Location

2016/10/31 21:09:09 42.8923 13.1818 14.5 3.0 Macerata

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 ENS  2016/10/31 21:09:09:7  42.89   13.18  14.5 3.0 Macerata
 
 Stations used:
   IV.ARVD IV.CERT IV.CESX IV.CING IV.FDMO IV.GUMA IV.LAV9 
   IV.MGAB IV.MTCE IV.OFFI IV.RMP IV.SACS IV.SNTG IV.TERO 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.04 n 3 
   lp c 0.12 n 3 
 
 Best Fitting Double Couple
  Mo = 4.12e+20 dyne-cm
  Mw = 3.01 
  Z  = 4 km
  Plane   Strike  Dip  Rake
   NP1      265    73   148
   NP2        5    60    20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.12e+20     34     221
    N   0.00e+00     54      59
    P  -4.12e+20      8     317

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.92e+19
       Mxy     3.41e+20
       Mxz    -1.87e+20
       Myy    -6.29e+19
       Myz    -8.71e+19
       Mzz     1.22e+20
                                                     
                                                     
                                                     
                                                     
                     ----------####                  
                 ---------------#######              
                -----------------#########           
              P ------------------#########          
           --   -------------------##########        
          -------------------------###########       
         --------------------------############      
        ----------------------------############     
        -----------------------#################     
       -----------##################-----------##    
       -----########################-------------    
       --###########################-------------    
       ############################--------------    
        ###########################-------------     
        ###########################-------------     
         ########   ##############-------------      
          ####### T #############-------------       
           ######   #############------------        
             ###################-----------          
              #################-----------           
                 ############----------              
                     #######-------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.22e+20  -1.87e+20   8.71e+19 
 -1.87e+20  -5.92e+19  -3.41e+20 
  8.71e+19  -3.41e+20  -6.29e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161031210909/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 5
      DIP = 60
     RAKE = 20
       MW = 3.01
       HS = 4.0

The NDK file is 20161031210909.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 SLU Moment Tensor Solution
 ENS  2016/10/31 21:09:09:7  42.89   13.18  14.5 3.0 Macerata
 
 Stations used:
   IV.ARVD IV.CERT IV.CESX IV.CING IV.FDMO IV.GUMA IV.LAV9 
   IV.MGAB IV.MTCE IV.OFFI IV.RMP IV.SACS IV.SNTG IV.TERO 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.04 n 3 
   lp c 0.12 n 3 
 
 Best Fitting Double Couple
  Mo = 4.12e+20 dyne-cm
  Mw = 3.01 
  Z  = 4 km
  Plane   Strike  Dip  Rake
   NP1      265    73   148
   NP2        5    60    20
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.12e+20     34     221
    N   0.00e+00     54      59
    P  -4.12e+20      8     317

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx    -5.92e+19
       Mxy     3.41e+20
       Mxz    -1.87e+20
       Myy    -6.29e+19
       Myz    -8.71e+19
       Mzz     1.22e+20
                                                     
                                                     
                                                     
                                                     
                     ----------####                  
                 ---------------#######              
                -----------------#########           
              P ------------------#########          
           --   -------------------##########        
          -------------------------###########       
         --------------------------############      
        ----------------------------############     
        -----------------------#################     
       -----------##################-----------##    
       -----########################-------------    
       --###########################-------------    
       ############################--------------    
        ###########################-------------     
        ###########################-------------     
         ########   ##############-------------      
          ####### T #############-------------       
           ######   #############------------        
             ###################-----------          
              #################-----------           
                 ############----------              
                     #######-------                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
  1.22e+20  -1.87e+20   8.71e+19 
 -1.87e+20  -5.92e+19  -3.41e+20 
  8.71e+19  -3.41e+20  -6.29e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161031210909/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.04 n 3 
lp c 0.12 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   340    40   -50   2.96 0.4035
WVFGRD96    2.0   345    40   -40   3.01 0.4211
WVFGRD96    3.0     5    50    15   2.99 0.4257
WVFGRD96    4.0     5    60    20   3.01 0.4309
WVFGRD96    5.0     0    40     0   3.10 0.4221
WVFGRD96    6.0    10    55    35   3.11 0.4095
WVFGRD96    7.0    10    55    35   3.13 0.3952
WVFGRD96    8.0    10    60    35   3.12 0.3794
WVFGRD96    9.0   355    60   -30   3.13 0.3660
WVFGRD96   10.0   355    65   -35   3.16 0.3546
WVFGRD96   11.0   355    70   -40   3.18 0.3418
WVFGRD96   12.0   355    70   -40   3.20 0.3286
WVFGRD96   13.0    -5    70   -40   3.21 0.3143
WVFGRD96   14.0   110    50    40   3.24 0.3005
WVFGRD96   15.0   115    50    50   3.27 0.2982
WVFGRD96   16.0   110    55    40   3.27 0.3003
WVFGRD96   17.0   110    55    40   3.28 0.3023
WVFGRD96   18.0   115    55    55   3.31 0.3061
WVFGRD96   19.0   115    55    55   3.32 0.3085

The best solution is

WVFGRD96    4.0     5    60    20   3.01 0.4309

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.04 n 3 
lp c 0.12 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Fri Nov 18 19:25:48 CST 2016

Last Changed 2016/10/31