80   3.93 0.1302
WVFGRD96    4.0   285    60   -25   3.95 0.1473
WVFGRD96    6.0   280    65   -25   4.01 0.1671
WVFGRD96    8.0   280    65   -25   4.10 0.1829
WVFGRD96   10.0   280    65   -25   4.15 0.1906
WVFGRD96   12.0   285    70   -25   4.19 0.1973
WVFGRD96   14.0   285    70   -25   4.22 0.1980
WVFGRD96   16.0   285    70   -30   4.25 0.1946
WVFGRD96   18.0    30    60    25   4.27 0.1888
WVFGRD96   20.0    30    65    25   4.30 0.1945
WVFGRD96   22.0    30    65    20   4.33 0.1989
WVFGRD96   24.0   215    75    25   4.35 0.2056
WVFGRD96   26.0   215    75    25   4.37 0.2130
WVFGRD96   28.0   215    75    20   4.39 0.2217
WVFGRD96   30.0   215    75    20   4.41 0.2303
WVFGRD96   32.0   215    75    20   4.43 0.2354
WVFGRD96   34.0   215    75    20   4.44 0.2379
WVFGRD96   36.0   215    70    15   4.46 0.2369
WVFGRD96   38.0    35    80     5   4.50 0.2438
WVFGRD96   40.0    35    75    10   4.56 0.2579
WVFGRD96   42.0    30    65     5   4.59 0.2682
WVFGRD96   44.0    30    65     0   4.62 0.2798
WVFGRD96   46.0    30    65    10   4.64 0.2971
WVFGRD96   48.0    35    60    10   4.68 0.3158
WVFGRD96   50.0    35    60    10   4.70 0.3324
WVFGRD96   52.0    35    60    10   4.71 0.3468
WVFGRD96   54.0    35    55     5   4.74 0.3607
WVFGRD96   56.0    35    55     5   4.75 0.3712
WVFGRD96   58.0    35    55     5   4.77 0.3843
WVFGRD96   60.0    35    55     5   4.78 0.3975
WVFGRD96   62.0    40    55    10   4.80 0.4108
WVFGRD96   64.0    40    55    10   4.81 0.4257
WVFGRD96   66.0    40    55    10   4.82 0.4383
WVFGRD96   68.0    40    55    10   4.83 0.4511
WVFGRD96   70.0    40    55    15   4.83 0.4632
WVFGRD96   72.0    45    55    25   4.84 0.4773
WVFGRD96   74.0    45    55    25   4.85 0.4919
WVFGRD96   76.0    45    55    25   4.86 0.5055
WVFGRD96   78.0    45    55    25   4.86 0.5179
WVFGRD96   80.0    45    55    25   4.87 0.5311
WVFGRD96   82.0    45    60    25   4.88 0.5431
WVFGRD96   84.0    45    60    25   4.88 0.5539
WVFGRD96   86.0    45    60    25   4.89 0.5651
WVFGRD96   88.0    45    60    25   4.89 0.5734
WVFGRD96   90.0    45    60    25   4.90 0.5817
WVFGRD96   92.0    45    60    25   4.90 0.5893
WVFGRD96   94.0    45    60    30   4.90 0.5952
WVFGRD96   96.0    45    60    30   4.90 0.6019
WVFGRD96   98.0    45    60    30   4.91 0.6081
WVFGRD96  100.0    45    60    30   4.91 0.6125
WVFGRD96  102.0    45    60    30   4.91 0.6149
WVFGRD96  104.0    45    60    30   4.92 0.6180
WVFGRD96  106.0    45    60    30   4.92 0.6203
WVFGRD96  108.0    45    60    30   4.92 0.6216
WVFGRD96  110.0    45    60    30   4.92 0.6223
WVFGRD96  112.0    45    60    30   4.93 0.6224
WVFGRD96  114.0    45    60    30   4.93 0.6212
WVFGRD96  116.0    45    60    30   4.93 0.6190
WVFGRD96  118.0    45    60    30   4.93 0.6173
WVFGRD96  120.0    45    60    30   4.93 0.6154
WVFGRD96  122.0    45    60    30   4.93 0.6131
WVFGRD96  124.0    45    60    30   4.94 0.6102
WVFGRD96  126.0    45    60    30   4.94 0.6073
WVFGRD96  128.0    45    60    30   4.94 0.6051
WVFGRD96  130.0    45    60    30   4.94 0.6017
WVFGRD96  132.0    45    60    30   4.94 0.5989
WVFGRD96  134.0    40    65    25   4.94 0.5963
WVFGRD96  136.0    40    65    25   4.95 0.5935
WVFGRD96  138.0    40    65    25   4.95 0.5926
WVFGRD96  140.0    40    65    25   4.95 0.5906
WVFGRD96  142.0    40    65    25   4.95 0.5887
WVFGRD96  144.0    40    65    25   4.95 0.5865
WVFGRD96  146.0    40    65    25   4.95 0.5845
WVFGRD96  148.0    40    65    25   4.96 0.5807

The best solution is

WVFGRD96  112.0    45    60    30   4.93 0.6224

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.4 -20 o DIST/3.4 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Fri Mar 9 05:53:16 CST 2018