Location

2019/08/13 11:17:17 44.47 9.82 7 3.9 Borgo Val di Taro (PR)

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 ENS  2019/08/13 11:17:17:0  44.47    9.82   7.0 3.9 Borgo Val di Taro (PR)
 
 Stations used:
   FR.EILF FR.ESCA FR.MON FR.SAOF FR.SPIF FR.TURF GU.ENR 
   GU.GBOS GU.GORR GU.PCP GU.POPM GU.PZZ GU.RORO GU.ROTM 
   GU.RRL GU.STV IV.ASQU IV.ATMI IV.BDI IV.BOB IV.CELB IV.CRE 
   IV.CRMI IV.CSNT IV.IMI IV.MONC IV.OSSC IV.PARC IV.PIEI 
   IV.PLMA IV.QLNO IV.SACS MN.VLC 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 5.31e+21 dyne-cm
  Mw = 3.75 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      120    65   -75
   NP2      268    29   -119
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.31e+21     19     199
    N   0.00e+00     14     294
    P  -5.31e+21     67      57

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.02e+21
       Mxy     1.08e+21
       Mxz    -2.56e+21
       Myy    -9.64e+19
       Myz    -2.15e+21
       Mzz    -3.93e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             ########--------------########          
           ######-----------------------#####        
          ####----------------------------####       
         --#--------------------------------###      
        ---#----------------------------------##     
        -####------------------   -------------#     
       -#######---------------- P --------------#    
       -########---------------   ---------------    
       ###########-------------------------------    
       ##############----------------------------    
        ###############-------------------------     
        ###################---------------------     
         ######################----------------      
          ###########################---------       
           ##################################        
             ########   ###################          
              ####### T ##################           
                 ####   ###############              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.93e+21  -2.56e+21   2.15e+21 
 -2.56e+21   4.02e+21  -1.08e+21 
  2.15e+21  -1.08e+21  -9.64e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20190813111717/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 120
      DIP = 65
     RAKE = -75
       MW = 3.75
       HS = 9.0

The NDK file is 20190813111717.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 SLU Moment Tensor Solution
 ENS  2019/08/13 11:17:17:0  44.47    9.82   7.0 3.9 Borgo Val di Taro (PR)
 
 Stations used:
   FR.EILF FR.ESCA FR.MON FR.SAOF FR.SPIF FR.TURF GU.ENR 
   GU.GBOS GU.GORR GU.PCP GU.POPM GU.PZZ GU.RORO GU.ROTM 
   GU.RRL GU.STV IV.ASQU IV.ATMI IV.BDI IV.BOB IV.CELB IV.CRE 
   IV.CRMI IV.CSNT IV.IMI IV.MONC IV.OSSC IV.PARC IV.PIEI 
   IV.PLMA IV.QLNO IV.SACS MN.VLC 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 5.31e+21 dyne-cm
  Mw = 3.75 
  Z  = 9 km
  Plane   Strike  Dip  Rake
   NP1      120    65   -75
   NP2      268    29   -119
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   5.31e+21     19     199
    N   0.00e+00     14     294
    P  -5.31e+21     67      57

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     4.02e+21
       Mxy     1.08e+21
       Mxz    -2.56e+21
       Myy    -9.64e+19
       Myz    -2.15e+21
       Mzz    -3.93e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ######################              
              ############################           
             ########--------------########          
           ######-----------------------#####        
          ####----------------------------####       
         --#--------------------------------###      
        ---#----------------------------------##     
        -####------------------   -------------#     
       -#######---------------- P --------------#    
       -########---------------   ---------------    
       ###########-------------------------------    
       ##############----------------------------    
        ###############-------------------------     
        ###################---------------------     
         ######################----------------      
          ###########################---------       
           ##################################        
             ########   ###################          
              ####### T ##################           
                 ####   ###############              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.93e+21  -2.56e+21   2.15e+21 
 -2.56e+21   4.02e+21  -1.08e+21 
  2.15e+21  -1.08e+21  -9.64e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20190813111717/index.html
	

Magnitudes

ML Magnitude


(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.


(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   185    45    85   3.44 0.3659
WVFGRD96    2.0   335    40    30   3.49 0.3639
WVFGRD96    3.0   150    85   -65   3.58 0.4071
WVFGRD96    4.0   140    75   -60   3.59 0.4616
WVFGRD96    5.0   140    75   -70   3.71 0.5046
WVFGRD96    6.0   115    65   -80   3.76 0.5524
WVFGRD96    7.0   120    65   -75   3.77 0.5925
WVFGRD96    8.0   120    65   -75   3.74 0.6106
WVFGRD96    9.0   120    65   -75   3.75 0.6139
WVFGRD96   10.0   120    65   -75   3.76 0.6098
WVFGRD96   11.0   120    65   -75   3.76 0.5999
WVFGRD96   12.0   120    65   -75   3.77 0.5859
WVFGRD96   13.0   120    65   -75   3.77 0.5687
WVFGRD96   14.0   120    65   -75   3.78 0.5485
WVFGRD96   15.0   125    70   -75   3.82 0.5322
WVFGRD96   16.0   125    70   -75   3.83 0.5098
WVFGRD96   17.0   125    70   -75   3.83 0.4859
WVFGRD96   18.0   125    70   -75   3.84 0.4613
WVFGRD96   19.0    55    25    30   3.84 0.4406

The best solution is

WVFGRD96    9.0   120    65   -75   3.75 0.6139

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Tue Aug 13 14:15:13 CDT 2019

Last Changed 2019/08/13