Location

2016/10/30 09:51:03 42.8373 13.1183 7.7 3.6 Perugia

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 ENS  2016/10/30 09:51:03:9  42.84   13.12   7.7 3.6 Perugia
 
 Stations used:
   IV.ATPC IV.CAFI IV.GUAR IV.GUMA IV.LNSS IV.MURB IV.OFFI 
   IV.SACS IV.TERO 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.04 n 3 
   lp c 0.12 n 3 
 
 Best Fitting Double Couple
  Mo = 2.09e+21 dyne-cm
  Mw = 3.48 
  Z  = 5 km
  Plane   Strike  Dip  Rake
   NP1      350    65   -80
   NP2      147    27   -110
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.09e+21     19      73
    N   0.00e+00      9     166
    P  -2.09e+21     68     279

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.60e+20
       Mxy     5.79e+20
       Mxz     7.87e+19
       Myy     1.42e+21
       Myz     1.33e+21
       Mzz    -1.58e+21
                                                     
                                                     
                                                     
                                                     
                     -----#########                  
                 ----------############              
              #--------------#############           
             #----------------#############          
           ##------------------##############        
          ##--------------------##############       
         ###--------------------###############      
        ####---------------------##########   ##     
        ###----------------------########## T ##     
       ####----------   ----------#########   ###    
       #####--------- P ----------###############    
       #####---------   -----------##############    
       #####-----------------------##############    
        #####----------------------#############     
        ######---------------------#############     
         ######--------------------############      
          ######-------------------###########       
           #######-----------------##########        
             #######--------------#########          
              #########-----------########           
                 ##########------######              
                     ###########---                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.58e+21   7.87e+19  -1.33e+21 
  7.87e+19   1.60e+20  -5.79e+20 
 -1.33e+21  -5.79e+20   1.42e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161030095103/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 350
      DIP = 65
     RAKE = -80
       MW = 3.48
       HS = 5.0

The NDK file is 20161030095103.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 SLU Moment Tensor Solution
 ENS  2016/10/30 09:51:03:9  42.84   13.12   7.7 3.6 Perugia
 
 Stations used:
   IV.ATPC IV.CAFI IV.GUAR IV.GUMA IV.LNSS IV.MURB IV.OFFI 
   IV.SACS IV.TERO 
 
 Filtering commands used:
   cut o DIST/3.3 -20 o DIST/3.3 +40
   rtr
   taper w 0.1
   hp c 0.04 n 3 
   lp c 0.12 n 3 
 
 Best Fitting Double Couple
  Mo = 2.09e+21 dyne-cm
  Mw = 3.48 
  Z  = 5 km
  Plane   Strike  Dip  Rake
   NP1      350    65   -80
   NP2      147    27   -110
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   2.09e+21     19      73
    N   0.00e+00      9     166
    P  -2.09e+21     68     279

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.60e+20
       Mxy     5.79e+20
       Mxz     7.87e+19
       Myy     1.42e+21
       Myz     1.33e+21
       Mzz    -1.58e+21
                                                     
                                                     
                                                     
                                                     
                     -----#########                  
                 ----------############              
              #--------------#############           
             #----------------#############          
           ##------------------##############        
          ##--------------------##############       
         ###--------------------###############      
        ####---------------------##########   ##     
        ###----------------------########## T ##     
       ####----------   ----------#########   ###    
       #####--------- P ----------###############    
       #####---------   -----------##############    
       #####-----------------------##############    
        #####----------------------#############     
        ######---------------------#############     
         ######--------------------############      
          ######-------------------###########       
           #######-----------------##########        
             #######--------------#########          
              #########-----------########           
                 ##########------######              
                     ###########---                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.58e+21   7.87e+19  -1.33e+21 
  7.87e+19   1.60e+20  -5.79e+20 
 -1.33e+21  -5.79e+20   1.42e+21 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161030095103/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.04 n 3 
lp c 0.12 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0     5    75   -70   3.27 0.4223
WVFGRD96    2.0   360    75   -75   3.36 0.4758
WVFGRD96    3.0     0    70   -75   3.36 0.5222
WVFGRD96    4.0   345    60   -85   3.39 0.5381
WVFGRD96    5.0   350    65   -80   3.48 0.5534
WVFGRD96    6.0   345    60   -85   3.49 0.5212
WVFGRD96    7.0   155    30  -100   3.49 0.4771
WVFGRD96    8.0   215    55    35   3.41 0.4471
WVFGRD96    9.0   210    60    30   3.42 0.4243
WVFGRD96   10.0   210    60    30   3.43 0.4011
WVFGRD96   11.0   210    60    25   3.43 0.3783
WVFGRD96   12.0    45    45    40   3.43 0.3589
WVFGRD96   13.0    30    55    15   3.41 0.3425
WVFGRD96   14.0   315    55    55   3.50 0.3342
WVFGRD96   15.0   320    50    60   3.53 0.3342
WVFGRD96   16.0   325    45    65   3.54 0.3373
WVFGRD96   17.0   325    45    65   3.56 0.3406
WVFGRD96   18.0   320    45    60   3.57 0.3384
WVFGRD96   19.0   320    45    60   3.57 0.3342

The best solution is

WVFGRD96    5.0   350    65   -80   3.48 0.5534

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.04 n 3 
lp c 0.12 n 3 
Figure 3. Waveform comparison for selected depth. Red: observed; Blue - predicted. The time shift with respect to the model prediction is indicated. The percent of fit is also indicated.
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Sat Nov 19 16:35:55 CST 2016

Last Changed 2016/10/30