Location

Location ANSS

2017/08/11 06:18:17 60.077 -152.471 94.0 4.9 Alaska

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2017/08/11 06:18:17:0  60.08 -152.47  94.0 4.9 Alaska
 
 Stations used:
   AK.BRLK AK.CNP AK.CUT AK.HOM AK.RC01 AK.SSN AT.PMR AT.SVW2 
   AT.TTA TA.L19K TA.M19K TA.M20K TA.M22K TA.N18K TA.N19K 
   TA.O18K TA.O19K TA.P18K TA.P19K TA.Q19K 
 
 Filtering commands used:
   cut o DIST/3.4 -30 o DIST/3.4 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 3.02e+23 dyne-cm
  Mw = 4.92 
  Z  = 98 km
  Plane   Strike  Dip  Rake
   NP1      255    65    65
   NP2      123    35   132
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.02e+23     62     126
    N   0.00e+00     23     266
    P  -3.02e+23     16       3

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.53e+23
       Mxy    -4.78e+22
       Mxz    -1.56e+23
       Myy     4.38e+22
       Myz     9.76e+22
       Mzz     2.10e+23
                                                     
                                                     
                                                     
                                                     
                     ------   -----                  
                 ---------- P ---------              
              -------------   ------------           
             ------------------------------          
           ----------------------------------        
          ------------------------------------       
         #-------------------------------------      
        ##------------------#################---     
        ##------------##########################     
       ###--------###############################    
       ####---###################################    
       ##########################################    
       ###---####################   #############    
        ------################### T ############     
        -------##################   ############     
         --------##############################      
          ---------###########################       
           -----------######################-        
             -------------###############--          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.10e+23  -1.56e+23  -9.76e+22 
 -1.56e+23  -2.53e+23   4.78e+22 
 -9.76e+22   4.78e+22   4.38e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170811061817/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 255
      DIP = 65
     RAKE = 65
       MW = 4.92
       HS = 98.0

The NDK file is 20170811061817.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMWR
 USGS/SLU Moment Tensor Solution
 ENS  2017/08/11 06:18:17:0  60.08 -152.47  94.0 4.9 Alaska
 
 Stations used:
   AK.BRLK AK.CNP AK.CUT AK.HOM AK.RC01 AK.SSN AT.PMR AT.SVW2 
   AT.TTA TA.L19K TA.M19K TA.M20K TA.M22K TA.N18K TA.N19K 
   TA.O18K TA.O19K TA.P18K TA.P19K TA.Q19K 
 
 Filtering commands used:
   cut o DIST/3.4 -30 o DIST/3.4 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 3.02e+23 dyne-cm
  Mw = 4.92 
  Z  = 98 km
  Plane   Strike  Dip  Rake
   NP1      255    65    65
   NP2      123    35   132
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.02e+23     62     126
    N   0.00e+00     23     266
    P  -3.02e+23     16       3

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.53e+23
       Mxy    -4.78e+22
       Mxz    -1.56e+23
       Myy     4.38e+22
       Myz     9.76e+22
       Mzz     2.10e+23
                                                     
                                                     
                                                     
                                                     
                     ------   -----                  
                 ---------- P ---------              
              -------------   ------------           
             ------------------------------          
           ----------------------------------        
          ------------------------------------       
         #-------------------------------------      
        ##------------------#################---     
        ##------------##########################     
       ###--------###############################    
       ####---###################################    
       ##########################################    
       ###---####################   #############    
        ------################### T ############     
        -------##################   ############     
         --------##############################      
          ---------###########################       
           -----------######################-        
             -------------###############--          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.10e+23  -1.56e+23  -9.76e+22 
 -1.56e+23  -2.53e+23   4.78e+22 
 -9.76e+22   4.78e+22   4.38e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170811061817/index.html
	
Regional Moment Tensor (Mwr)
Moment	3.483e+16 N-m
Magnitude	5.0 Mwr
Depth	102.0 km
Percent DC	91 %
Half Duration	–
Catalog	US
Data Source	US3
Contributor	US3
Nodal Planes
Plane	Strike	Dip	Rake
NP1	255	62	72
NP2	110	33	120
Principal Axes
Axis	Value	Plunge	Azimuth
T	3.560e+16 N-m	68	128
N	-0.158e+16 N-m	16	264
P	-3.401e+16 N-m	15	358

