Location

2016/11/01 18:47:50 42.7288 13.2203 10.0 3.4 Rieti

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 ENS  2016/11/01 18:47:50:8  42.73   13.22  10.0 3.4 Rieti
 
 Stations used:
   IV.AOI IV.ARCI IV.ARVD IV.CAFI IV.CERT IV.CESX IV.CING 
   IV.FDMO IV.FIAM IV.GUAR IV.GUMA IV.LATE IV.LAV9 IV.MA9 
   IV.MGAB IV.MTCE IV.OFFI IV.PIEI IV.PTQR IV.RMP IV.SACS 
   IV.SAMA IV.SNTG IV.TERO IV.TOLF 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.20e+21 dyne-cm
  Mw = 3.32 
  Z  = 6 km
  Plane   Strike  Dip  Rake
   NP1      317    73   -108
   NP2      185    25   -45
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.20e+21     25      61
    N   0.00e+00     17     323
    P  -1.20e+21     58     202

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.74e+19
       Mxy     2.97e+20
       Mxz     7.20e+20
       Myy     7.09e+20
       Myz     6.12e+20
       Mzz    -6.51e+20
                                                     
                                                     
                                                     
                                                     
                     ----##########                  
                 -----#################              
              -----#######################           
             ####-#########################          
           #####-----########################        
          #####--------#################   ###       
         #####------------############## T ####      
        #####---------------############   #####     
        #####-----------------##################     
       #####-------------------##################    
       #####---------------------################    
       #####-----------------------##############    
       #####------------------------#############    
        #####------------------------###########     
        #####----------   ------------##########     
         #####--------- P --------------#######      
          ####---------   --------------######       
           ####--------------------------####        
             ####-------------------------#          
              ####------------------------           
                 ###-------------------              
                     ##------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -6.51e+20   7.20e+20  -6.12e+20 
  7.20e+20  -5.74e+19  -2.97e+20 
 -6.12e+20  -2.97e+20   7.09e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161101184750/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 185
      DIP = 25
     RAKE = -45
       MW = 3.32
       HS = 6.0

The NDK file is 20161101184750.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 SLU Moment Tensor Solution
 ENS  2016/11/01 18:47:50:8  42.73   13.22  10.0 3.4 Rieti
 
 Stations used:
   IV.AOI IV.ARCI IV.ARVD IV.CAFI IV.CERT IV.CESX IV.CING 
   IV.FDMO IV.FIAM IV.GUAR IV.GUMA IV.LATE IV.LAV9 IV.MA9 
   IV.MGAB IV.MTCE IV.OFFI IV.PIEI IV.PTQR IV.RMP IV.SACS 
   IV.SAMA IV.SNTG IV.TERO IV.TOLF 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.03 n 3 
   lp c 0.10 n 3 
 
 Best Fitting Double Couple
  Mo = 1.20e+21 dyne-cm
  Mw = 3.32 
  Z  = 6 km
  Plane   Strike  Dip  Rake
   NP1      317    73   -108
   NP2      185    25   -45
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.20e+21     25      61
    N   0.00e+00     17     323
    P  -1.20e+21     58     202

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.74e+19
       Mxy     2.97e+20
       Mxz     7.20e+20
       Myy     7.09e+20
       Myz     6.12e+20
       Mzz    -6.51e+20
                                                     
                                                     
                                                     
                                                     
                     ----##########                  
                 -----#################              
              -----#######################           
             ####-#########################          
           #####-----########################        
          #####--------#################   ###       
         #####------------############## T ####      
        #####---------------############   #####     
        #####-----------------##################     
       #####-------------------##################    
       #####---------------------################    
       #####-----------------------##############    
       #####------------------------#############    
        #####------------------------###########     
        #####----------   ------------##########     
         #####--------- P --------------#######      
          ####---------   --------------######       
           ####--------------------------####        
             ####-------------------------#          
              ####------------------------           
                 ###-------------------              
                     ##------------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -6.51e+20   7.20e+20  -6.12e+20 
  7.20e+20  -5.74e+19  -2.97e+20 
 -6.12e+20  -2.97e+20   7.09e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161101184750/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   310    35   -95   3.16 0.5144
WVFGRD96    2.0   140    70   -85   3.26 0.4901
WVFGRD96    3.0   180    20   -45   3.24 0.5350
WVFGRD96    4.0   180    25   -50   3.23 0.5710
WVFGRD96    5.0   180    20   -50   3.33 0.6027
WVFGRD96    6.0   185    25   -45   3.32 0.6069
WVFGRD96    7.0   195    30   -30   3.31 0.5991
WVFGRD96    8.0   215    45    20   3.28 0.5867
WVFGRD96    9.0   220    40     5   3.29 0.5791
WVFGRD96   10.0   220    40     5   3.30 0.5668
WVFGRD96   11.0   220    45    10   3.32 0.5516
WVFGRD96   12.0   220    45    10   3.32 0.5338
WVFGRD96   13.0   220    45    10   3.33 0.5142
WVFGRD96   14.0   220    45     5   3.34 0.4954
WVFGRD96   15.0   130    70    85   3.35 0.4772
WVFGRD96   16.0   130    70    85   3.36 0.4657
WVFGRD96   17.0   130    70    85   3.37 0.4537
WVFGRD96   18.0   125    70    75   3.37 0.4429
WVFGRD96   19.0   125    70    75   3.38 0.4319

The best solution is

WVFGRD96    6.0   185    25   -45   3.32 0.6069

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.03 n 3 
lp c 0.10 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Fri Nov 18 09:44:36 CST 2016

Last Changed 2016/11/01