Location

2015/01/04 07:34:13 44.493 -114.1190 10.0 4.0 Idaho

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2015/01/04 07:34:13:0  44.49 -114.12  10.0 4.0 Idaho
 
 Stations used:
   CN.WALA IM.PD31 IW.DLMT IW.FLWY IW.LOHW IW.MFID IW.MOOW 
   IW.REDW MB.JTMT TA.H17A UO.PINE US.AHID US.BMO US.BOZ 
   US.BW06 US.DUG US.EGMT US.ELK US.HAWA US.HLID US.MSO 
   US.RLMT US.WVOR UU.BGU UU.CTU UU.HVU UU.JLU UU.MPU UU.SPU 
   UW.BRAN UW.CCRK UW.DDRF UW.IZEE UW.LTY UW.TREE UW.TUCA 
   UW.UMAT UW.WOLL WY.YHB WY.YHH WY.YHL WY.YMR WY.YNE WY.YNR 
   WY.YPP 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 6.31e+21 dyne-cm
  Mw = 3.80 
  Z  = 14 km
  Plane   Strike  Dip  Rake
   NP1      150    75   -80
   NP2      296    18   -123
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.31e+21     29     232
    N   0.00e+00     10     327
    P  -6.31e+21     59      74

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.69e+21
       Mxy     1.87e+21
       Mxz    -2.45e+21
       Myy     1.41e+21
       Myz    -4.80e+21
       Mzz    -3.11e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 -######----###########              
              ---#-----------------#######           
             -####--------------------#####          
           -#######----------------------####        
          #########------------------------###       
         ###########------------------------###      
        #############------------------------###     
        #############-------------   ---------##     
       ###############------------ P ----------##    
       ################-----------   ----------##    
       #################-----------------------##    
       ##################-----------------------#    
        ##################---------------------#     
        #######   ##########-------------------#     
         ###### T ###########------------------      
          #####   ############----------------       
           #####################-------------        
             ####################----------          
              #####################-------           
                 #####################-              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.11e+21  -2.45e+21   4.80e+21 
 -2.45e+21   1.69e+21  -1.87e+21 
  4.80e+21  -1.87e+21   1.41e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150104073413/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 150
      DIP = 75
     RAKE = -80
       MW = 3.80
       HS = 14.0

The NDK file is 20150104073413.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2015/01/04 07:34:13:0  44.49 -114.12  10.0 4.0 Idaho
 
 Stations used:
   CN.WALA IM.PD31 IW.DLMT IW.FLWY IW.LOHW IW.MFID IW.MOOW 
   IW.REDW MB.JTMT TA.H17A UO.PINE US.AHID US.BMO US.BOZ 
   US.BW06 US.DUG US.EGMT US.ELK US.HAWA US.HLID US.MSO 
   US.RLMT US.WVOR UU.BGU UU.CTU UU.HVU UU.JLU UU.MPU UU.SPU 
   UW.BRAN UW.CCRK UW.DDRF UW.IZEE UW.LTY UW.TREE UW.TUCA 
   UW.UMAT UW.WOLL WY.YHB WY.YHH WY.YHL WY.YMR WY.YNE WY.YNR 
   WY.YPP 
 
 Filtering commands used:
   cut o DIST/3.3 -30 o DIST/3.3 +70
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.07 n 3 
 
 Best Fitting Double Couple
  Mo = 6.31e+21 dyne-cm
  Mw = 3.80 
  Z  = 14 km
  Plane   Strike  Dip  Rake
   NP1      150    75   -80
   NP2      296    18   -123
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   6.31e+21     29     232
    N   0.00e+00     10     327
    P  -6.31e+21     59      74

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.69e+21
       Mxy     1.87e+21
       Mxz    -2.45e+21
       Myy     1.41e+21
       Myz    -4.80e+21
       Mzz    -3.11e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 -######----###########              
              ---#-----------------#######           
             -####--------------------#####          
           -#######----------------------####        
          #########------------------------###       
         ###########------------------------###      
        #############------------------------###     
        #############-------------   ---------##     
       ###############------------ P ----------##    
       ################-----------   ----------##    
       #################-----------------------##    
       ##################-----------------------#    
        ##################---------------------#     
        #######   ##########-------------------#     
         ###### T ###########------------------      
          #####   ############----------------       
           #####################-------------        
             ####################----------          
              #####################-------           
                 #####################-              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.11e+21  -2.45e+21   4.80e+21 
 -2.45e+21   1.69e+21  -1.87e+21 
  4.80e+21  -1.87e+21   1.41e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20150104073413/index.html
	
Moment
6.66e+14 N-m
Magnitude
3.8
Percent DC
97%
Depth
12.0 km
Updated
2015-01-04 14:17:24 UTC
Author
us
Catalog
Contributor
us
Code
us_c000tbk8_mwr
Principal Axes

Axis	Value	Plunge	Azimuth
T	6.695	25	235
N	-0.077	5	327
P	-6.618	64	69
Nodal Planes

Plane	Strike	Dip	Rake
NP1	149	70	-84
NP2	313	20	-106

        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   160    50   -90   3.54 0.4094
WVFGRD96    2.0   340    40   -90   3.63 0.4510
WVFGRD96    3.0   350    35   -85   3.68 0.3500
WVFGRD96    4.0   235    15    -5   3.73 0.4025
WVFGRD96    5.0   240    15     0   3.72 0.4613
WVFGRD96    6.0   245    15     5   3.71 0.4978
WVFGRD96    7.0   245    20     5   3.70 0.5173
WVFGRD96    8.0   235    15   -10   3.77 0.5263
WVFGRD96    9.0   150    80   -85   3.77 0.5375
WVFGRD96   10.0   150    75   -85   3.78 0.5621
WVFGRD96   11.0   150    75   -80   3.78 0.5806
WVFGRD96   12.0   150    75   -80   3.79 0.5928
WVFGRD96   13.0   150    75   -80   3.79 0.5998
WVFGRD96   14.0   150    75   -80   3.80 0.6019
WVFGRD96   15.0   150    80   -75   3.80 0.6004
WVFGRD96   16.0   150    80   -75   3.81 0.5967
WVFGRD96   17.0   150    80   -75   3.81 0.5904
WVFGRD96   18.0   150    80   -75   3.82 0.5818
WVFGRD96   19.0   150    80   -75   3.82 0.5717
WVFGRD96   20.0   150    80   -70   3.84 0.5604
WVFGRD96   21.0   150    80   -70   3.85 0.5487
WVFGRD96   22.0   155    85   -70   3.85 0.5349
WVFGRD96   23.0   155    85   -70   3.86 0.5208
WVFGRD96   24.0   155    85   -70   3.87 0.5059
WVFGRD96   25.0   155    85   -65   3.88 0.4904
WVFGRD96   26.0   155    85   -70   3.88 0.4744
WVFGRD96   27.0   155    85   -70   3.89 0.4580
WVFGRD96   28.0   155    90   -65   3.90 0.4412
WVFGRD96   29.0   335    90    65   3.90 0.4242

The best solution is

WVFGRD96   14.0   150    75   -80   3.80 0.6019

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -30 o DIST/3.3 +70
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.07 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:40:12 CST 2015