Location

2015/03/04 03:39:05 60.936 -145.819 19.5 4.0 Alaska

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2015/03/04 03:39:05:0  60.94 -145.82  19.5 4.0 Alaska
 
 Stations used:
   AK.BPAW AK.CCB AK.FID AK.GHO AK.GLI AK.HDA AK.HIN AK.HMT 
   AK.KLU AK.KNK AK.KTH AK.MCAR AK.MDM AK.RAG AK.RND AK.SAW 
   AK.SCM AK.SSN AK.TGL AK.TRF AK.WRH AT.PMR IM.IL31 IU.COLA 
   TA.K27K TA.N25K TA.POKR 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.30e+22 dyne-cm
  Mw = 4.01 
  Z  = 28 km
  Plane   Strike  Dip  Rake
   NP1      139    81   -155
   NP2       45    65   -10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.30e+22     11     270
    N   0.00e+00     63     158
    P  -1.30e+22     24       5

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.08e+22
       Mxy    -8.67e+20
       Mxz    -4.86e+21
       Myy     1.25e+22
       Myz    -2.81e+21
       Mzz    -1.73e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -----------   --------              
              -------------- P -----------           
             ##-------------   ------------          
           #####--------------------------###        
          #######-------------------------####       
         ##########----------------------######      
        ############--------------------########     
        #############-------------------########     
       ################---------------###########    
       #   #############-------------############    
       # T ###############----------#############    
       #   ################-------###############    
        #####################---################     
        ######################-#################     
         ###################-----##############      
          ################---------###########       
           ###########---------------########        
             #####---------------------####          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.73e+21  -4.86e+21   2.81e+21 
 -4.86e+21  -1.08e+22   8.67e+20 
  2.81e+21   8.67e+20   1.25e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150304033905/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 45
      DIP = 65
     RAKE = -10
       MW = 4.01
       HS = 28.0

The NDK file is 20150304033905.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2015/03/04 03:39:05:0  60.94 -145.82  19.5 4.0 Alaska
 
 Stations used:
   AK.BPAW AK.CCB AK.FID AK.GHO AK.GLI AK.HDA AK.HIN AK.HMT 
   AK.KLU AK.KNK AK.KTH AK.MCAR AK.MDM AK.RAG AK.RND AK.SAW 
   AK.SCM AK.SSN AK.TGL AK.TRF AK.WRH AT.PMR IM.IL31 IU.COLA 
   TA.K27K TA.N25K TA.POKR 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.30e+22 dyne-cm
  Mw = 4.01 
  Z  = 28 km
  Plane   Strike  Dip  Rake
   NP1      139    81   -155
   NP2       45    65   -10
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.30e+22     11     270
    N   0.00e+00     63     158
    P  -1.30e+22     24       5

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.08e+22
       Mxy    -8.67e+20
       Mxz    -4.86e+21
       Myy     1.25e+22
       Myz    -2.81e+21
       Mzz    -1.73e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 -----------   --------              
              -------------- P -----------           
             ##-------------   ------------          
           #####--------------------------###        
          #######-------------------------####       
         ##########----------------------######      
        ############--------------------########     
        #############-------------------########     
       ################---------------###########    
       #   #############-------------############    
       # T ###############----------#############    
       #   ################-------###############    
        #####################---################     
        ######################-#################     
         ###################-----##############      
          ################---------###########       
           ###########---------------########        
             #####---------------------####          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.73e+21  -4.86e+21   2.81e+21 
 -4.86e+21  -1.08e+22   8.67e+20 
  2.81e+21   8.67e+20   1.25e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150304033905/index.html
	
Regional Moment Tensor (Mwr)
Moment	1.645e+15 N-m
Magnitude	4.08
Depth	33.0 km
Percent DC	91%
Half Duration	–
Catalog	AK (ak11521877)
Data Source	US3
Contributor	US3
Nodal Planes
Plane	Strike	Dip	Rake
NP1	141	83	-160
NP2	48	70	-8
Principal Axes
Axis	Value	Plunge	Azimuth
T	1.607	9	273
N	0.072	69	160
P	-1.679	19	6

        

Magnitudes

mLg Magnitude


(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0    50    90     0   3.47 0.2864
WVFGRD96    2.0    50    85    10   3.59 0.3829
WVFGRD96    3.0    50    90     0   3.64 0.4231
WVFGRD96    4.0    50    85     0   3.68 0.4494
WVFGRD96    5.0    45    75   -10   3.71 0.4727
WVFGRD96    6.0    45    80   -15   3.74 0.4962
WVFGRD96    7.0    45    80   -15   3.77 0.5200
WVFGRD96    8.0    45    75   -20   3.81 0.5427
WVFGRD96    9.0    45    75   -10   3.82 0.5536
WVFGRD96   10.0    45    70   -10   3.84 0.5672
WVFGRD96   11.0    45    70   -10   3.85 0.5790
WVFGRD96   12.0    45    70   -20   3.87 0.5980
WVFGRD96   13.0    45    70   -20   3.88 0.6092
WVFGRD96   14.0    45    70   -20   3.89 0.6184
WVFGRD96   15.0    45    70   -15   3.90 0.6274
WVFGRD96   16.0    45    65   -15   3.91 0.6352
WVFGRD96   17.0    45    65   -15   3.92 0.6437
WVFGRD96   18.0    45    65   -15   3.93 0.6512
WVFGRD96   19.0    45    65   -15   3.94 0.6579
WVFGRD96   20.0    45    65   -15   3.95 0.6637
WVFGRD96   21.0    45    65   -10   3.96 0.6683
WVFGRD96   22.0    45    65   -10   3.97 0.6721
WVFGRD96   23.0    45    65   -10   3.97 0.6752
WVFGRD96   24.0    45    65   -10   3.98 0.6772
WVFGRD96   25.0    45    65   -10   3.99 0.6781
WVFGRD96   26.0    45    65   -10   4.00 0.6787
WVFGRD96   27.0    45    65   -10   4.00 0.6794
WVFGRD96   28.0    45    65   -10   4.01 0.6796
WVFGRD96   29.0    45    65   -10   4.02 0.6784
WVFGRD96   30.0    45    65   -10   4.03 0.6762
WVFGRD96   31.0    45    65   -10   4.03 0.6734
WVFGRD96   32.0    45    65   -10   4.04 0.6696
WVFGRD96   33.0    45    65   -10   4.05 0.6650
WVFGRD96   34.0    45    65   -10   4.06 0.6592
WVFGRD96   35.0    45    70   -10   4.07 0.6548
WVFGRD96   36.0    45    70   -10   4.07 0.6505
WVFGRD96   37.0    45    70   -10   4.08 0.6452
WVFGRD96   38.0    45    70   -10   4.09 0.6395
WVFGRD96   39.0    45    70    -5   4.11 0.6338
WVFGRD96   40.0    45    65   -10   4.15 0.6301
WVFGRD96   41.0    45    65   -10   4.16 0.6311
WVFGRD96   42.0    45    65   -10   4.17 0.6307
WVFGRD96   43.0    45    65   -10   4.17 0.6293
WVFGRD96   44.0    45    65   -10   4.18 0.6274
WVFGRD96   45.0    45    65   -10   4.19 0.6256
WVFGRD96   46.0    45    65   -10   4.19 0.6230
WVFGRD96   47.0    45    70   -10   4.20 0.6208
WVFGRD96   48.0    45    70   -10   4.21 0.6185
WVFGRD96   49.0    45    70   -10   4.21 0.6164

The best solution is

WVFGRD96   28.0    45    65   -10   4.01 0.6796

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:01:15 CST 2015