2017/11/19 12:37:43 44.66 10.07 32.0 4.4 Fornovp
USGS Felt map for this earthquake
SLU Moment Tensor Solution
ENS 2017/11/19 12:37:43:0 44.66 10.07 32.0 4.4 Fornovp
Stations used:
CH.BERNI CH.MUGIO FR.ESCA FR.MON FR.SAOF FR.SPIF FR.TURF
GU.RSP IV.BRMO IV.CASP IV.CELB IV.CRMI IV.CSNT IV.IMI
IV.MSSA IV.OSSC IV.PARC IV.PLMA IV.QLNO IV.SALO MN.VLC
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 3.31e+22 dyne-cm
Mw = 4.28
Z = 20 km
Plane Strike Dip Rake
NP1 337 58 116
NP2 115 40 55
Principal Axes:
Axis Value Plunge Azimuth
T 3.31e+22 66 297
N 0.00e+00 22 143
P -3.31e+22 10 49
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.26e+22
Mxy -1.81e+22
Mxz 1.88e+21
Myy -1.41e+22
Myz -1.52e+22
Mzz 2.67e+22
--------------
#######---------------
############----------------
###############-------------
###################----------- P -
######################--------- --
########################--------------
-#########################--------------
--########### ###########-------------
---########### T ############-------------
----########## ############-------------
-----#########################------------
------########################------------
------########################----------
--------######################----------
---------####################---------
-----------#################-------#
--------------#############----###
-------------------------#####
-----------------------#####
--------------------##
--------------
Global CMT Convention Moment Tensor:
R T P
2.67e+22 1.88e+21 1.52e+22
1.88e+21 -1.26e+22 1.81e+22
1.52e+22 1.81e+22 -1.41e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20171119123743/index.html
|
STK = 115
DIP = 40
RAKE = 55
MW = 4.28
HS = 20.0
The NDK file is 20171119123743.ndk The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution
ENS 2017/11/19 12:37:43:0 44.66 10.07 32.0 4.4 Fornovp
Stations used:
CH.BERNI CH.MUGIO FR.ESCA FR.MON FR.SAOF FR.SPIF FR.TURF
GU.RSP IV.BRMO IV.CASP IV.CELB IV.CRMI IV.CSNT IV.IMI
IV.MSSA IV.OSSC IV.PARC IV.PLMA IV.QLNO IV.SALO MN.VLC
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +50
rtr
taper w 0.1
hp c 0.03 n 3
lp c 0.10 n 3
Best Fitting Double Couple
Mo = 3.31e+22 dyne-cm
Mw = 4.28
Z = 20 km
Plane Strike Dip Rake
NP1 337 58 116
NP2 115 40 55
Principal Axes:
Axis Value Plunge Azimuth
T 3.31e+22 66 297
N 0.00e+00 22 143
P -3.31e+22 10 49
Moment Tensor: (dyne-cm)
Component Value
Mxx -1.26e+22
Mxy -1.81e+22
Mxz 1.88e+21
Myy -1.41e+22
Myz -1.52e+22
Mzz 2.67e+22
--------------
#######---------------
############----------------
###############-------------
###################----------- P -
######################--------- --
########################--------------
-#########################--------------
--########### ###########-------------
---########### T ############-------------
----########## ############-------------
-----#########################------------
------########################------------
------########################----------
--------######################----------
---------####################---------
-----------#################-------#
--------------#############----###
-------------------------#####
-----------------------#####
--------------------##
--------------
Global CMT Convention Moment Tensor:
R T P
2.67e+22 1.88e+21 1.52e+22
1.88e+21 -1.26e+22 1.81e+22
1.52e+22 1.81e+22 -1.41e+22
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20171119123743/index.html
|
|
(a) ML computed using the IASPEI formula for Horizontal components; (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
(a) ML computed using the IASPEI formula for Vertical components (research); (b) ML residuals computed using a modified IASPEI formula that accounts for path specific attenuation; the values used for the trimmed mean are indicated. The ML relation used for each figure is given at the bottom of each plot.
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 320 45 -90 3.92 0.3696
WVFGRD96 2.0 140 40 -90 3.99 0.3595
WVFGRD96 3.0 300 45 60 3.96 0.2700
WVFGRD96 4.0 90 60 -30 3.93 0.2819
WVFGRD96 5.0 80 45 -30 4.02 0.2965
WVFGRD96 6.0 80 35 -10 4.03 0.3286
WVFGRD96 7.0 90 30 10 4.06 0.3661
WVFGRD96 8.0 85 35 5 4.04 0.4032
WVFGRD96 9.0 95 35 20 4.07 0.4368
WVFGRD96 10.0 95 35 20 4.09 0.4681
WVFGRD96 11.0 100 40 30 4.11 0.4981
WVFGRD96 12.0 105 40 35 4.13 0.5257
WVFGRD96 13.0 105 45 40 4.15 0.5517
WVFGRD96 14.0 110 45 50 4.17 0.5780
WVFGRD96 15.0 115 45 55 4.21 0.6056
WVFGRD96 16.0 115 45 55 4.23 0.6300
WVFGRD96 17.0 115 40 55 4.24 0.6490
WVFGRD96 18.0 115 40 55 4.25 0.6645
WVFGRD96 19.0 115 40 55 4.27 0.6743
WVFGRD96 20.0 115 40 55 4.28 0.6784
WVFGRD96 21.0 115 40 55 4.29 0.6779
WVFGRD96 22.0 115 35 50 4.30 0.6744
WVFGRD96 23.0 115 35 50 4.31 0.6672
WVFGRD96 24.0 115 35 50 4.31 0.6545
WVFGRD96 25.0 110 35 45 4.32 0.6380
WVFGRD96 26.0 110 35 40 4.33 0.6201
WVFGRD96 27.0 110 35 40 4.34 0.6028
WVFGRD96 28.0 110 30 40 4.34 0.5883
WVFGRD96 29.0 110 30 40 4.35 0.5764
The best solution is
WVFGRD96 20.0 115 40 55 4.28 0.6784
The mechanism correspond to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +50 rtr taper w 0.1 hp c 0.03 n 3 lp c 0.10 n 3
|
|
|
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00
3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00
3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00
7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sun Nov 19 11:16:58 CST 2017