Location

2012/07/31 10:27:28 39.006 -111.442 0.2 3.60 Utah

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2012/07/31 10:27:28:0  39.01 -111.44   0.2 3.6 Utah
 
 Stations used:
   CI.LDF IW.PHWY IW.REDW LB.BMN TA.R11A US.DUG US.HLID 
   US.HWUT US.TPNV UU.BGU UU.BRPU UU.CCUT UU.CTU UU.HVU UU.JLU 
   UU.LCMT UU.MPU UU.PKCU UU.PNSU UU.PSUT UU.RDMU UU.SRU 
   UU.TCRU UU.TCU UU.TMU 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.05 n 3
 
 Best Fitting Double Couple
  Mo = 8.91e+21 dyne-cm
  Mw = 3.90 
  Z  = 2 km
  Plane   Strike  Dip  Rake
   NP1       20    80   -70
   NP2      136    22   -153
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.91e+21     32      93
    N   0.00e+00     20     196
    P  -8.91e+21     51     313

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.59e+21
       Mxy     1.38e+21
       Mxz    -3.19e+21
       Myy     4.46e+21
       Myz     7.21e+21
       Mzz    -2.86e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ------------------####              
              ---------------------#######           
             ----------------------########          
           #----------------------###########        
          #-----------------------############       
         ##--------   -----------##############      
        ##--------- P -----------###############     
        ##---------   ----------################     
       ###----------------------#################    
       ###---------------------##########   #####    
       ####-------------------########### T #####    
       ####-------------------###########   #####    
        ####-----------------###################     
        #####---------------####################     
         #####-------------####################      
          #####------------###################       
           ######---------###################        
             ######------##################          
              ########--#################-           
                 #####-----#########---              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.86e+21  -3.19e+21  -7.21e+21 
 -3.19e+21  -1.59e+21  -1.38e+21 
 -7.21e+21  -1.38e+21   4.46e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120731102728/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 20
      DIP = 80
     RAKE = -70
       MW = 3.90
       HS = 2.0

The NDK file is 20120731102728.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2012/07/31 10:27:28:0  39.01 -111.44   0.2 3.6 Utah
 
 Stations used:
   CI.LDF IW.PHWY IW.REDW LB.BMN TA.R11A US.DUG US.HLID 
   US.HWUT US.TPNV UU.BGU UU.BRPU UU.CCUT UU.CTU UU.HVU UU.JLU 
   UU.LCMT UU.MPU UU.PKCU UU.PNSU UU.PSUT UU.RDMU UU.SRU 
   UU.TCRU UU.TCU UU.TMU 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.05 n 3
 
 Best Fitting Double Couple
  Mo = 8.91e+21 dyne-cm
  Mw = 3.90 
  Z  = 2 km
  Plane   Strike  Dip  Rake
   NP1       20    80   -70
   NP2      136    22   -153
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.91e+21     32      93
    N   0.00e+00     20     196
    P  -8.91e+21     51     313

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.59e+21
       Mxy     1.38e+21
       Mxz    -3.19e+21
       Myy     4.46e+21
       Myz     7.21e+21
       Mzz    -2.86e+21
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ------------------####              
              ---------------------#######           
             ----------------------########          
           #----------------------###########        
          #-----------------------############       
         ##--------   -----------##############      
        ##--------- P -----------###############     
        ##---------   ----------################     
       ###----------------------#################    
       ###---------------------##########   #####    
       ####-------------------########### T #####    
       ####-------------------###########   #####    
        ####-----------------###################     
        #####---------------####################     
         #####-------------####################      
          #####------------###################       
           ######---------###################        
             ######------##################          
              ########--#################-           
                 #####-----#########---              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -2.86e+21  -3.19e+21  -7.21e+21 
 -3.19e+21  -1.59e+21  -1.38e+21 
 -7.21e+21  -1.38e+21   4.46e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20120731102728/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.05 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    25    80   -75   3.84 0.3231
WVFGRD96    1.0    20    75   -60   3.73 0.3458
WVFGRD96    2.0    20    80   -70   3.90 0.3813
WVFGRD96    3.0    15    70   -55   3.84 0.3796
WVFGRD96    4.0    15    65   -45   3.84 0.3617
WVFGRD96    5.0    20    65   -30   3.82 0.3299
WVFGRD96    6.0    25    90   -55   3.87 0.3228
WVFGRD96    7.0   210    85    55   3.87 0.3158
WVFGRD96    8.0   205    90    60   3.93 0.3055
WVFGRD96    9.0   215    80    50   3.91 0.2975
WVFGRD96   10.0   215    80    50   3.91 0.2905
WVFGRD96   11.0   215    75    45   3.91 0.2842
WVFGRD96   12.0   215    75    45   3.91 0.2776
WVFGRD96   13.0   215    75    45   3.92 0.2707
WVFGRD96   14.0   215    75    40   3.91 0.2637
WVFGRD96   15.0   215    75    40   3.92 0.2573
WVFGRD96   16.0   215    75    40   3.92 0.2512
WVFGRD96   17.0   215    75    40   3.92 0.2452
WVFGRD96   18.0   215    75    40   3.92 0.2391
WVFGRD96   19.0   215    75    40   3.93 0.2335
WVFGRD96   20.0   215    75    40   3.93 0.2284
WVFGRD96   21.0   215    75    40   3.94 0.2232
WVFGRD96   22.0   215    75    40   3.94 0.2191
WVFGRD96   23.0   215    75    35   3.94 0.2158
WVFGRD96   24.0   215    75    35   3.95 0.2127
WVFGRD96   25.0   215    75    35   3.95 0.2096
WVFGRD96   26.0   215    75    35   3.96 0.2066
WVFGRD96   27.0   210    85    35   3.96 0.2037
WVFGRD96   28.0   210    85    35   3.97 0.2016
WVFGRD96   29.0   210    85    35   3.98 0.1994

The best solution is

WVFGRD96    2.0    20    80   -70   3.90 0.3813

The mechanism corresponding to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.05 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Mon Dec 7 00:25:15 CST 2015