Location

2015/04/02 03:51:43 36.047 -89.825 10.9 4.0 Missouri

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2015/04/02 03:51:43:0  36.05  -89.82  10.9 4.0 Missouri
 
 Stations used:
   AG.FCAR AG.WHAR ET.CPCT ET.SWET IM.TKL IU.CCM IU.WCI IU.WVT 
   N4.O44A N4.P43A N4.P48A N4.R49A N4.S39B N4.S44A N4.S51A 
   N4.T45B N4.T50A N4.U38B N4.U49A N4.V48A N4.V51A N4.V52A 
   N4.W45B N4.W50A N4.W52A N4.X48A N4.Y49A N4.Y52A NM.BLO 
   NM.CLTN NM.FVM NM.HALT NM.HENM NM.HICK NM.LPAR NM.MGMO 
   NM.MPH NM.PARM NM.PBMO NM.PENM NM.PLAL NM.PVMO NM.USIN 
   TA.P49A TA.SFIN TA.U40A TA.W39A US.LRAL 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 3.63e+21 dyne-cm
  Mw = 3.64 
  Z  = 11 km
  Plane   Strike  Dip  Rake
   NP1      110    85    10
   NP2       19    80   175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.63e+21     11     335
    N   0.00e+00     79     136
    P  -3.63e+21      3     244

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.19e+21
       Mxy    -2.76e+21
       Mxz     6.90e+20
       Myy    -2.30e+21
       Myz    -8.05e+19
       Mzz     1.09e+20
                                                     
                                                     
                                                     
                                                     
                      #############                  
                 ## T #############----              
              #####   #############-------           
             #####################---------          
           #######################-----------        
          ########################------------       
         ########################--------------      
        --#######################---------------     
        -----###################----------------     
       ----------###############-----------------    
       ---------------#########------------------    
       --------------------###-------------------    
       -----------------------##-----------------    
        ---------------------#########----------     
           -----------------#################---     
         P -----------------###################      
           ----------------###################       
           ---------------###################        
             ------------##################          
              ----------##################           
                 ------################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.09e+20   6.90e+20   8.05e+19 
  6.90e+20   2.19e+21   2.76e+21 
  8.05e+19   2.76e+21  -2.30e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150402035143/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 110
      DIP = 85
     RAKE = 10
       MW = 3.64
       HS = 11.0

The NDK file is 20150402035143.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2015/04/02 03:51:43:0  36.05  -89.82  10.9 4.0 Missouri
 
 Stations used:
   AG.FCAR AG.WHAR ET.CPCT ET.SWET IM.TKL IU.CCM IU.WCI IU.WVT 
   N4.O44A N4.P43A N4.P48A N4.R49A N4.S39B N4.S44A N4.S51A 
   N4.T45B N4.T50A N4.U38B N4.U49A N4.V48A N4.V51A N4.V52A 
   N4.W45B N4.W50A N4.W52A N4.X48A N4.Y49A N4.Y52A NM.BLO 
   NM.CLTN NM.FVM NM.HALT NM.HENM NM.HICK NM.LPAR NM.MGMO 
   NM.MPH NM.PARM NM.PBMO NM.PENM NM.PLAL NM.PVMO NM.USIN 
   TA.P49A TA.SFIN TA.U40A TA.W39A US.LRAL 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 3.63e+21 dyne-cm
  Mw = 3.64 
  Z  = 11 km
  Plane   Strike  Dip  Rake
   NP1      110    85    10
   NP2       19    80   175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.63e+21     11     335
    N   0.00e+00     79     136
    P  -3.63e+21      3     244

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     2.19e+21
       Mxy    -2.76e+21
       Mxz     6.90e+20
       Myy    -2.30e+21
       Myz    -8.05e+19
       Mzz     1.09e+20
                                                     
                                                     
                                                     
                                                     
                      #############                  
                 ## T #############----              
              #####   #############-------           
             #####################---------          
           #######################-----------        
          ########################------------       
         ########################--------------      
        --#######################---------------     
        -----###################----------------     
       ----------###############-----------------    
       ---------------#########------------------    
       --------------------###-------------------    
       -----------------------##-----------------    
        ---------------------#########----------     
           -----------------#################---     
         P -----------------###################      
           ----------------###################       
           ---------------###################        
             ------------##################          
              ----------##################           
                 ------################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.09e+20   6.90e+20   8.05e+19 
  6.90e+20   2.19e+21   2.76e+21 
  8.05e+19   2.76e+21  -2.30e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150402035143/index.html
	

Magnitudes

mLg Magnitude


(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   115    75    20   3.51 0.6191
WVFGRD96    2.0   295    90   -10   3.52 0.6422
WVFGRD96    3.0   295    90   -10   3.54 0.6542
WVFGRD96    4.0   115    80    10   3.55 0.6640
WVFGRD96    5.0   115    80    10   3.57 0.6704
WVFGRD96    6.0   115    80    10   3.58 0.6766
WVFGRD96    7.0   115    85    10   3.59 0.6816
WVFGRD96    8.0   115    85    10   3.60 0.6862
WVFGRD96    9.0   110    85    10   3.61 0.6901
WVFGRD96   10.0   290    90   -10   3.62 0.6922
WVFGRD96   11.0   110    85    10   3.64 0.6929
WVFGRD96   12.0   110    85    10   3.65 0.6917
WVFGRD96   13.0   110    85    10   3.66 0.6881
WVFGRD96   14.0   110    85    10   3.66 0.6827
WVFGRD96   15.0   110    85    10   3.67 0.6768
WVFGRD96   16.0   110    85    10   3.68 0.6718
WVFGRD96   17.0   110    85    10   3.69 0.6650
WVFGRD96   18.0   290    85   -10   3.69 0.6552
WVFGRD96   19.0   110    85    10   3.70 0.6485
WVFGRD96   20.0   290    85   -10   3.71 0.6440
WVFGRD96   21.0   290    85   -10   3.71 0.6364
WVFGRD96   22.0   290    85   -10   3.72 0.6318
WVFGRD96   23.0   290    85   -10   3.72 0.6288
WVFGRD96   24.0   290    85   -10   3.73 0.6241
WVFGRD96   25.0   290    85   -10   3.74 0.6235
WVFGRD96   26.0   290    85   -10   3.74 0.6222
WVFGRD96   27.0   110    85    10   3.75 0.6219
WVFGRD96   28.0   110    85    10   3.76 0.6227
WVFGRD96   29.0   290    85   -10   3.76 0.6229

The best solution is

WVFGRD96   11.0   110    85    10   3.64 0.6929

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The CUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
CUS Model with Q from simple gamma values
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
  H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC)   QP   QS  ETAP  ETAS  FREFP  FREFS
  1.0000  5.0000  2.8900  2.5000 0.172E-02 0.387E-02 0.00  0.00  1.00  1.00 
  9.0000  6.1000  3.5200  2.7300 0.160E-02 0.363E-02 0.00  0.00  1.00  1.00 
 10.0000  6.4000  3.7000  2.8200 0.149E-02 0.336E-02 0.00  0.00  1.00  1.00 
 20.0000  6.7000  3.8700  2.9020 0.000E-04 0.000E-04 0.00  0.00  1.00  1.00 
  0.0000  8.1500  4.7000  3.3640 0.194E-02 0.431E-02 0.00  0.00  1.00  1.00 

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:02:05 CST 2015