Location

2014/04/16 20:24:24 62.886 -149.935 76.2 5.1 Alaska

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2014/04/16 20:24:24:0  62.89 -149.93  76.2 5.1 Alaska
 
 Stations used:
   AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.COLD AK.CRQ AK.CTG 
   AK.DHY AK.FID AK.FYU AK.GHO AK.GLB AK.GLI AK.HDA AK.HOM 
   AK.KNK AK.KTH AK.MCAR AK.MCK AK.MDM AK.MLY AK.NEA AK.PPD 
   AK.PPLA AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD 
   AK.TGL AK.TRF AK.WRH AT.MID AT.PMR AT.SVW2 AV.RED CN.DAWY 
   IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 3.24e+23 dyne-cm
  Mw = 4.94 
  Z  = 86 km
  Plane   Strike  Dip  Rake
   NP1      100    85    25
   NP2        8    65   174
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.24e+23     21     327
    N   0.00e+00     65     111
    P  -3.24e+23     14     231

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     7.69e+22
       Mxy    -2.79e+23
       Mxz     1.37e+23
       Myy    -1.01e+23
       Myz    -1.79e+21
       Mzz     2.37e+22
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 ###############-------              
              ###   #############---------           
             #### T ##############---------          
           ######   ##############-----------        
          ########################------------       
         ##########################------------      
        ###########################-------------     
        ###########################-------------     
       ---#########################--------------    
       ----------#################---------------    
       -------------------########---------------    
       ---------------------------####-----------    
        --------------------------##############     
        -------------------------###############     
         ------------------------##############      
          ---   ----------------##############       
           -- P ---------------##############        
                --------------#############          
              ---------------#############           
                 -----------###########              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.37e+22   1.37e+23   1.79e+21 
  1.37e+23   7.69e+22   2.79e+23 
  1.79e+21   2.79e+23  -1.01e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140416202424/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 100
      DIP = 85
     RAKE = 25
       MW = 4.94
       HS = 86.0

The NDK file is 20140416202424.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2014/04/16 20:24:24:0  62.89 -149.93  76.2 5.1 Alaska
 
 Stations used:
   AK.BARN AK.BPAW AK.BRLK AK.BWN AK.CCB AK.COLD AK.CRQ AK.CTG 
   AK.DHY AK.FID AK.FYU AK.GHO AK.GLB AK.GLI AK.HDA AK.HOM 
   AK.KNK AK.KTH AK.MCAR AK.MCK AK.MDM AK.MLY AK.NEA AK.PPD 
   AK.PPLA AK.RC01 AK.RND AK.SAW AK.SCM AK.SKN AK.SSN AK.SWD 
   AK.TGL AK.TRF AK.WRH AT.MID AT.PMR AT.SVW2 AV.RED CN.DAWY 
   IM.IL31 IU.COLA 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 3.24e+23 dyne-cm
  Mw = 4.94 
  Z  = 86 km
  Plane   Strike  Dip  Rake
   NP1      100    85    25
   NP2        8    65   174
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.24e+23     21     327
    N   0.00e+00     65     111
    P  -3.24e+23     14     231

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     7.69e+22
       Mxy    -2.79e+23
       Mxz     1.37e+23
       Myy    -1.01e+23
       Myz    -1.79e+21
       Mzz     2.37e+22
                                                     
                                                     
                                                     
                                                     
                     ###########---                  
                 ###############-------              
              ###   #############---------           
             #### T ##############---------          
           ######   ##############-----------        
          ########################------------       
         ##########################------------      
        ###########################-------------     
        ###########################-------------     
       ---#########################--------------    
       ----------#################---------------    
       -------------------########---------------    
       ---------------------------####-----------    
        --------------------------##############     
        -------------------------###############     
         ------------------------##############      
          ---   ----------------##############       
           -- P ---------------##############        
                --------------#############          
              ---------------#############           
                 -----------###########              
                     -----#########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.37e+22   1.37e+23   1.79e+21 
  1.37e+23   7.69e+22   2.79e+23 
  1.79e+21   2.79e+23  -1.01e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20140416202424/index.html
	
Regional Moment Tensor (Mwr)

Moment magnitude derived from a moment tensor inversion of 
complete waveforms at regional distances (less than ~8 degrees), 
generally used for the analysis of small to moderate size 
earthquakes (typically Mw 3.5-6.0) crust or upper mantle earthquakes.

