Location

2011/07/21 06:20:11 60.042 -152.853 94 4.10 Alaska

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2011/07/21 06:20:11:0  60.04 -152.85  94.0 4.1 Alaska
 
 Stations used:
   AK.CNP AK.GHO AK.HOM AK.SAW AK.SSN AK.SWD AT.PMR AT.SVW2 
   II.KDAK 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 3.43e+22 dyne-cm
  Mw = 4.29 
  Z  = 112 km
  Plane   Strike  Dip  Rake
   NP1       55    70    50
   NP2      303    44   150
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.43e+22     49     282
    N   0.00e+00     37      71
    P  -3.43e+22     15     173

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.08e+22
       Mxy     8.49e+20
       Mxz     1.22e+22
       Myy     1.39e+22
       Myz    -1.77e+22
       Mzz     1.69e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------##----------------------          
           -##################---------------        
          #######################-----------##       
         ###########################-------####      
        ##############################----######     
        ########   #####################-#######     
       ######### T ####################--########    
       #########   ##################------######    
       ############################---------#####    
       ##########################-----------#####    
        ######################---------------###     
        ###################------------------###     
         ###############----------------------#      
          ##########--------------------------       
           ----------------------------------        
             ------------------------------          
              ---------------   ----------           
                 ------------ P -------              
                     --------   ---                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.69e+22   1.22e+22   1.77e+22 
  1.22e+22  -3.08e+22  -8.49e+20 
  1.77e+22  -8.49e+20   1.39e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110721062011/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 55
      DIP = 70
     RAKE = 50
       MW = 4.29
       HS = 112.0

The NDK file is 20110721062011.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2011/07/21 06:20:11:0  60.04 -152.85  94.0 4.1 Alaska
 
 Stations used:
   AK.CNP AK.GHO AK.HOM AK.SAW AK.SSN AK.SWD AT.PMR AT.SVW2 
   II.KDAK 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 3.43e+22 dyne-cm
  Mw = 4.29 
  Z  = 112 km
  Plane   Strike  Dip  Rake
   NP1       55    70    50
   NP2      303    44   150
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   3.43e+22     49     282
    N   0.00e+00     37      71
    P  -3.43e+22     15     173

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -3.08e+22
       Mxy     8.49e+20
       Mxz     1.22e+22
       Myy     1.39e+22
       Myz    -1.77e+22
       Mzz     1.69e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ----------------------------           
             ------##----------------------          
           -##################---------------        
          #######################-----------##       
         ###########################-------####      
        ##############################----######     
        ########   #####################-#######     
       ######### T ####################--########    
       #########   ##################------######    
       ############################---------#####    
       ##########################-----------#####    
        ######################---------------###     
        ###################------------------###     
         ###############----------------------#      
          ##########--------------------------       
           ----------------------------------        
             ------------------------------          
              ---------------   ----------           
                 ------------ P -------              
                     --------   ---                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.69e+22   1.22e+22   1.77e+22 
  1.22e+22  -3.08e+22  -8.49e+20 
  1.77e+22  -8.49e+20   1.39e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20110721062011/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Context

The next figure presents the focal mechanism for this earthquake (red) in the context of other events (blue) in the SLU Moment Tensor Catalog which are within ± 0.5 degrees of the new event. This comparison is shown in the left panel of the figure. The right panel shows the inferred direction of maximum compressive stress and the type of faulting (green is strike-slip, red is normal, blue is thrust; oblique is shown by a combination of colors).

