Location

Location SLU

Because of the small size, the waveform data were not good. The program elocate was used to lcoate the event and to make a first motion mechanism. The consistency between the waveform integration nodel planes and the first motions gives confidence in the moment tensor solution. The processing results are in elocate.txt.

Location ANSS

2016/10/19 22:33:35 36.760 -97.775 1.2 3.5 Oklahoma

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2016/10/19 22:33:35:0  36.76  -97.78   1.2 3.5 Oklahoma
 
 Stations used:
   GS.KAN08 GS.KAN09 GS.KAN14 GS.KAN16 GS.KAN17 GS.OK032 
   GS.OK045 GS.OK046 GS.OK048 GS.OK049 GS.OK050 OK.CROK 
 
 Filtering commands used:
   cut o DIST/3.3 -10 o DIST/3.3 +30
   rtr
   taper w 0.1
   hp c 0.04 n 3 
   lp c 0.20 n 3 
 
 Best Fitting Double Couple
  Mo = 5.07e+20 dyne-cm
  Mw = 3.07 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1      203    85   155
   NP2      295    65     5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.07e+20     21     156
    N   0.00e+00     65      13
    P  -5.07e+20     14     252

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.23e+20
       Mxy    -3.07e+20
       Mxz    -1.16e+20
       Myy    -3.57e+20
       Myz     1.81e+20
       Mzz     3.38e+19
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ##################----              
              ####################--------           
             ####################----------          
           #####################-------------        
          #####################---------------       
         ---------------######-----------------      
        ---------------------#------------------     
        ---------------------####---------------     
       ---------------------########-------------    
       --------------------############----------    
       -------------------###############--------    
       --   --------------#################------    
        - P -------------###################----     
        -   ------------######################--     
         --------------########################      
          -------------#######################       
           -----------#######################        
             --------############   #######          
              -------############ T ######           
                 ---#############   ###              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.38e+19  -1.16e+20  -1.81e+20 
 -1.16e+20   3.23e+20   3.07e+20 
 -1.81e+20   3.07e+20  -3.57e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20161019223335/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 295
      DIP = 65
     RAKE = 5
       MW = 3.07
       HS = 3.0

The NDK file is 20161019223335.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
SLUFM
 USGS/SLU Moment Tensor Solution
 ENS  2016/10/19 22:33:35:0  36.76  -97.78   1.2 3.5 Oklahoma
 
 Stations used:
   GS.KAN08 GS.KAN09 GS.KAN14 GS.KAN16 GS.KAN17 GS.OK032 
   GS.OK045 GS.OK046 GS.OK048 GS.OK049 GS.OK050 OK.CROK 
 
 Filtering commands used:
   cut o DIST/3.3 -10 o DIST/3.3 +30
   rtr
   taper w 0.1
   hp c 0.04 n 3 
   lp c 0.20 n 3 
 
 Best Fitting Double Couple
  Mo = 5.07e+20 dyne-cm
  Mw = 3.07 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1      203    85   155
   NP2      295    65     5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.07e+20     21     156
    N   0.00e+00     65      13
    P  -5.07e+20     14     252

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.23e+20
       Mxy    -3.07e+20
       Mxz    -1.16e+20
       Myy    -3.57e+20
       Myz     1.81e+20
       Mzz     3.38e+19
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ##################----              
              ####################--------           
             ####################----------          
           #####################-------------        
          #####################---------------       
         ---------------######-----------------      
        ---------------------#------------------     
        ---------------------####---------------     
       ---------------------########-------------    
       --------------------############----------    
       -------------------###############--------    
       --   --------------#################------    
        - P -------------###################----     
        -   ------------######################--     
         --------------########################      
          -------------#######################       
           -----------#######################        
             --------############   #######          
              -------############ T ######           
                 ---#############   ###              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  3.38e+19  -1.16e+20  -1.81e+20 
 -1.16e+20   3.23e+20   3.07e+20 
 -1.81e+20   3.07e+20  -3.57e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20161019223335/index.html
	


First motions and takeoff angles from an elocate run.

Magnitudes

mLg Magnitude


(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion using wvfgrd96

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -10 o DIST/3.3 +30
rtr
taper w 0.1
hp c 0.04 n 3 
lp c 0.20 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   120    45     0   2.85 0.4473
WVFGRD96    2.0   120    50    10   3.03 0.5059
WVFGRD96    3.0   295    65     5   3.07 0.5114
WVFGRD96    4.0   295    70     0   3.12 0.4924
WVFGRD96    5.0   295    75     5   3.17 0.4642
WVFGRD96    6.0   295    75     0   3.22 0.4257
WVFGRD96    7.0   295    65     0   3.27 0.3802
WVFGRD96    8.0   290    60   -15   3.33 0.3274
WVFGRD96    9.0   135    80    70   3.48 0.2856
WVFGRD96   10.0   205    90   -15   3.36 0.2738
WVFGRD96   11.0    25    80    15   3.40 0.2822
WVFGRD96   12.0    25    80    10   3.43 0.2894
WVFGRD96   13.0    25    75    10   3.45 0.2933
WVFGRD96   14.0   200    80     5   3.47 0.3000
WVFGRD96   15.0   200    80     5   3.48 0.3060
WVFGRD96   16.0   200    80    10   3.50 0.3115
WVFGRD96   17.0   200    85     5   3.51 0.3199
WVFGRD96   18.0    25    90     5   3.51 0.3295
WVFGRD96   19.0    20    65   -20   3.57 0.3434
WVFGRD96   20.0    20    60   -20   3.59 0.3537
WVFGRD96   21.0    20    60   -20   3.60 0.3617
WVFGRD96   22.0    15    55   -30   3.64 0.3692
WVFGRD96   23.0    15    55   -30   3.65 0.3803
WVFGRD96   24.0    15    55   -25   3.64 0.3866
WVFGRD96   25.0     0    45   -30   3.71 0.4031
WVFGRD96   26.0     0    45   -30   3.71 0.4119
WVFGRD96   27.0    15    65   -25   3.65 0.4216
WVFGRD96   28.0    20    75   -15   3.62 0.4316
WVFGRD96   29.0    20    75   -15   3.62 0.4361

The best solution is

WVFGRD96    3.0   295    65     5   3.07 0.5114

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -10 o DIST/3.3 +30
rtr
taper w 0.1
hp c 0.04 n 3 
lp c 0.20 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS.model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Wed Oct 19 19:44:20 CDT 2016