Location

2009/10/09 22:13:54 35.9630 -114.5460 11.0 3.90 Arizona

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/10/09 22:13:54:0  35.96 -114.55  11.0 3.9 Arizona
 
 Stations used:
   BK.CMB CI.GLA CI.GSC CI.ISA CI.LDF II.PFO IU.TUC TA.R11A 
   TA.U20A TA.V20A TA.W18A TA.Y12C US.DUG 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.95e+21 dyne-cm
  Mw = 3.46 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      105    85    20
   NP2       13    70   175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.95e+21     18     331
    N   0.00e+00     69     118
    P  -1.95e+21     10     237

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     8.05e+20
       Mxy    -1.61e+21
       Mxz     6.76e+20
       Myy    -9.20e+20
       Myz     1.57e+19
       Mzz     1.16e+20
                                                     
                                                     
                                                     
                                                     
                     ############--                  
                 #   #############-----              
              #### T #############--------           
             #####   #############---------          
           #######################-----------        
          ########################------------       
         #########################-------------      
        ##########################--------------     
        --########################--------------     
       -------####################---------------    
       -------------#############----------------    
       --------------------######----------------    
       --------------------------#---------------    
        ------------------------###########-----     
        -----------------------#################     
         --   -----------------################      
          - P ----------------################       
              ---------------################        
             ---------------###############          
              -------------###############           
                 ---------#############              
                     ---###########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.16e+20   6.76e+20  -1.57e+19 
  6.76e+20   8.05e+20   1.61e+21 
 -1.57e+19   1.61e+21  -9.20e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20091009221354/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 105
      DIP = 85
     RAKE = 20
       MW = 3.46
       HS = 9.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
UNR
 USGS/SLU Moment Tensor Solution
 ENS  2009/10/09 22:13:54:0  35.96 -114.55  11.0 3.9 Arizona
 
 Stations used:
   BK.CMB CI.GLA CI.GSC CI.ISA CI.LDF II.PFO IU.TUC TA.R11A 
   TA.U20A TA.V20A TA.W18A TA.Y12C US.DUG 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.95e+21 dyne-cm
  Mw = 3.46 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      105    85    20
   NP2       13    70   175
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.95e+21     18     331
    N   0.00e+00     69     118
    P  -1.95e+21     10     237

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     8.05e+20
       Mxy    -1.61e+21
       Mxz     6.76e+20
       Myy    -9.20e+20
       Myz     1.57e+19
       Mzz     1.16e+20
                                                     
                                                     
                                                     
                                                     
                     ############--                  
                 #   #############-----              
              #### T #############--------           
             #####   #############---------          
           #######################-----------        
          ########################------------       
         #########################-------------      
        ##########################--------------     
        --########################--------------     
       -------####################---------------    
       -------------#############----------------    
       --------------------######----------------    
       --------------------------#---------------    
        ------------------------###########-----     
        -----------------------#################     
         --   -----------------################      
          - P ----------------################       
              ---------------################        
             ---------------###############          
              -------------###############           
                 ---------#############              
                     ---###########                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.16e+20   6.76e+20  -1.57e+19 
  6.76e+20   8.05e+20   1.61e+21 
 -1.57e+19   1.61e+21  -9.20e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20091009221354/index.html
	
University of Nevada Reno Moment Tenor Solution

Locl Magnitude 3.9 - local magnitude (ML)
Moment Magnitude 3.49 - (Mw)
Event Location Google Map 39.963 -114.546
Friday, October 9, 2009 at 3:13:54 PM (PDT)
Friday, October 9, 2009 at 22:13:54.18 (UTC)
31 km from Boulder City, NV (19 miles) Azimuth E (85 degrees)
61 km from Las Vegas, NV (41 miles) Azimuth ESE (113 degrees)

Event ID: 294871
Map: Event Station Geometry

Best Fit Solution
Event ID: 294871
Date: 2009/10/09,22:13:54
Waveform Fits

Seismic Moment Tensor Solution

2009/10/09 (282) 22:13:52.00 35.9628 -114.5455 684215
	Depth =   8.0 (km)
	Mw    =  3.49
	Mo    =  2.12x10^21 (dyne x cm)

	Percent Double Couple =  90 %
	Percent CLVD          =  10 %
	no ISO calculated
	Epsilon=0.05
	 Percent Variance Reduction =  60.01 %
	 Total Fit                  =  5.34 
	Major Double Couple
		            strike dip   rake
		Nodal Plane 1:  18  74 -178
		Nodal Plane 2: 288  89  -16

	DEVIATORIC MOMENT TENSOR

	Moment Tensor Elements: Spherical Coordinates
		Mrr=  0.07 Mtt=  1.14 Mff= -1.21
		Mrt=  0.53 Mrf= -0.27 Mtf=  1.65 EXP=21