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96   50.0    55    65     5   4.10 0.3193
WVFGRD96   51.0    55    60     5   4.11 0.3226
WVFGRD96   52.0    55    60     5   4.12 0.3258
WVFGRD96   53.0    60    70    10   4.14 0.3296
WVFGRD96   54.0   225    75   -30   4.12 0.3368
WVFGRD96   55.0   225    75   -30   4.13 0.3435
WVFGRD96   56.0   225    75   -30   4.14 0.3496
WVFGRD96   57.0   230    80   -30   4.16 0.3550
WVFGRD96   58.0   230    80   -30   4.16 0.3600
WVFGRD96   59.0   230    80   -30   4.17 0.3641
WVFGRD96   60.0   230    80   -30   4.18 0.3701
WVFGRD96   61.0   230    80   -30   4.18 0.3747
WVFGRD96   62.0   230    80   -30   4.19 0.3776
WVFGRD96   63.0   230    80   -30   4.19 0.3798
WVFGRD96   64.0   230    85   -30   4.19 0.3837
WVFGRD96   65.0   230    85   -30   4.19 0.3881
WVFGRD96   66.0   230    85   -30   4.20 0.3909
WVFGRD96   67.0    60    80    25   4.21 0.3925
WVFGRD96   68.0    60    80    25   4.21 0.3992
WVFGRD96   69.0    60    80    25   4.22 0.4043
WVFGRD96   70.0    60    75    35   4.20 0.4109
WVFGRD96   71.0    60    75    35   4.20 0.4196
WVFGRD96   72.0    60    70    35   4.19 0.4273
WVFGRD96   73.0    60    70    35   4.19 0.4331
WVFGRD96   74.0    60    70    35   4.20 0.4423
WVFGRD96   75.0    60    70    35   4.20 0.4492
WVFGRD96   76.0    60    70    35   4.21 0.4544
WVFGRD96   77.0    60    70    35   4.21 0.4630
WVFGRD96   78.0    60    70    40   4.21 0.4686
WVFGRD96   79.0    60    70    40   4.21 0.4755
WVFGRD96   80.0    60    70    40   4.22 0.4826
WVFGRD96   81.0    60    70    40   4.22 0.4873
WVFGRD96   82.0    60    70    40   4.23 0.4948
WVFGRD96   83.0    60    70    40   4.23 0.4996
WVFGRD96   84.0    60    70    40   4.23 0.5056
WVFGRD96   85.0    60    70    40   4.24 0.5114
WVFGRD96   86.0    60    70    40   4.24 0.5152
WVFGRD96   87.0    60    70    40   4.24 0.5218
WVFGRD96   88.0    60    70    40   4.24 0.5249
WVFGRD96   89.0    60    70    40   4.25 0.5310
WVFGRD96   90.0    60    65    40   4.23 0.5329
WVFGRD96   91.0    60    70    40   4.25 0.5398
WVFGRD96   92.0    60    65    40   4.24 0.5420
WVFGRD96   93.0    60    65    45   4.23 0.5483
WVFGRD96   94.0    60    65    45   4.24 0.5511
WVFGRD96   95.0    60    65    45   4.24 0.5575
WVFGRD96   96.0    60    65    45   4.24 0.5592
WVFGRD96   97.0    60    65    45   4.25 0.5652
WVFGRD96   98.0    60    65    45   4.25 0.5670
WVFGRD96   99.0    60    65    45   4.25 0.5716
WVFGRD96  100.0    60    65    45   4.25 0.5731
WVFGRD96  101.0    60    65    45   4.26 0.5780
WVFGRD96  102.0    60    65    45   4.26 0.5778
WVFGRD96  103.0    60    65    45   4.26 0.5830
WVFGRD96  104.0    60    65    45   4.26 0.5829
WVFGRD96  105.0    60    65    45   4.27 0.5860
WVFGRD96  106.0    60    65    45   4.27 0.5867
WVFGRD96  107.0    60    65    45   4.27 0.5881
WVFGRD96  108.0    60    65    45   4.27 0.5889
WVFGRD96  109.0    60    65    45   4.27 0.5892
WVFGRD96  110.0    60    65    45   4.28 0.5897
WVFGRD96  111.0    60    65    45   4.28 0.5883
WVFGRD96  112.0    55    70    50   4.29 0.5904
WVFGRD96  113.0    55    70    50   4.29 0.5887
WVFGRD96  114.0    55    70    50   4.29 0.5897
WVFGRD96  115.0    55    70    50   4.30 0.5887
WVFGRD96  116.0    55    70    50   4.30 0.5875
WVFGRD96  117.0    55    70    50   4.30 0.5865
WVFGRD96  118.0    55    70    50   4.30 0.5841
WVFGRD96  119.0    55    70    50   4.30 0.5831
WVFGRD96  120.0    55    70    50   4.31 0.5816
WVFGRD96  121.0    55    70    50   4.31 0.5792
WVFGRD96  122.0    50    70    50   4.30 0.5770
WVFGRD96  123.0    55    70    50   4.31 0.5733
WVFGRD96  124.0    50    70    50   4.30 0.5726
WVFGRD96  125.0    50    70    50   4.30 0.5700
WVFGRD96  126.0    50    70    50   4.30 0.5666
WVFGRD96  127.0    50    70    50   4.30 0.5653
WVFGRD96  128.0    50    70    50   4.31 0.5605
WVFGRD96  129.0    50    70    50   4.31 0.5592

The best solution is

WVFGRD96  112.0    55    70    50   4.29 0.5904

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Acknowledgements

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Nevada Reno, University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint Louis University, University of Memphis, Lamont Doherty Earth Observatory, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS model used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

Last Changed Sun Dec 6 20:49:55 CST 2015