Location

2013/02/26 09:32:18 64.107 -149.287 141.6 4.6 Arkansas

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2013/02/26 09:32:18:0  64.11 -149.29 141.6 4.6 Arkansas
 
 Stations used:
   AK.CAST AK.CCB AK.COLD AK.DHY AK.DOT AK.FYU AK.HDA AK.KLU 
   AK.KNK AK.MCK AK.MDM AK.MLY AK.PAX AK.PPD AK.PPLA AK.RC01 
   AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SSN AK.TRF AK.WRH 
   AT.MENT AT.PMR IU.COLA US.EGAK 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.41e+23 dyne-cm
  Mw = 4.70 
  Z  = 155 km
  Plane   Strike  Dip  Rake
   NP1      359    54   -110
   NP2      210    40   -65
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.41e+23      7     102
    N   0.00e+00     16      10
    P  -1.41e+23     72     217

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.71e+21
       Mxy    -3.54e+22
       Mxz     2.85e+22
       Myy     1.28e+23
       Myz     4.21e+22
       Mzz    -1.26e+23
                                                     
                                                     
                                                     
                                                     
                     ########------                  
                 ##############-#######              
              #############-----##########           
             ###########----------#########          
           ###########------------###########        
          ##########---------------###########       
         ##########-----------------###########      
        #########-------------------############     
        ########---------------------###########     
       #########---------------------############    
       ########----------------------############    
       #######-----------------------############    
       #######---------   -----------########   #    
        ######--------- P -----------######## T      
        ######---------   ----------#########        
         #####----------------------###########      
          ####----------------------##########       
           ####--------------------##########        
             ##-------------------#########          
              ##-----------------#########           
                 ---------------#######              
                     ---------#####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.26e+23   2.85e+22  -4.21e+22 
  2.85e+22  -1.71e+21   3.54e+22 
 -4.21e+22   3.54e+22   1.28e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130226093218/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 210
      DIP = 40
     RAKE = -65
       MW = 4.70
       HS = 155.0

The NDK file is 20130226093218.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2013/02/26 09:32:18:0  64.11 -149.29 141.6 4.6 Arkansas
 
 Stations used:
   AK.CAST AK.CCB AK.COLD AK.DHY AK.DOT AK.FYU AK.HDA AK.KLU 
   AK.KNK AK.MCK AK.MDM AK.MLY AK.PAX AK.PPD AK.PPLA AK.RC01 
   AK.RIDG AK.RND AK.SAW AK.SCM AK.SCRK AK.SSN AK.TRF AK.WRH 
   AT.MENT AT.PMR IU.COLA US.EGAK 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 1.41e+23 dyne-cm
  Mw = 4.70 
  Z  = 155 km
  Plane   Strike  Dip  Rake
   NP1      359    54   -110
   NP2      210    40   -65
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.41e+23      7     102
    N   0.00e+00     16      10
    P  -1.41e+23     72     217

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.71e+21
       Mxy    -3.54e+22
       Mxz     2.85e+22
       Myy     1.28e+23
       Myz     4.21e+22
       Mzz    -1.26e+23
                                                     
                                                     
                                                     
                                                     
                     ########------                  
                 ##############-#######              
              #############-----##########           
             ###########----------#########          
           ###########------------###########        
          ##########---------------###########       
         ##########-----------------###########      
        #########-------------------############     
        ########---------------------###########     
       #########---------------------############    
       ########----------------------############    
       #######-----------------------############    
       #######---------   -----------########   #    
        ######--------- P -----------######## T      
        ######---------   ----------#########        
         #####----------------------###########      
          ####----------------------##########       
           ####--------------------##########        
             ##-------------------#########          
              ##-----------------#########           
                 ---------------#######              
                     ---------#####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.26e+23   2.85e+22  -4.21e+22 
  2.85e+22  -1.71e+21   3.54e+22 
 -4.21e+22   3.54e+22   1.28e+23 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20130226093218/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    5.0    10    70    85   3.84 0.1984
WVFGRD96   10.0   345    50    40   3.96 0.2636
WVFGRD96   15.0   305    45   -45   4.04 0.3001
WVFGRD96   20.0   250    20   -35   4.13 0.2931
WVFGRD96   25.0   205    30   -75   4.17 0.2794
WVFGRD96   30.0     5    60   -95   4.20 0.2613
WVFGRD96   35.0   260    55    65   4.22 0.2971
WVFGRD96   40.0   265    50    70   4.34 0.3194
WVFGRD96   45.0   265    50    70   4.41 0.3320
WVFGRD96   50.0   260    50    55   4.45 0.3329
WVFGRD96   55.0   255    55    45   4.48 0.3310
WVFGRD96   60.0   255    55    40   4.50 0.3333
WVFGRD96   65.0   200    35   -85   4.51 0.3747
WVFGRD96   70.0   205    35   -80   4.53 0.4152
WVFGRD96   75.0   210    35   -70   4.54 0.4485
WVFGRD96   80.0   210    35   -70   4.55 0.4760
WVFGRD96   85.0   215    35   -65   4.57 0.4997
WVFGRD96   90.0   215    35   -65   4.58 0.5181
WVFGRD96   95.0   220    40   -60   4.59 0.5378
WVFGRD96  100.0   220    40   -60   4.60 0.5548
WVFGRD96  105.0   220    40   -60   4.61 0.5715
WVFGRD96  110.0   220    40   -60   4.62 0.5866
WVFGRD96  115.0   210    35   -65   4.63 0.6018
WVFGRD96  120.0   210    35   -65   4.64 0.6160
WVFGRD96  125.0   215    40   -60   4.65 0.6306
WVFGRD96  130.0   215    40   -60   4.66 0.6428
WVFGRD96  135.0   215    40   -60   4.67 0.6545
WVFGRD96  140.0   215    40   -60   4.68 0.6627
WVFGRD96  145.0   210    40   -65   4.68 0.6672
WVFGRD96  150.0   210    40   -65   4.69 0.6706
WVFGRD96  155.0   210    40   -65   4.70 0.6707
WVFGRD96  160.0   210    40   -65   4.71 0.6669
WVFGRD96  165.0   210    40   -65   4.71 0.6585
WVFGRD96  170.0   210    40   -65   4.72 0.6477

The best solution is

WVFGRD96  155.0   210    40   -65   4.70 0.6707

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:20:41 CST 2015