Location

2009/08/18 02:50:16 40.62 -107.64 10.0 4.40 Colorado

Arrival Times (from USGS)

Arrival time list

SLU Location

After an initial inversion run, large time shifts were required. We picked arrivals form the permanent and the TA network for use with the elocate programs and the CUS model. The SLU location isabout 0.1 degree west of the initial NEIC location. I prefer the SLU location because the waveform time shifts are no longer as large as -4 seconds at short distances.

Output of elocate

Felt Map

USGS Felt map for this earthquake

USGS Felt reports main page

Focal Mechanism

 USGS/SLU Moment Tensor Solution
 ENS  2009/08/18 02:50:16:7  40.62 -107.64  10.0 4.4 Colorado
 
 Stations used:
   IW.SMCO TA.L19A TA.L21A TA.L22A TA.L23A TA.M19A TA.M20A 
   TA.M21A TA.M22A TA.M23A TA.M24A TA.N20A TA.N22A TA.N23A 
   TA.N24A TA.N25A TA.O19A TA.O20A TA.O22A TA.O23A TA.O24A 
   TA.O25A TA.P19A TA.P20A TA.P21A TA.P22A TA.P23A TA.P24A 
   TA.P25A TA.Q21A TA.Q22A TA.Q23A TA.R21A TA.R22A TA.R23A 
   US.ISCO 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 4.32e+21 dyne-cm
  Mw = 3.69 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1      247    74   -143
   NP2      145    55   -20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.32e+21     12      12
    N   0.00e+00     50     267
    P  -4.32e+21     37     111

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.58e+21
       Mxy     1.79e+21
       Mxz     1.62e+21
       Myy    -2.19e+21
       Myz    -1.75e+21
       Mzz    -1.39e+21
                                                     
                                                     
                                                     
                                                     
                     #########   ##                  
                 ############# T ######              
              --##############   #########           
             --############################          
           ----##############################        
          -----###############################       
         ------################################      
        --------##################--------------     
        --------############--------------------     
       ----------#######-------------------------    
       ----------###-----------------------------    
       ----------#-------------------------------    
       --------####--------------------   -------    
        ----########------------------- P ------     
        --############-----------------   ------     
         ##############------------------------      
          ###############---------------------       
           ################------------------        
             #################-------------          
              ####################--------           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.39e+21   1.62e+21   1.75e+21 
  1.62e+21   3.58e+21  -1.79e+21 
  1.75e+21  -1.79e+21  -2.19e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090818025016/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 145
      DIP = 55
     RAKE = -20
       MW = 3.69
       HS = 18.0

The location is the SLU location and not that of initial NEIC. The difference is a shift of about 7 km to the SW. All waveform inversion solutions, e.g., using CUS or WUS models, using the 0.02 - 0.10 or 0.02 - 0.06 Hz gave a depth near 16 km and about the same moment magnitude, the same orientations of the P and T axes. However the 0.02 - 0.10 Hz band gave an almost pure thrust event while the 0.02 - 0.06 Hz band gave an oblique solution. Because the location straddles two velocity regions, we use the lower frequency band and the WUS model, which gives a slightly better fit.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
FIRSTMOTION
 USGS/SLU Moment Tensor Solution
 ENS  2009/08/18 02:50:16:7  40.62 -107.64  10.0 4.4 Colorado
 
 Stations used:
   IW.SMCO TA.L19A TA.L21A TA.L22A TA.L23A TA.M19A TA.M20A 
   TA.M21A TA.M22A TA.M23A TA.M24A TA.N20A TA.N22A TA.N23A 
   TA.N24A TA.N25A TA.O19A TA.O20A TA.O22A TA.O23A TA.O24A 
   TA.O25A TA.P19A TA.P20A TA.P21A TA.P22A TA.P23A TA.P24A 
   TA.P25A TA.Q21A TA.Q22A TA.Q23A TA.R21A TA.R22A TA.R23A 
   US.ISCO 
 
 Filtering commands used:
   hp c 0.02 n 3
   lp c 0.06 n 3
 
 Best Fitting Double Couple
  Mo = 4.32e+21 dyne-cm
  Mw = 3.69 
  Z  = 18 km
  Plane   Strike  Dip  Rake
   NP1      247    74   -143
   NP2      145    55   -20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.32e+21     12      12
    N   0.00e+00     50     267
    P  -4.32e+21     37     111

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.58e+21
       Mxy     1.79e+21
       Mxz     1.62e+21
       Myy    -2.19e+21
       Myz    -1.75e+21
       Mzz    -1.39e+21
                                                     
                                                     
                                                     