Moment
    3.62e+16 N-m
Magnitude
    5.0
Percent DC
    87%
Depth
    85.0 km
Updated
    2014-04-16 21:06:10 UTC
Author
    us
Catalog
    us
Contributor
    us
Code
    us_b000pn4i_mwr

Principal Axes
Axis	Value	Plunge	Azimuth
T	3.733	25	328
N	-0.227	63	126
P	-3.506	9	234
Nodal Planes
Plane	Strike	Dip	Rake
NP1	103	79	25
NP2	8	65	168

        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    2.0     5    85   -20   4.11 0.2424
WVFGRD96    4.0   185    90    15   4.19 0.2761
WVFGRD96    6.0     5    85   -10   4.24 0.2867
WVFGRD96    8.0   185    90    20   4.30 0.2922
WVFGRD96   10.0     5    80   -25   4.33 0.2983
WVFGRD96   12.0     5    80   -25   4.36 0.3012
WVFGRD96   14.0     5    85   -25   4.37 0.3017
WVFGRD96   16.0    95    85    20   4.37 0.3066
WVFGRD96   18.0   275    90   -20   4.39 0.3157
WVFGRD96   20.0    95    85    20   4.41 0.3276
WVFGRD96   22.0    95    85    20   4.44 0.3405
WVFGRD96   24.0    95    85    20   4.46 0.3531
WVFGRD96   26.0    95    85    15   4.48 0.3645
WVFGRD96   28.0    95    85    15   4.50 0.3753
WVFGRD96   30.0   100    80    15   4.53 0.3838
WVFGRD96   32.0   100    80    20   4.54 0.3924
WVFGRD96   34.0   100    80    20   4.56 0.4021
WVFGRD96   36.0   100    75    15   4.60 0.4112
WVFGRD96   38.0   100    75    15   4.63 0.4218
WVFGRD96   40.0   100    70    20   4.70 0.4371
WVFGRD96   42.0   100    70    20   4.72 0.4497
WVFGRD96   44.0   100    70    20   4.74 0.4621
WVFGRD96   46.0   100    70    20   4.76 0.4743
WVFGRD96   48.0   100    70    15   4.78 0.4874
WVFGRD96   50.0   100    70    15   4.80 0.5015
WVFGRD96   52.0   100    70    15   4.81 0.5163
WVFGRD96   54.0   100    75    20   4.82 0.5332
WVFGRD96   56.0   100    75    20   4.83 0.5504
WVFGRD96   58.0   100    75    20   4.85 0.5680
WVFGRD96   60.0   100    75    20   4.86 0.5861
WVFGRD96   62.0   100    75    20   4.87 0.6026
WVFGRD96   64.0   100    75    20   4.88 0.6179
WVFGRD96   66.0   100    75    20   4.89 0.6314
WVFGRD96   68.0   105    75    25   4.90 0.6442
WVFGRD96   70.0   105    75    25   4.91 0.6562
WVFGRD96   72.0   105    75    25   4.92 0.6661
WVFGRD96   74.0   105    75    25   4.93 0.6744
WVFGRD96   76.0   105    75    25   4.94 0.6810
WVFGRD96   78.0   100    80    25   4.93 0.6857
WVFGRD96   80.0   100    80    25   4.94 0.6892
WVFGRD96   82.0   100    80    25   4.94 0.6916
WVFGRD96   84.0   100    80    25   4.95 0.6922
WVFGRD96   86.0   100    85    25   4.94 0.6932
WVFGRD96   88.0   100    85    25   4.95 0.6929
WVFGRD96   90.0   100    85    25   4.95 0.6915
WVFGRD96   92.0   100    85    25   4.96 0.6888
WVFGRD96   94.0   100    85    25   4.96 0.6855
WVFGRD96   96.0   280    90   -25   4.95 0.6736
WVFGRD96   98.0   100    85    25   4.96 0.6773
WVFGRD96  100.0   280    90   -25   4.96 0.6666

The best solution is

WVFGRD96   86.0   100    85    25   4.94 0.6932

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:11:19 CST 2015