Location

Location SLU

2017/12/14 05:57:05 63.01 -156.05 15.7 3.8 Alaska
During a review of waveforms, it was apparent that the initial ANSS solution was incorrect. Arrival times were read and the program ,b>elocate was used to locate the event. The details are in elocate.txt. The SLU solution was used to define the azimuths and take-off angles for the first motion plot shown below. There is reasonable agreement between the RMT solution and the first motions. This earthquake occurrred significantly west of the seismically active region of Alaska.

Location ANSS

At the time tha thte RMT was determined, the automatic AK solution posted on the web was 2017/12/14 05:57:02 63.229 -156.961. Another solution received from ens.usgs.gov was 2017/12/14 05:57:05 63.052 -156.181. The first solution did not agree with the arrivals at the nearest (smallest S-P time) stations. The SLU solution is essentially that posted by ENS.

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2017/12/14 05:57:05:0  63.01 -156.05  15.7 3.8 Alaska
 
 Stations used:
   AK.BPAW AK.CAST TA.G18K TA.H18K TA.H19K TA.J17K TA.J18K 
   TA.J19K TA.K15K TA.K17K TA.K20K TA.L16K TA.L18K TA.L19K 
   TA.N17K TA.N18K TA.N19K TA.O18K 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 2.16e+21 dyne-cm
  Mw = 3.49 
  Z  = 11 km
  Plane   Strike  Dip  Rake
   NP1       65    74   127
   NP2      175    40    25
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.16e+21     47      14
    N   0.00e+00     36     234
    P  -2.16e+21     20     128

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.12e+20
       Mxy     1.16e+21
       Mxz     1.48e+21
       Myy    -1.11e+21
       Myz    -2.89e+20
       Mzz     9.00e+20
                                                     
                                                     
                                                     
                                                     
                     ---###########                  
                 -----#################              
              ------######################           
             ------########################          
           -------###########   #############        
          -------############ T ##############       
         --------############   ###############      
        --------#############################---     
        --------###########################-----     
       ---------#########################--------    
       ---------######################-----------    
       ---------###################--------------    
       ---------################-----------------    
        --------###########---------------------     
        ---------######-------------------------     
         ------##-----------------------   ----      
          ########---------------------- P ---       
           ########---------------------   --        
             #######-----------------------          
              ########--------------------           
                 #######---------------              
                     ######--------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  9.00e+20   1.48e+21   2.89e+20 
  1.48e+21   2.12e+20  -1.16e+21 
  2.89e+20  -1.16e+21  -1.11e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20171214055705/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 175
      DIP = 40
     RAKE = 25
       MW = 3.49
       HS = 11.0

The NDK file is 20171214055705.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
SLUFM
 USGS/SLU Moment Tensor Solution
 ENS  2017/12/14 05:57:05:0  63.01 -156.05  15.7 3.8 Alaska
 
 Stations used:
   AK.BPAW AK.CAST TA.G18K TA.H18K TA.H19K TA.J17K TA.J18K 
   TA.J19K TA.K15K TA.K17K TA.K20K TA.L16K TA.L18K TA.L19K 
   TA.N17K TA.N18K TA.N19K TA.O18K 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 2.16e+21 dyne-cm
  Mw = 3.49 
  Z  = 11 km
  Plane   Strike  Dip  Rake
   NP1       65    74   127
   NP2      175    40    25
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.16e+21     47      14
    N   0.00e+00     36     234
    P  -2.16e+21     20     128

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.12e+20
       Mxy     1.16e+21
       Mxz     1.48e+21
       Myy    -1.11e+21
       Myz    -2.89e+20
       Mzz     9.00e+20
                                                     
                                                     
                                                     
                                                     
                     ---###########                  
                 -----#################              
              ------######################           
             ------########################          
           -------###########   #############        
          -------############ T ##############       
         --------############   ###############      
        --------#############################---     
        --------###########################-----     
       ---------#########################--------    
       ---------######################-----------    
       ---------###################--------------    
       ---------################-----------------    
        --------###########---------------------     
        ---------######-------------------------     
         ------##-----------------------   ----      
          ########---------------------- P ---       
           ########---------------------   --        
             #######-----------------------          
              ########--------------------           
                 #######---------------              
                     ######--------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  9.00e+20   1.48e+21   2.89e+20 
  1.48e+21   2.12e+20  -1.16e+21 
  2.89e+20  -1.16e+21  -1.11e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20171214055705/index.html
	


First motions and takeoff angles from an elocate run.

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   170    90     0   2.94 0.2955
WVFGRD96    2.0   170    90     0   3.14 0.5279
WVFGRD96    3.0   165    90    10   3.19 0.6092
WVFGRD96    4.0   165    90    20   3.24 0.6553
WVFGRD96    5.0   170    65    20   3.29 0.6817
WVFGRD96    6.0   170    65    20   3.31 0.6970
WVFGRD96    7.0   170    65    20   3.33 0.7064
WVFGRD96    8.0   175    45    25   3.42 0.7121
WVFGRD96    9.0   175    45    25   3.44 0.7168
WVFGRD96   10.0   175    40    25   3.48 0.7193
WVFGRD96   11.0   175    40    25   3.49 0.7204
WVFGRD96   12.0   170    50    15   3.46 0.7196
WVFGRD96   13.0   170    50    15   3.47 0.7183
WVFGRD96   14.0   170    50    15   3.48 0.7161
WVFGRD96   15.0   170    50    15   3.50 0.7127
WVFGRD96   16.0   170    55    15   3.49 0.7094
WVFGRD96   17.0   170    55    15   3.50 0.7056
WVFGRD96   18.0   170    60    15   3.50 0.7015
WVFGRD96   19.0   170    60    15   3.51 0.6975
WVFGRD96   20.0   170    65    15   3.51 0.6933
WVFGRD96   21.0   170    60    15   3.53 0.6895
WVFGRD96   22.0   350    60    15   3.53 0.6861
WVFGRD96   23.0   350    60    15   3.53 0.6836
WVFGRD96   24.0   350    60    15   3.54 0.6799
WVFGRD96   25.0   350    55    15   3.56 0.6753
WVFGRD96   26.0   350    60    15   3.56 0.6708
WVFGRD96   27.0   350    60    15   3.56 0.6649
WVFGRD96   28.0   350    60    15   3.57 0.6589
WVFGRD96   29.0   350    55    15   3.59 0.6520

The best solution is

WVFGRD96   11.0   175    40    25   3.49 0.7204

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Thu Dec 14 07:49:07 CST 2017