Location

SLU LOCATION

2010/08/21 14:54:49 44.27 -115.42 10.0 3.60 Idaho

The program elocate was used with the WUS model to locate this earthquake. Because of the small number of good quality first arrivals, the location is not the best. The SLU location is elocate.txt. This location is preferred because of the smaller time shifts with respect the WUS model predicted P-wave first arrival time in the waveform modeling that for the NEIC location. The SH pulses were the best signal. The NEIC lcoation required the predicted trace to be shifted 2.25, -4.00, -6.25 -3.50 seconds for the stations PLID, MFID, HLID and DLMT, which the SLU location required times shifts of -1.25, 0.25, -1.00 and -0.25 seconds. The SLU location is preferred on the basis of the waveforms fit.

NEIC INITIAL LOCATION

2010/08/21 14:54:50 44.346 -115.564 5.0 3.60

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2010/08/21 14:54:49:7  44.27 -115.42  10.0 3.6 Idaho
 
 Stations used:
   IW.DLMT IW.FLWY IW.FXWY IW.LOHW IW.MFID IW.PLID IW.TPAW 
   US.HLID 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.58e+21 dyne-cm
  Mw = 3.40 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      340    80   -45
   NP2       80    46   -166
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.58e+21     22      37
    N   0.00e+00     44     150
    P  -1.58e+21     38     289

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     7.54e+20
       Mxy     9.69e+20
       Mxz     1.77e+20
       Myy    -3.71e+20
       Myz     1.06e+21
       Mzz    -3.83e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 -----#################              
              ----------############   ###           
             ------------########### T ####          
           ---------------##########   ######        
          -----------------###################       
         ------------------####################      
        ------   -----------####################     
        ------ P ------------###################     
       -------   -------------##################-    
       -----------------------#################--    
       ------------------------###############---    
       -------------------------#############----    
        ------------------------###########-----     
        ##-----------------------########-------     
         ####--------------------#####---------      
          #######----------------#------------       
           #######################-----------        
             ######################--------          
              #####################-------           
                 ##################----              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.83e+20   1.77e+20  -1.06e+21 
  1.77e+20   7.54e+20  -9.69e+20 
 -1.06e+21  -9.69e+20  -3.71e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100821145449/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 340
      DIP = 80
     RAKE = -45
       MW = 3.40
       HS = 9.0

The waveform inversion with the SLU location is preferred. The second pass at the inversion dropped some Z and R channels which seem to have been noise.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 USGS/SLU Moment Tensor Solution
 ENS  2010/08/21 14:54:49:7  44.27 -115.42  10.0 3.6 Idaho
 
 Stations used:
   IW.DLMT IW.FLWY IW.FXWY IW.LOHW IW.MFID IW.PLID IW.TPAW 
   US.HLID 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.58e+21 dyne-cm
  Mw = 3.40 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      340    80   -45
   NP2       80    46   -166
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.58e+21     22      37
    N   0.00e+00     44     150
    P  -1.58e+21     38     289

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     7.54e+20
       Mxy     9.69e+20
       Mxz     1.77e+20
       Myy    -3.71e+20
       Myz     1.06e+21
       Mzz    -3.83e+20
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 -----#################              
              ----------############   ###           
             ------------########### T ####          
           ---------------##########   ######        
          -----------------###################       
         ------------------####################      
        ------   -----------####################     
        ------ P ------------###################     
       -------   -------------##################-    
       -----------------------#################--    
       ------------------------###############---    
       -------------------------#############----    
        ------------------------###########-----     
        ##-----------------------########-------     
         ####--------------------#####---------      
          #######----------------#------------       
           #######################-----------        
             ######################--------          
              #####################-------           
                 ##################----              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.83e+20   1.77e+20  -1.06e+21 
  1.77e+20   7.54e+20  -9.69e+20 
 -1.06e+21  -9.69e+20  -3.71e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20100821145449/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   175    65    35   2.91 0.2062
WVFGRD96    1.0   170    85     5   2.92 0.2360
WVFGRD96    2.0   345    85     0   3.11 0.4178
WVFGRD96    3.0   345    85    -5   3.18 0.4793
WVFGRD96    4.0   165    90    20   3.23 0.5068
WVFGRD96    5.0   345    80   -25   3.27 0.5298
WVFGRD96    6.0   345    85   -35   3.31 0.5418
WVFGRD96    7.0   345    85   -35   3.33 0.5492
WVFGRD96    8.0   340    80   -45   3.39 0.5528
WVFGRD96    9.0   340    80   -45   3.40 0.5531
WVFGRD96   10.0   340    80   -45   3.42 0.5510
WVFGRD96   11.0   340    80   -45   3.43 0.5468
WVFGRD96   12.0   340    80   -40   3.42 0.5421
WVFGRD96   13.0   165    90   -40   3.44 0.5385
WVFGRD96   14.0   165    90   -40   3.45 0.5353
WVFGRD96   15.0   165    90   -35   3.44 0.5328
WVFGRD96   16.0   165    90   -35   3.45 0.5304
WVFGRD96   17.0   165    90   -35   3.46 0.5281
WVFGRD96   18.0   165    90   -35   3.47 0.5254
WVFGRD96   19.0   165    90   -35   3.48 0.5224
WVFGRD96   20.0   165    90   -30   3.48 0.5203
WVFGRD96   21.0   165    90   -30   3.49 0.5184
WVFGRD96   22.0   165    90   -30   3.50 0.5164
WVFGRD96   23.0   165    90   -30   3.51 0.5139
WVFGRD96   24.0   165    90   -30   3.52 0.5110
WVFGRD96   25.0   165    90   -30   3.52 0.5077
WVFGRD96   26.0   165    85   -25   3.52 0.5036
WVFGRD96   27.0   345    80    10   3.51 0.5002
WVFGRD96   28.0   345    90    30   3.55 0.4950
WVFGRD96   29.0   345    90    30   3.55 0.4894

The best solution is

WVFGRD96    9.0   340    80   -45   3.40 0.5531

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Sat Aug 21 13:08:58 CDT 2010

Last Changed 2010/08/21