Location

2013/08/27 00:51:43 39.669l -119.684 13.9 4.2 Nevada

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/08/27 00:51:43:0  39.67    0.00   0.0 0.0 Nevada
 
 Stations used:
   CI.GSC CI.ISA NC.AFD NC.KBO NC.KHMB NC.KMR NC.KRMB NC.MDPB 
   NN.BEK NN.KVN NN.OMMB NN.PAH NN.PNT NN.RUB NN.RYN NN.VCN 
   NN.WAK TA.R11A UU.BGU UU.CCUT UU.PSUT UW.BLOW UW.IRON 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.11e+22 dyne-cm
  Mw = 4.15 
  Z  = 13 km
  Plane   Strike  Dip  Rake
   NP1      314    85   170
   NP2       45    80     5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.11e+22     11     269
    N   0.00e+00     79     108
    P  -2.11e+22      4     360

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.10e+22
       Mxy     3.15e+20
       Mxz    -1.36e+21
       Myy     2.04e+22
       Myz    -3.81e+21
       Mzz     6.30e+20
                                                     
                                                     
                                                     
                                                     
                     ----- P ------                  
                 ---------   ----------              
              ----------------------------           
             #----------------------------#          
           #####-------------------------####        
          #########---------------------######       
         ############------------------########      
        ###############--------------###########     
        #################-----------############     
       ####################-------###############    
       #   ##################---#################    
       # T ######################################    
       #   ##################----################    
        ###################-------##############     
        #################-----------############     
         ##############---------------#########      
          ##########-------------------#######       
           #######-----------------------####        
             ##---------------------------#          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  6.30e+20  -1.36e+21   3.81e+21 
 -1.36e+21  -2.10e+22  -3.15e+20 
  3.81e+21  -3.15e+20   2.04e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130827005143/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 45
      DIP = 80
     RAKE = 5
       MW = 4.15
       HS = 13.0

The NDK file is 20130827005143.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
UNR
 USGS/SLU Moment Tensor Solution
 ENS  2013/08/27 00:51:43:0  39.67    0.00   0.0 0.0 Nevada
 
 Stations used:
   CI.GSC CI.ISA NC.AFD NC.KBO NC.KHMB NC.KMR NC.KRMB NC.MDPB 
   NN.BEK NN.KVN NN.OMMB NN.PAH NN.PNT NN.RUB NN.RYN NN.VCN 
   NN.WAK TA.R11A UU.BGU UU.CCUT UU.PSUT UW.BLOW UW.IRON 
 
 Filtering commands used:
   cut a -30 a 180
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 2.11e+22 dyne-cm
  Mw = 4.15 
  Z  = 13 km
  Plane   Strike  Dip  Rake
   NP1      314    85   170
   NP2       45    80     5
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.11e+22     11     269
    N   0.00e+00     79     108
    P  -2.11e+22      4     360

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -2.10e+22
       Mxy     3.15e+20
       Mxz    -1.36e+21
       Myy     2.04e+22
       Myz    -3.81e+21
       Mzz     6.30e+20
                                                     
                                                     
                                                     
                                                     
                     ----- P ------                  
                 ---------   ----------              
              ----------------------------           
             #----------------------------#          
           #####-------------------------####        
          #########---------------------######       
         ############------------------########      
        ###############--------------###########     
        #################-----------############     
       ####################-------###############    
       #   ##################---#################    
       # T ######################################    
       #   ##################----################    
        ###################-------##############     
        #################-----------############     
         ##############---------------#########      
          ##########-------------------#######       
           #######-----------------------####        
             ##---------------------------#          
              ----------------------------           
                 ----------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  6.30e+20  -1.36e+21   3.81e+21 
 -1.36e+21  -2.10e+22  -3.15e+20 
  3.81e+21  -3.15e+20   2.04e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130827005143/index.html
	
 	Contributor	Code	Type	Magnitude	Depth	NP1	NP2
us	nn00421303-neic-mwr	Mwr	4.2	11.0 km	315°, 87°, 173°	45°, 83°, 3°
us nn00421303-neic-mwr

Type Mwr
Moment 2.14e+15 N-m
Magnitude 4.2
Percent DC 86%
Depth 11.0 km
Author neic
Updated 2013-08-27 16:38:35 UTC
Principal Axes

Axis	Value	Plunge	Azimuth
T	2.064	7°	270°
N	0.141	82°	112°
P	-2.205	3°	360°
Nodal Planes

Plane	Strike	Dip	Rake
NP1	315°	87°	173°
NP2	45°	83°	3°

        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    35    50   -25   3.80 0.3155
WVFGRD96    1.0    40    60   -20   3.80 0.3412
WVFGRD96    2.0    40    55   -20   3.93 0.4623
WVFGRD96    3.0    40    55   -20   3.98 0.5401
WVFGRD96    4.0    40    55   -20   4.01 0.5945
WVFGRD96    5.0    45    65   -10   4.02 0.6347
WVFGRD96    6.0    45    70    -5   4.04 0.6695
WVFGRD96    7.0    45    75     5   4.05 0.6979
WVFGRD96    8.0    45    70    -5   4.09 0.7230
WVFGRD96    9.0    45    70    -5   4.10 0.7418
WVFGRD96   10.0    45    75     5   4.11 0.7573
WVFGRD96   11.0    45    80     5   4.13 0.7662
WVFGRD96   12.0    45    80     5   4.14 0.7715
WVFGRD96   13.0    45    80     5   4.15 0.7732
WVFGRD96   14.0    45    80    10   4.16 0.7710
WVFGRD96   15.0    45    80    10   4.17 0.7651
WVFGRD96   16.0    45    80    10   4.17 0.7569
WVFGRD96   17.0    45    80    10   4.18 0.7472
WVFGRD96   18.0    45    80    10   4.19 0.7348
WVFGRD96   19.0    45    80    10   4.19 0.7223
WVFGRD96   20.0    45    80    10   4.20 0.7080
WVFGRD96   21.0    45    80    10   4.21 0.6937
WVFGRD96   22.0    45    80    10   4.21 0.6781
WVFGRD96   23.0    45    80    10   4.22 0.6626
WVFGRD96   24.0    45    80    10   4.22 0.6471
WVFGRD96   25.0    45    80    10   4.23 0.6311
WVFGRD96   26.0    45    80    15   4.23 0.6162
WVFGRD96   27.0    45    80    15   4.24 0.6012
WVFGRD96   28.0    45    80    15   4.24 0.5865
WVFGRD96   29.0    45    80    15   4.25 0.5721

The best solution is

WVFGRD96   13.0    45    80     5   4.15 0.7732

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 180
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:22:26 CST 2015