        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.4 -30 o DIST/3.4 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0    90    45   -90   4.09 0.2494
WVFGRD96    4.0   305    55   -35   4.09 0.2544
WVFGRD96    6.0   145    60    30   4.15 0.2992
WVFGRD96    8.0   235    40    45   4.27 0.3301
WVFGRD96   10.0   230    40    40   4.31 0.3639
WVFGRD96   12.0   225    40    35   4.35 0.3789
WVFGRD96   14.0   220    45    25   4.37 0.3839
WVFGRD96   16.0   220    45    25   4.40 0.3834
WVFGRD96   18.0   220    50    20   4.42 0.3812
WVFGRD96   20.0   220    55    20   4.44 0.3827
WVFGRD96   22.0   225    55    20   4.47 0.3871
WVFGRD96   24.0   225    60    20   4.48 0.3976
WVFGRD96   26.0   225    60    20   4.51 0.4114
WVFGRD96   28.0   225    65    25   4.52 0.4272
WVFGRD96   30.0   230    60    30   4.55 0.4425
WVFGRD96   32.0   230    60    30   4.56 0.4533
WVFGRD96   34.0   235    60    35   4.58 0.4588
WVFGRD96   36.0   220    55   -25   4.61 0.4642
WVFGRD96   38.0   220    55   -25   4.64 0.4680
WVFGRD96   40.0   240    60    45   4.70 0.4882
WVFGRD96   42.0   240    55    40   4.73 0.4955
WVFGRD96   44.0   240    55    40   4.75 0.4990
WVFGRD96   46.0   240    55    40   4.77 0.5053
WVFGRD96   48.0   240    60    40   4.77 0.5103
WVFGRD96   50.0    95    45    95   4.84 0.5253
WVFGRD96   52.0    95    45    95   4.85 0.5384
WVFGRD96   54.0   100    45   105   4.85 0.5500
WVFGRD96   56.0   265    50    80   4.86 0.5639
WVFGRD96   58.0   260    50    75   4.86 0.5768
WVFGRD96   60.0   260    50    75   4.87 0.5886
WVFGRD96   62.0   270    55    80   4.88 0.6030
WVFGRD96   64.0   265    55    75   4.88 0.6167
WVFGRD96   66.0   265    55    75   4.89 0.6285
WVFGRD96   68.0   265    55    75   4.89 0.6395
WVFGRD96   70.0   260    60    70   4.89 0.6496
WVFGRD96   72.0   260    60    70   4.89 0.6590
WVFGRD96   74.0   260    60    70   4.89 0.6691
WVFGRD96   76.0   260    60    70   4.90 0.6792
WVFGRD96   78.0   260    60    70   4.90 0.6884
WVFGRD96   80.0   260    60    70   4.90 0.6955
WVFGRD96   82.0   260    60    70   4.90 0.7017
WVFGRD96   84.0   260    60    70   4.90 0.7071
WVFGRD96   86.0   260    60    70   4.91 0.7121
WVFGRD96   88.0   255    65    70   4.91 0.7166
WVFGRD96   90.0   255    65    70   4.91 0.7205
WVFGRD96   92.0   255    65    70   4.91 0.7244
WVFGRD96   94.0   255    65    65   4.92 0.7269
WVFGRD96   96.0   255    65    65   4.92 0.7277
WVFGRD96   98.0   255    65    65   4.92 0.7292
WVFGRD96  100.0   255    65    65   4.92 0.7291
WVFGRD96  102.0   255    65    65   4.93 0.7288
WVFGRD96  104.0   255    65    65   4.93 0.7276
WVFGRD96  106.0   255    65    65   4.93 0.7247
WVFGRD96  108.0   250    70    65   4.93 0.7243
WVFGRD96  110.0   250    70    65   4.93 0.7215
WVFGRD96  112.0   250    70    65   4.93 0.7203
WVFGRD96  114.0   250    70    65   4.93 0.7171
WVFGRD96  116.0   250    70    65   4.93 0.7152
WVFGRD96  118.0   250    70    65   4.94 0.7116

The best solution is

WVFGRD96   98.0   255    65    65   4.92 0.7292

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.4 -30 o DIST/3.4 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Fri Aug 11 05:54:21 CDT 2017