Location

2015/02/01 18:06:04 36.947 -97.616 4.3 4.0 Oklahoma

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2015/02/01 18:06:04:0  36.95  -97.62   4.3 4.0 Oklahoma
 
 Stations used:
   GS.KAN01 GS.KAN08 GS.KAN10 GS.KAN11 GS.KAN12 GS.KS21 
   GS.OK025 GS.OK026 GS.OK028 GS.OK029 N4.T35B OK.BCOK OK.CROK 
   OK.FNO OK.U32A OK.W35A OK.X34A TA.TUL1 US.WMOK 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.09 n 3 
 
 Best Fitting Double Couple
  Mo = 4.03e+21 dyne-cm
  Mw = 3.67 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1       60    85    20
   NP2      328    70   175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.03e+21     18     286
    N   0.00e+00     69      73
    P  -4.03e+21     10     192

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.44e+21
       Mxy    -1.78e+21
       Mxz     1.01e+21
       Myy     3.21e+21
       Myz    -9.64e+20
       Mzz     2.39e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              #######---------------------           
             ##########--------------------          
           ##############--------------------        
          #################-------------------       
         ###################---------------####      
        ##   #################-----------#######     
        ## T ##################-------##########     
       ###   ###################---##############    
       #########################-################    
       ######################-----###############    
       ###################---------##############    
        ##############--------------############     
        ###########------------------###########     
         ######-----------------------#########      
          #---------------------------########       
           ----------------------------######        
             --------------------------####          
              --------   --------------###           
                 ----- P --------------              
                     -   ----------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.39e+20   1.01e+21   9.64e+20 
  1.01e+21  -3.44e+21   1.78e+21 
  9.64e+20   1.78e+21   3.21e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150201180604/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 60
      DIP = 85
     RAKE = 20
       MW = 3.67
       HS = 3.0

The NDK file is 20150201180604.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2015/02/01 18:06:04:0  36.95  -97.62   4.3 4.0 Oklahoma
 
 Stations used:
   GS.KAN01 GS.KAN08 GS.KAN10 GS.KAN11 GS.KAN12 GS.KS21 
   GS.OK025 GS.OK026 GS.OK028 GS.OK029 N4.T35B OK.BCOK OK.CROK 
   OK.FNO OK.U32A OK.W35A OK.X34A TA.TUL1 US.WMOK 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +50
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.09 n 3 
 
 Best Fitting Double Couple
  Mo = 4.03e+21 dyne-cm
  Mw = 3.67 
  Z  = 3 km
  Plane   Strike  Dip  Rake
   NP1       60    85    20
   NP2      328    70   175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.03e+21     18     286
    N   0.00e+00     69      73
    P  -4.03e+21     10     192

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.44e+21
       Mxy    -1.78e+21
       Mxz     1.01e+21
       Myy     3.21e+21
       Myz    -9.64e+20
       Mzz     2.39e+20
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              #######---------------------           
             ##########--------------------          
           ##############--------------------        
          #################-------------------       
         ###################---------------####      
        ##   #################-----------#######     
        ## T ##################-------##########     
       ###   ###################---##############    
       #########################-################    
       ######################-----###############    
       ###################---------##############    
        ##############--------------############     
        ###########------------------###########     
         ######-----------------------#########      
          #---------------------------########       
           ----------------------------######        
             --------------------------####          
              --------   --------------###           
                 ----- P --------------              
                     -   ----------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.39e+20   1.01e+21   9.64e+20 
  1.01e+21  -3.44e+21   1.78e+21 
  9.64e+20   1.78e+21   3.21e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150201180604/index.html
	

Magnitudes

mLg Magnitude


(a) mLg computed using the IASPEI formula; (b) mLg residuals ; the values used for the trimmed mean are indicated.

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.09 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   240    75     5   3.51 0.4102
WVFGRD96    2.0    65    50    10   3.66 0.4466
WVFGRD96    3.0    60    85    20   3.67 0.4637
WVFGRD96    4.0    60    85    15   3.70 0.4597
WVFGRD96    5.0    60    70    10   3.74 0.4443
WVFGRD96    6.0    60    75    10   3.76 0.4297
WVFGRD96    7.0    60    75    10   3.78 0.4133
WVFGRD96    8.0    55    85   -10   3.83 0.3986
WVFGRD96    9.0    55    85   -15   3.83 0.3848
WVFGRD96   10.0    55    80   -10   3.86 0.3727
WVFGRD96   11.0    55    80   -10   3.88 0.3620
WVFGRD96   12.0   160    75    45   3.87 0.3543
WVFGRD96   13.0   160    75    45   3.89 0.3536
WVFGRD96   14.0   160    75    45   3.90 0.3492
WVFGRD96   15.0   160    75    40   3.91 0.3422
WVFGRD96   16.0   155    75    35   3.93 0.3344
WVFGRD96   17.0   155    75    35   3.94 0.3250
WVFGRD96   18.0   155    75    35   3.94 0.3140
WVFGRD96   19.0   155    75    35   3.95 0.3020
WVFGRD96   20.0   155    75    30   3.95 0.2901
WVFGRD96   21.0   155    80    35   3.96 0.2796
WVFGRD96   22.0   155    80    35   3.97 0.2718
WVFGRD96   23.0   155    80    35   3.97 0.2638
WVFGRD96   24.0   235    65    10   4.02 0.2632
WVFGRD96   25.0   240    60    10   4.01 0.2647
WVFGRD96   26.0   240    60    10   4.02 0.2670
WVFGRD96   27.0   240    60    10   4.03 0.2689
WVFGRD96   28.0   235    70   -10   4.04 0.2709
WVFGRD96   29.0   235    70    -5   4.06 0.2744

The best solution is

WVFGRD96    3.0    60    85    20   3.67 0.4637

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.09 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:00:39 CST 2015