Location

2010/09/15 16:06:41 59.8890 -153.0970 100.0 5.00

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2010/09/15 16:06:41:0  59.89 -153.10 100.0 5.0 
 
 Stations used:
   AK.BRLK AK.CNP AK.FID AK.GLI AK.RC01 AK.SAW AK.SCM AK.SII 
   AK.SSN AK.SWD AT.OHAK AT.PMR AT.SVW2 AT.TTA 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.05 n 3
 
 Best Fitting Double Couple
  Mo = 1.46e+23 dyne-cm
  Mw = 4.71 
  Z  = 117 km
  Plane   Strike  Dip  Rake
   NP1       70    75    50
   NP2      323    42   157
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.46e+23     45     300
    N   0.00e+00     38      82
    P  -1.46e+23     20     189

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.08e+23
       Mxy    -5.15e+22
       Mxz     8.28e+22
       Myy     5.18e+22
       Myz    -5.60e+22
       Mzz     5.60e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ############----------------           
             #################-------------          
           ######################------------        
          #########################-----------       
         ########   #################----------      
        ######### T ##################---------#     
        #########   ###################------###     
       #################################--#######    
       ################################--########    
       #############################------#######    
       ########################-----------#######    
        ##################----------------######     
        ###########------------------------#####     
         ----------------------------------####      
          ---------------------------------###       
           -------------------------------###        
             -----------   ---------------#          
              ---------- P --------------#           
                 -------   ------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.60e+22   8.28e+22   5.60e+22 
  8.28e+22  -1.08e+23   5.15e+22 
  5.60e+22   5.15e+22   5.18e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100915160641/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 70
      DIP = 75
     RAKE = 50
       MW = 4.71
       HS = 117.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2010/09/15 16:06:41:0  59.89 -153.10 100.0 5.0 
 
 Stations used:
   AK.BRLK AK.CNP AK.FID AK.GLI AK.RC01 AK.SAW AK.SCM AK.SII 
   AK.SSN AK.SWD AT.OHAK AT.PMR AT.SVW2 AT.TTA 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.05 n 3
 
 Best Fitting Double Couple
  Mo = 1.46e+23 dyne-cm
  Mw = 4.71 
  Z  = 117 km
  Plane   Strike  Dip  Rake
   NP1       70    75    50
   NP2      323    42   157
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.46e+23     45     300
    N   0.00e+00     38      82
    P  -1.46e+23     20     189

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -1.08e+23
       Mxy    -5.15e+22
       Mxz     8.28e+22
       Myy     5.18e+22
       Myz    -5.60e+22
       Mzz     5.60e+22
                                                     
                                                     
                                                     
                                                     
                     --------------                  
                 ----------------------              
              ############----------------           
             #################-------------          
           ######################------------        
          #########################-----------       
         ########   #################----------      
        ######### T ##################---------#     
        #########   ###################------###     
       #################################--#######    
       ################################--########    
       #############################------#######    
       ########################-----------#######    
        ##################----------------######     
        ###########------------------------#####     
         ----------------------------------####      
          ---------------------------------###       
           -------------------------------###        
             -----------   ---------------#          
              ---------- P --------------#           
                 -------   ------------              
                     --------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  5.60e+22   8.28e+22   5.60e+22 
  8.28e+22  -1.08e+23   5.15e+22 
  5.60e+22   5.15e+22   5.18e+22 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100915160641/index.html
	


        

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.05 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96   90.0    70    80    35   4.67 0.4399
WVFGRD96   91.0    70    80    35   4.67 0.4420
WVFGRD96   92.0    70    80    35   4.67 0.4437
WVFGRD96   93.0    70    80    40   4.67 0.4455
WVFGRD96   94.0    70    80    40   4.68 0.4474
WVFGRD96   95.0    70    80    40   4.68 0.4488
WVFGRD96   96.0    70    80    40   4.68 0.4505
WVFGRD96   97.0    70    80    40   4.68 0.4513
WVFGRD96   98.0    70    80    40   4.68 0.4526
WVFGRD96   99.0    70    80    40   4.68 0.4535
WVFGRD96  100.0    70    80    45   4.69 0.4544
WVFGRD96  101.0    70    80    45   4.69 0.4552
WVFGRD96  102.0    70    80    45   4.69 0.4561
WVFGRD96  103.0    70    75    40   4.70 0.4568
WVFGRD96  104.0    70    75    40   4.70 0.4576
WVFGRD96  105.0    70    75    40   4.70 0.4585
WVFGRD96  106.0    70    75    45   4.70 0.4594
WVFGRD96  107.0    70    75    45   4.70 0.4602
WVFGRD96  108.0    70    75    45   4.70 0.4608
WVFGRD96  109.0    70    75    45   4.71 0.4616
WVFGRD96  110.0    70    75    45   4.71 0.4620
WVFGRD96  111.0    70    75    45   4.71 0.4624
WVFGRD96  112.0    70    75    45   4.71 0.4625
WVFGRD96  113.0    70    75    50   4.71 0.4628
WVFGRD96  114.0    70    75    50   4.71 0.4629
WVFGRD96  115.0    70    75    50   4.71 0.4634
WVFGRD96  116.0    70    75    50   4.71 0.4633
WVFGRD96  117.0    70    75    50   4.71 0.4636
WVFGRD96  118.0    70    75    50   4.72 0.4633
WVFGRD96  119.0    70    75    50   4.72 0.4632
WVFGRD96  120.0    70    75    50   4.72 0.4631
WVFGRD96  121.0    70    75    55   4.72 0.4627
WVFGRD96  122.0    70    75    55   4.72 0.4625
WVFGRD96  123.0    70    75    55   4.72 0.4623
WVFGRD96  124.0    70    75    55   4.72 0.4621
WVFGRD96  125.0    70    75    55   4.72 0.4614
WVFGRD96  126.0    70    75    55   4.72 0.4614
WVFGRD96  127.0    70    75    55   4.72 0.4604
WVFGRD96  128.0    70    75    55   4.72 0.4601
WVFGRD96  129.0    70    75    55   4.72 0.4593

The best solution is

WVFGRD96  117.0    70    75    50   4.71 0.4636

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.05 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Thu Sep 16 15:47:23 CDT 2010

Last Changed 2010/09/15