Location

2010/09/12 22:20:30 43.1210 -110.7600 6.9 4.00 Wyoming

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2010/09/12 22:20:30:0  43.12 -110.76   6.9 4.0 Wyoming
 
 Stations used:
   IW.DLMT IW.FLWY IW.FXWY IW.IMW IW.LOHW IW.MOOW IW.REDW 
   IW.SNOW TA.H17A TA.H19A TA.I19A TA.I20A US.AHID US.BW06 
   US.HLID US.HWUT US.RLMT UU.BGU UU.HVU UU.SPU 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 8.04e+21 dyne-cm
  Mw = 3.87 
  Z  = 11 km
  Plane   Strike  Dip  Rake
   NP1      168    58   -116
   NP2       30    40   -55
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.04e+21     10     276
    N   0.00e+00     22     182
    P  -8.04e+21     66      28

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -9.45e+20
       Mxy    -1.33e+21
       Mxz    -2.49e+21
       Myy     7.43e+21
       Myz    -2.76e+21
       Mzz    -6.48e+21
                                                     
                                                     
                                                     
                                                     
                     ##------------                  
                 #####-----------------              
              #######-------------------##           
             #######---------------------##          
           #########---------------------####        
          ##########----------------------####       
         ##########-----------------------#####      
        ###########----------   ----------######     
           ########---------- P ----------######     
       # T ########----------   ----------#######    
       #   #########----------------------#######    
       #############---------------------########    
       #############--------------------#########    
        #############-------------------########     
        ##############-----------------#########     
         #############---------------##########      
          #############-------------##########       
           #############----------###########        
             ############-------###########          
              #############--#############           
                 #######-----##########              
                     ----------####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -6.48e+21  -2.49e+21   2.76e+21 
 -2.49e+21  -9.45e+20   1.33e+21 
  2.76e+21   1.33e+21   7.43e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100912222030/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 30
      DIP = 40
     RAKE = -55
       MW = 3.87
       HS = 11.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
USGSMT
 USGS/SLU Moment Tensor Solution
 ENS  2010/09/12 22:20:30:0  43.12 -110.76   6.9 4.0 Wyoming
 
 Stations used:
   IW.DLMT IW.FLWY IW.FXWY IW.IMW IW.LOHW IW.MOOW IW.REDW 
   IW.SNOW TA.H17A TA.H19A TA.I19A TA.I20A US.AHID US.BW06 
   US.HLID US.HWUT US.RLMT UU.BGU UU.HVU UU.SPU 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 8.04e+21 dyne-cm
  Mw = 3.87 
  Z  = 11 km
  Plane   Strike  Dip  Rake
   NP1      168    58   -116
   NP2       30    40   -55
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   8.04e+21     10     276
    N   0.00e+00     22     182
    P  -8.04e+21     66      28

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -9.45e+20
       Mxy    -1.33e+21
       Mxz    -2.49e+21
       Myy     7.43e+21
       Myz    -2.76e+21
       Mzz    -6.48e+21
                                                     
                                                     
                                                     
                                                     
                     ##------------                  
                 #####-----------------              
              #######-------------------##           
             #######---------------------##          
           #########---------------------####        
          ##########----------------------####       
         ##########-----------------------#####      
        ###########----------   ----------######     
           ########---------- P ----------######     
       # T ########----------   ----------#######    
       #   #########----------------------#######    
       #############---------------------########    
       #############--------------------#########    
        #############-------------------########     
        ##############-----------------#########     
         #############---------------##########      
          #############-------------##########       
           #############----------###########        
             ############-------###########          
              #############--#############           
                 #######-----##########              
                     ----------####                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -6.48e+21  -2.49e+21   2.76e+21 
 -2.49e+21  -9.45e+20   1.33e+21 
  2.76e+21   1.33e+21   7.43e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100912222030/index.html
	
USGS/SLU Regional Moment Solution

 10/09/12 22:20:30   
 WYOMING                         
 Epicenter:  43.120 -110.760
 MW 3.9

 USGS/SLU REGIONAL MOMENT TENSOR
 Depth   9         No. of sta: 20
 Moment Tensor;   Scale 10**14 Nm
   Mrr=-5.39       Mtt=-0.10
   Mpp= 5.49       Mrt=-0.78
   Mrp= 5.36       Mtp= 1.17
  Principal axes:
   T  Val=  7.77  Plg=22  Azm=276
   N        0.00      10      182
   P       -7.77      66       68

 Best Double Couple:Mo=7.8*10**14
  NP1:Strike=178 Dip=67 Slip=-101
  NP2:        25     25       -65
                                      
               ###----                
          #######---------#           
        ########------------#         
      #########--------------##       
    ###########---------------###     
   ############----------------###    
   ###########-----------------###    
  ##   #######-------   -------####   
  ## T #######------- P -------####   
  ##   #######-------   -------####   
  ############-----------------####   
  #############---------------#####   
   ############--------------#####    
   ############-------------######    
    ############-----------######     
      ##########---------######       
        #########------######         
          ########-########           
               ----###                
                                      


        

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   230    70   -20   3.46 0.2979
WVFGRD96    1.0   235    85    -5   3.44 0.3092
WVFGRD96    2.0   230    70   -20   3.58 0.3592
WVFGRD96    3.0   230    65   -20   3.62 0.3772
WVFGRD96    4.0   230    65   -20   3.64 0.3875
WVFGRD96    5.0    40    40   -35   3.75 0.4158
WVFGRD96    6.0    35    30   -45   3.78 0.4442
WVFGRD96    7.0    35    35   -50   3.79 0.4616
WVFGRD96    8.0    30    35   -55   3.87 0.5027
WVFGRD96    9.0    30    35   -55   3.87 0.5156
WVFGRD96   10.0    30    35   -55   3.87 0.5201
WVFGRD96   11.0    30    40   -55   3.87 0.5218
WVFGRD96   12.0    35    40   -50   3.87 0.5187
WVFGRD96   13.0    35    40   -50   3.87 0.5119
WVFGRD96   14.0    35    45   -50   3.87 0.5031
WVFGRD96   15.0    40    45   -45   3.86 0.4934
WVFGRD96   16.0    45    50   -35   3.86 0.4830
WVFGRD96   17.0    45    50   -35   3.86 0.4740
WVFGRD96   18.0    45    50   -35   3.87 0.4638
WVFGRD96   19.0    45    55   -35   3.87 0.4535
WVFGRD96   20.0    45    55   -35   3.88 0.4431
WVFGRD96   21.0    45    55   -35   3.89 0.4368
WVFGRD96   22.0    45    55   -35   3.90 0.4259
WVFGRD96   23.0    45    55   -35   3.90 0.4145
WVFGRD96   24.0    50    60   -25   3.91 0.4040
WVFGRD96   25.0    50    60   -25   3.91 0.3933
WVFGRD96   26.0    50    60   -25   3.92 0.3823
WVFGRD96   27.0    50    60   -25   3.93 0.3713
WVFGRD96   28.0    50    65   -20   3.93 0.3607
WVFGRD96   29.0    50    65   -20   3.94 0.3499

The best solution is

WVFGRD96   11.0    30    40   -55   3.87 0.5218

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Mon Sep 13 11:01:45 CDT 2010

Last Changed 2010/09/12