Location

2013/07/24 18:16:59 62.919 -148.707 11.0 3.8 Alaska

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/07/24 18:16:59:0  62.92 -148.71  11.0 3.8 Alaska
 
 Stations used:
   AK.BPAW AK.BWN AK.CAST AK.CCB AK.CRQ AK.DHY AK.DOT AK.FID 
   AK.FYU AK.GLI AK.HDA AK.HIN AK.HMT AK.KNK AK.KTH AK.MCK 
   AK.MLY AK.PAX AK.PPD AK.PPLA AK.RAG AK.RC01 AK.RIDG AK.SAW 
   AK.SCM AK.SCRK AK.SKN AK.SSN AK.TGL AK.WAX AK.WRH AT.MENT 
   AT.PMR AT.SVW2 CN.DAWY IU.COLA US.EGAK 
 
 Filtering commands used:
   cut a -30 a 160
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 4.03e+21 dyne-cm
  Mw = 3.67 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      205    70    80
   NP2       52    22   116
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.03e+21     64      99
    N   0.00e+00      9     208
    P  -4.03e+21     24     303

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -9.59e+20
       Mxy     1.40e+21
       Mxz    -1.07e+21
       Myy    -1.59e+21
       Myz     2.85e+21
       Mzz     2.55e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ------------------####              
              -------------------#########           
             ------------------############          
           ------------------################        
          ---   ------------#################-       
         ---- P -----------###################-      
        -----   ----------####################--     
        -----------------#####################--     
       -----------------######################---    
       ----------------##########   ##########---    
       ---------------########### T ##########---    
       --------------############   #########----    
        -------------########################---     
        ------------########################----     
         -----------######################-----      
          ---------######################-----       
           --------####################------        
             ------##################------          
              ##---##############---------           
                 ##--------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.55e+21  -1.07e+21  -2.85e+21 
 -1.07e+21  -9.59e+20  -1.40e+21 
 -2.85e+21  -1.40e+21  -1.59e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130724181659/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 205
      DIP = 70
     RAKE = 80
       MW = 3.67
       HS = 16.0

The NDK file is 20130724181659.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2013/07/24 18:16:59:0  62.92 -148.71  11.0 3.8 Alaska
 
 Stations used:
   AK.BPAW AK.BWN AK.CAST AK.CCB AK.CRQ AK.DHY AK.DOT AK.FID 
   AK.FYU AK.GLI AK.HDA AK.HIN AK.HMT AK.KNK AK.KTH AK.MCK 
   AK.MLY AK.PAX AK.PPD AK.PPLA AK.RAG AK.RC01 AK.RIDG AK.SAW 
   AK.SCM AK.SCRK AK.SKN AK.SSN AK.TGL AK.WAX AK.WRH AT.MENT 
   AT.PMR AT.SVW2 CN.DAWY IU.COLA US.EGAK 
 
 Filtering commands used:
   cut a -30 a 160
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 4.03e+21 dyne-cm
  Mw = 3.67 
  Z  = 16 km
  Plane   Strike  Dip  Rake
   NP1      205    70    80
   NP2       52    22   116
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.03e+21     64      99
    N   0.00e+00      9     208
    P  -4.03e+21     24     303

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -9.59e+20
       Mxy     1.40e+21
       Mxz    -1.07e+21
       Myy    -1.59e+21
       Myz     2.85e+21
       Mzz     2.55e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ------------------####              
              -------------------#########           
             ------------------############          
           ------------------################        
          ---   ------------#################-       
         ---- P -----------###################-      
        -----   ----------####################--     
        -----------------#####################--     
       -----------------######################---    
       ----------------##########   ##########---    
       ---------------########### T ##########---    
       --------------############   #########----    
        -------------########################---     
        ------------########################----     
         -----------######################-----      
          ---------######################-----       
           --------####################------        
             ------##################------          
              ##---##############---------           
                 ##--------------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  2.55e+21  -1.07e+21  -2.85e+21 
 -1.07e+21  -9.59e+20  -1.40e+21 
 -2.85e+21  -1.40e+21  -1.59e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130724181659/index.html
	
us ak10766225-neic-mwr

Type
    Mwr
Moment
    3.91e+14 N-m
Magnitude
    3.7
Percent DC
    83%
Depth
    15.0 km
Author
    neic
Updated
    2013-07-24 19:09:42 UTC

Principal Axes
Axis	Value	Plunge	Azimuth
T	3.747	67	98
N	0.314	8	208
P	-4.061	21	301
Nodal Planes
Plane	Strike	Dip	Rake
NP1	204	67	81
NP2	46	25	110


        

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 160
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   210    45    90   3.21 0.3014
WVFGRD96    1.0   120    90    -5   3.18 0.2610
WVFGRD96    2.0    40    45   -90   3.36 0.3142
WVFGRD96    3.0   115    70   -10   3.36 0.2636
WVFGRD96    4.0   130    15    10   3.42 0.3102
WVFGRD96    5.0    90     5   -30   3.44 0.3812
WVFGRD96    6.0    90    10   -30   3.45 0.4352
WVFGRD96    7.0    55    10   -65   3.45 0.4744
WVFGRD96    8.0    45    10   -75   3.54 0.5000
WVFGRD96    9.0    45    15   -75   3.56 0.5267
WVFGRD96   10.0    50    20   -70   3.58 0.5440
WVFGRD96   11.0    50    20   -70   3.59 0.5554
WVFGRD96   12.0    50    20   -70   3.60 0.5597
WVFGRD96   13.0    50    20   -70   3.61 0.5577
WVFGRD96   14.0   205    70    80   3.64 0.5697
WVFGRD96   15.0   205    70    80   3.65 0.5765
WVFGRD96   16.0   205    70    80   3.67 0.5786
WVFGRD96   17.0   205    70    80   3.68 0.5761
WVFGRD96   18.0   205    70    80   3.69 0.5696
WVFGRD96   19.0   205    75    80   3.70 0.5606
WVFGRD96   20.0    45    20   110   3.71 0.5492
WVFGRD96   21.0    45    15   110   3.73 0.5362
WVFGRD96   22.0   205    75    85   3.74 0.5214
WVFGRD96   23.0   205    75    85   3.75 0.5048
WVFGRD96   24.0   205    75    85   3.75 0.4870
WVFGRD96   25.0   205    75    85   3.76 0.4677
WVFGRD96   26.0   205    75    85   3.77 0.4476
WVFGRD96   27.0   205    75    85   3.77 0.4270
WVFGRD96   28.0   200    75    80   3.78 0.4059
WVFGRD96   29.0   200    75    80   3.79 0.3865

The best solution is

WVFGRD96   16.0   205    70    80   3.67 0.5786

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 160
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:22:05 CST 2015