	Moment Tensor Elements: Cartesian Coordinates
		 1.14 -1.65  0.53
		-1.65 -1.21  0.27
		 0.53  0.27  0.07

	Eigenvalues:
		T-axis eigenvalue=  2.06
		N-axis eigenvalue=  0.11
		P-axis eigenvalue= -2.17

	Eigenvalues and eigenvectors of the Major Double Couple:
		T-axis ev= 2.06 trend=334 plunge=10
		N-axis ev= 0.00 trend=102 plunge=74
		P-axis ev=-2.06 trend=242 plunge=12

	Maximum Azmuithal Gap=243 Distance to Nearest Station=165.7 (km)

	Number of Stations (D=Displacement/V=Velocity) Used=4 (defining only)
		
	 GMR.CI.D PDM.CI.D FUR.CI.D Y12C.TA.D


              ################-                             
          T ##################-----                         
        #   ##################-------                       
      ########################---------                     
     #########################----------                    
    ##########################-----------                   
  -###########################-------------                 
  ############################-------------                 
 -###########################---------------                
 ------######################---------------                
 -----------################----------------                
 -----------------##########----------------                
 ----------------------#######--------------                
 ------------------------##########---------                
 ------------------------###############----                
 -----------------------####################                
   --------------------####################                 
 P -------------------#####################                 
   ------------------#####################                  
     ----------------####################                   
      -------------####################                     
        ----------###################                       
          ------###################                         
              -#################                            
                      #                                     


All Stations defining and nondefining: 
Station.Net 	Def 	Distance 	Azi    	Bazi  	lo-f 	hi-f vmodel
            	    	(km)     	(deg)  	(deg) 	(Hz) 	(Hz)    
GMR.CI (D) 	Y 	   165.7  	218  	 37  	0.020 	0.080 GMR.CI.wus.glib
PDM.CI (D) 	Y 	   188.4  	169  	349  	0.020 	0.080 PDM.CI.wus.glib
FUR.CI (D) 	Y 	   215.0  	286  	105  	0.020 	0.080 FUR.CI.wus.glib
Y12C.TA (D) 	Y 	   245.9  	179  	359  	0.020 	0.080 Y12C.TA.wus.glib

 (V)-velocity (D)-Displacement

Author: ken  (Gene Inchinose MTINV Moment Tensor Solution Package)
Date: 2009/10/10 03:35:47

mtinv Version 2.1_DEVEL OCT2008



Velocity Model: Western US Ritsema and Lay 1995 JGR. Z P QP S QS rho 4.00 4.52 500.00 2.61 250.00 2.39 28.00 6.21 500.00 3.59 250.00 2.76 20.00 7.73 1000.00 4.34 500.00 3.22 700.00 7.64 1000.00 4.29 500.00 3.19

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5   275    70   -10   3.09 0.2061
WVFGRD96    1.0    95    90     0   3.13 0.2319
WVFGRD96    2.0   100    80   -10   3.26 0.3490
WVFGRD96    3.0   105    90     5   3.30 0.3919
WVFGRD96    4.0   285    90   -10   3.33 0.4148
WVFGRD96    5.0   285    90   -15   3.37 0.4291
WVFGRD96    6.0   105    85    20   3.40 0.4407
WVFGRD96    7.0   105    85    20   3.42 0.4473
WVFGRD96    8.0   105    85    20   3.44 0.4520
WVFGRD96    9.0   105    85    20   3.46 0.4531
WVFGRD96   10.0   105    85    20   3.47 0.4530
WVFGRD96   11.0   105    85    20   3.49 0.4517
WVFGRD96   12.0   105    85    15   3.50 0.4498
WVFGRD96   13.0   105    90    15   3.51 0.4487
WVFGRD96   14.0   105    90    15   3.52 0.4468
WVFGRD96   15.0   105    90    15   3.53 0.4445
WVFGRD96   16.0   105    90    15   3.54 0.4414
WVFGRD96   17.0   285    90   -15   3.55 0.4374
WVFGRD96   18.0   285    85   -15   3.56 0.4335
WVFGRD96   19.0   285    85   -15   3.57 0.4298
WVFGRD96   20.0   285    70    10   3.58 0.4249
WVFGRD96   21.0   285    75    10   3.59 0.4212
WVFGRD96   22.0   285    75    10   3.60 0.4165
WVFGRD96   23.0   285    75    10   3.60 0.4110
WVFGRD96   24.0   285    70    10   3.61 0.4050
WVFGRD96   25.0   285    70    10   3.62 0.3993
WVFGRD96   26.0   285    70    10   3.63 0.3924
WVFGRD96   27.0   285    70    10   3.63 0.3845
WVFGRD96   28.0   290    65    15   3.64 0.3770
WVFGRD96   29.0   285    70    15   3.65 0.3692

The best solution is

WVFGRD96    9.0   105    85    20   3.46 0.4531

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Sun Oct 11 09:22:11 CDT 2009

Last Changed 2009/10/09