                                                     
                     #########   ##                  
                 ############# T ######              
              --##############   #########           
             --############################          
           ----##############################        
          -----###############################       
         ------################################      
        --------##################--------------     
        --------############--------------------     
       ----------#######-------------------------    
       ----------###-----------------------------    
       ----------#-------------------------------    
       --------####--------------------   -------    
        ----########------------------- P ------     
        --############-----------------   ------     
         ##############------------------------      
          ###############---------------------       
           ################------------------        
             #################-------------          
              ####################--------           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.39e+21   1.62e+21   1.75e+21 
  1.62e+21   3.58e+21  -1.79e+21 
  1.75e+21  -1.79e+21  -2.19e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.NA/20090818025016/index.html
	
First motion plot using elocate take-off angles and azimuths

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.02 n 3
lp c 0.06 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    0.5    25    45   -90   3.27 0.2292
WVFGRD96    1.0   205    45   -85   3.31 0.2160
WVFGRD96    2.0    20    45   -90   3.40 0.2528
WVFGRD96    3.0   155    60    25   3.41 0.2514
WVFGRD96    4.0   150    50    10   3.46 0.2605
WVFGRD96    5.0   140    35   -15   3.51 0.2882
WVFGRD96    6.0   140    40   -15   3.52 0.3233
WVFGRD96    7.0   135    40   -25   3.54 0.3555
WVFGRD96    8.0   135    35   -25   3.60 0.3783
WVFGRD96    9.0   135    40   -30   3.62 0.4073
WVFGRD96   10.0   135    45   -35   3.63 0.4330
WVFGRD96   11.0   135    45   -35   3.64 0.4534
WVFGRD96   12.0   140    50   -30   3.64 0.4700
WVFGRD96   13.0   140    50   -30   3.65 0.4821
WVFGRD96   14.0   140    50   -25   3.66 0.4911
WVFGRD96   15.0   140    55   -25   3.67 0.4969
WVFGRD96   16.0   140    55   -25   3.68 0.5013
WVFGRD96   17.0   145    55   -20   3.68 0.5035
WVFGRD96   18.0   145    55   -20   3.69 0.5039
WVFGRD96   19.0   145    55   -20   3.69 0.5024
WVFGRD96   20.0   145    60   -20   3.70 0.4998
WVFGRD96   21.0   145    55   -20   3.71 0.4951
WVFGRD96   22.0   145    55   -15   3.72 0.4902
WVFGRD96   23.0   145    55   -15   3.72 0.4843
WVFGRD96   24.0   145    60   -15   3.73 0.4773
WVFGRD96   25.0   145    60   -15   3.74 0.4699
WVFGRD96   26.0   145    55   -10   3.74 0.4619
WVFGRD96   27.0   145    60   -15   3.75 0.4538
WVFGRD96   28.0   145    60   -15   3.76 0.4452
WVFGRD96   29.0   150    55    10   3.76 0.4357

The best solution is

WVFGRD96   18.0   145    55   -20   3.69 0.5039

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted componnet is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. The number in black at the rightr of each predicted traces it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The bandpass filter used in the processing and for the display was

hp c 0.02 n 3
lp c 0.06 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

Discussion

The Future

Should the national backbone of the USGS Advanced National Seismic System (ANSS) be implemented with an interstation separation of 300 km, it is very likely that an earthquake such as this would have been recorded at distances on the order of 100-200 km. This means that the closest station would have information on source depth and mechanism that was lacking here.

Acknowledgements

Dr. Harley Benz, USGS, provided the USGS USNSN digital data. The digital data used in this study were provided by Natural Resources Canada through their AUTODRM site http://www.seismo.nrcan.gc.ca/nwfa/autodrm/autodrm_req_e.php, and IRIS using their BUD interface.

Thanks also to the many seismic network operators whose dedication make this effort possible: University of Alaska, University of Washington, Oregon State University, University of Utah, Montana Bureas of Mines, UC Berkely, Caltech, UC San Diego, Saint L ouis University, Universityof Memphis, Lamont Doehrty Earth Observatory, Boston College, the Iris stations and the Transportable Array of EarthScope.

Velocity Model

The WUS used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
Model after     8 iterations
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.9000     3.4065     2.0089     2.2150  0.302E-02  0.679E-02   0.00       0.00       1.00       1.00    
     6.1000     5.5445     3.2953     2.6089  0.349E-02  0.784E-02   0.00       0.00       1.00       1.00    
    13.0000     6.2708     3.7396     2.7812  0.212E-02  0.476E-02   0.00       0.00       1.00       1.00    
    19.0000     6.4075     3.7680     2.8223  0.111E-02  0.249E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.6200     3.2760  0.164E-10  0.370E-10   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Tue Aug 18 12:15:45 CDT 2009

Last Changed 2009/08/18