Location

Location ANSS

2017/01/08 23:47:12 74.320 -92.305 18.9 5.8 Canada

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2017/01/08 23:47:12:0  74.32  -92.31  18.9 5.8 Canada
 
 Stations used:
   CN.EUNU CN.FRB CN.INK CN.RES CN.YKAW3 DK.NEEM DK.NOR 
   DK.TULEG NY.WGLY TA.A36M TA.C36M TA.E25K TA.E27K TA.EPYK 
   TA.F31M TA.G26K TA.G27K TA.G30M TA.H27K TA.I29M 
 
 Filtering commands used:
   cut o DIST/3.3 -100 o DIST/3.3 +150
   rtr
   taper w 0.1
   hp c 0.01 n 3 
   lp c 0.04 n 3 
 
 Best Fitting Double Couple
  Mo = 7.76e+24 dyne-cm
  Mw = 5.86 
  Z  = 34 km
  Plane   Strike  Dip  Rake
   NP1      312    56    97
   NP2      120    35    80
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.76e+24     78     247
    N   0.00e+00      6     128
    P  -7.76e+24     10      37

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.72e+24
       Mxy    -3.50e+24
       Mxz    -1.71e+24
       Myy    -2.47e+24
       Myz    -2.26e+24
       Mzz     7.18e+24
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 --------------------                
              ----------------------- P --           
             #######-----------------   ---          
           ##############--------------------        
          ###################-----------------       
         -######################---------------      
        --########################--------------     
        --##########################------------     
       ---###########################------------    
       ----#############   ############----------    
       ----############# T #############---------    
       -----############   ##############--------    
        -----#############################------     
        -------############################-----     
         --------##########################----      
          ---------########################---       
           -----------#####################-#        
             -------------##############---          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  7.18e+24  -1.71e+24   2.26e+24 
 -1.71e+24  -4.72e+24   3.50e+24 
  2.26e+24   3.50e+24  -2.47e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170108234712/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 120
      DIP = 35
     RAKE = 80
       MW = 5.86
       HS = 34.0

The NDK file is 20170108234712.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2017/01/08 23:47:12:0  74.32  -92.31  18.9 5.8 Canada
 
 Stations used:
   CN.EUNU CN.FRB CN.INK CN.RES CN.YKAW3 DK.NEEM DK.NOR 
   DK.TULEG NY.WGLY TA.A36M TA.C36M TA.E25K TA.E27K TA.EPYK 
   TA.F31M TA.G26K TA.G27K TA.G30M TA.H27K TA.I29M 
 
 Filtering commands used:
   cut o DIST/3.3 -100 o DIST/3.3 +150
   rtr
   taper w 0.1
   hp c 0.01 n 3 
   lp c 0.04 n 3 
 
 Best Fitting Double Couple
  Mo = 7.76e+24 dyne-cm
  Mw = 5.86 
  Z  = 34 km
  Plane   Strike  Dip  Rake
   NP1      312    56    97
   NP2      120    35    80
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   7.76e+24     78     247
    N   0.00e+00      6     128
    P  -7.76e+24     10      37

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -4.72e+24
       Mxy    -3.50e+24
       Mxz    -1.71e+24
       Myy    -2.47e+24
       Myz    -2.26e+24
       Mzz     7.18e+24
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 --------------------                
              ----------------------- P --           
             #######-----------------   ---          
           ##############--------------------        
          ###################-----------------       
         -######################---------------      
        --########################--------------     
        --##########################------------     
       ---###########################------------    
       ----#############   ############----------    
       ----############# T #############---------    
       -----############   ##############--------    
        -----#############################------     
        -------############################-----     
         --------##########################----      
          ---------########################---       
           -----------#####################-#        
             -------------##############---          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  7.18e+24  -1.71e+24   2.26e+24 
 -1.71e+24  -4.72e+24   3.50e+24 
  2.26e+24   3.50e+24  -2.47e+24 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20170108234712/index.html
	
Body-wave Moment Tensor (Mwb)
Moment	9.868e+17 N-m
Magnitude	5.9 Mwb
Depth	21.0 km
Percent DC	58 %
Half Duration	–
Catalog	US
Data Source	US2
Contributor	US2
Nodal Planes
Plane	Strike	Dip	Rake
NP1	326	59	125
NP2	92	46	47
Principal Axes
Axis	Value	Plunge	Azimuth
T	8.519e+17 N-m	60	289
N	2.294e+17 N-m	29	126
P	-10.813e+17 N-m	7	32

        

Magnitudes

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -100 o DIST/3.3 +150
rtr
taper w 0.1
hp c 0.01 n 3 
lp c 0.04 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   305    40   -90   5.66 0.4391
WVFGRD96    2.0   320    40   -90   5.68 0.4466
WVFGRD96    3.0   165    45   -75   5.66 0.4212
WVFGRD96    4.0   340    90   -10   5.53 0.4012
WVFGRD96    5.0   160    90    10   5.55 0.3908
WVFGRD96    6.0    70    55    -5   5.57 0.3795
WVFGRD96    7.0    70    55    -5   5.58 0.3787
WVFGRD96    8.0   320    80   -50   5.66 0.3756
WVFGRD96    9.0   320    80   -50   5.66 0.3849
WVFGRD96   10.0   325    80   -55   5.66 0.3975
WVFGRD96   11.0   325    85   -60   5.67 0.4083
WVFGRD96   12.0   325    85   -60   5.67 0.4207
WVFGRD96   13.0   285    75    70   5.76 0.4393
WVFGRD96   14.0   285    75    70   5.76 0.4600
WVFGRD96   15.0   285    75    70   5.76 0.4771
WVFGRD96   16.0   285    75    70   5.76 0.4925
WVFGRD96   17.0   290    70    65   5.76 0.5064
WVFGRD96   18.0   290    70    70   5.77 0.5234
WVFGRD96   19.0   290    70    70   5.77 0.5374
WVFGRD96   20.0   290    70    70   5.81 0.5469
WVFGRD96   21.0   290    70    70   5.81 0.5565
WVFGRD96   22.0   290    70    70   5.81 0.5636
WVFGRD96   23.0   295    65    70   5.80 0.5708
WVFGRD96   24.0   295    65    75   5.81 0.5776
WVFGRD96   25.0   295    65    75   5.81 0.5828
WVFGRD96   26.0   295    65    75   5.81 0.5860
WVFGRD96   27.0   300    65    75   5.82 0.5882
WVFGRD96   28.0   300    65    75   5.82 0.5899
WVFGRD96   29.0   135    30   100   5.83 0.5916
WVFGRD96   30.0   130    30    95   5.83 0.5932
WVFGRD96   31.0   120    35    85   5.84 0.5942
WVFGRD96   32.0   125    35    85   5.84 0.5951
WVFGRD96   33.0   120    35    80   5.85 0.5955
WVFGRD96   34.0   120    35    80   5.86 0.5957
WVFGRD96   35.0   115    40    75   5.87 0.5955
WVFGRD96   36.0   115    40    75   5.87 0.5952
WVFGRD96   37.0   115    45    75   5.88 0.5940
WVFGRD96   38.0   120    50    70   5.90 0.5938
WVFGRD96   39.0   120    50    70   5.91 0.5930

The best solution is

WVFGRD96   34.0   120    35    80   5.86 0.5957

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -100 o DIST/3.3 +150
rtr
taper w 0.1
hp c 0.01 n 3 
lp c 0.04 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Tue Jan 10 11:10:13 CST 2017