2016/10/27 23:35:50 42.8683 13.155 8.6 3.1
SLU Moment Tensor Solution
ENS 2016/10/27 23:35:50:9 42.87 13.15 8.6 3.1
Stations used:
IV.CAMP IV.CING IV.FDMO IV.GUMA IV.SNTG IV.T1243 MN.AQU
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.04 n 3
lp c 0.12 n 3
Best Fitting Double Couple
Mo = 5.07e+20 dyne-cm
Mw = 3.07
Z = 3 km
Plane Strike Dip Rake
NP1 287 62 -139
NP2 175 55 -35
Principal Axes:
Axis Value Plunge Azimuth
T 5.07e+20 4 49
N 0.00e+00 42 316
P -5.07e+20 48 144
Moment Tensor: (dyne-cm)
Component Value
Mxx 6.12e+19
Mxy 3.59e+20
Mxz 2.29e+20
Myy 2.12e+20
Myz -1.20e+20
Mzz -2.73e+20
----##########
------################
--------###################
--------#################### T
----------#################### #
----------##########################
------#####---########################
-##########------------#################
###########-----------------############
############--------------------##########
############-----------------------#######
############-------------------------#####
############---------------------------###
############---------------------------#
############------------- ------------
############------------ P -----------
###########------------ ----------
###########-----------------------
##########--------------------
##########------------------
#########-------------
#######-------
Global CMT Convention Moment Tensor:
R T P
-2.73e+20 2.29e+20 1.20e+20
2.29e+20 6.12e+19 -3.59e+20
1.20e+20 -3.59e+20 2.12e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161027233550/index.html
|
STK = 175
DIP = 55
RAKE = -35
MW = 3.07
HS = 3.0
The waveform inversion is preferred.
The following compares this source inversion to others
SLU Moment Tensor Solution
ENS 2016/10/27 23:35:50:9 42.87 13.15 8.6 3.1
Stations used:
IV.CAMP IV.CING IV.FDMO IV.GUMA IV.SNTG IV.T1243 MN.AQU
Filtering commands used:
cut o DIST/3.3 -20 o DIST/3.3 +40
rtr
taper w 0.1
hp c 0.04 n 3
lp c 0.12 n 3
Best Fitting Double Couple
Mo = 5.07e+20 dyne-cm
Mw = 3.07
Z = 3 km
Plane Strike Dip Rake
NP1 287 62 -139
NP2 175 55 -35
Principal Axes:
Axis Value Plunge Azimuth
T 5.07e+20 4 49
N 0.00e+00 42 316
P -5.07e+20 48 144
Moment Tensor: (dyne-cm)
Component Value
Mxx 6.12e+19
Mxy 3.59e+20
Mxz 2.29e+20
Myy 2.12e+20
Myz -1.20e+20
Mzz -2.73e+20
----##########
------################
--------###################
--------#################### T
----------#################### #
----------##########################
------#####---########################
-##########------------#################
###########-----------------############
############--------------------##########
############-----------------------#######
############-------------------------#####
############---------------------------###
############---------------------------#
############------------- ------------
############------------ P -----------
###########------------ ----------
###########-----------------------
##########--------------------
##########------------------
#########-------------
#######-------
Global CMT Convention Moment Tensor:
R T P
-2.73e+20 2.29e+20 1.20e+20
2.29e+20 6.12e+19 -3.59e+20
1.20e+20 -3.59e+20 2.12e+20
Details of the solution is found at
http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20161027233550/index.html
|
The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
|
|
|
The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.
The observed and predicted traces are filtered using the following gsac commands:
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.12 n 3The results of this grid search from 0.5 to 19 km depth are as follow:
DEPTH STK DIP RAKE MW FIT
WVFGRD96 1.0 175 45 -35 3.00 0.5236
WVFGRD96 2.0 175 45 -35 3.08 0.5852
WVFGRD96 3.0 175 55 -35 3.07 0.5968
WVFGRD96 4.0 180 65 -25 3.07 0.5771
WVFGRD96 5.0 160 45 -60 3.22 0.5803
WVFGRD96 6.0 145 35 -85 3.28 0.5409
WVFGRD96 7.0 190 80 25 3.18 0.5214
WVFGRD96 8.0 190 80 25 3.19 0.5103
WVFGRD96 9.0 190 80 25 3.20 0.5042
WVFGRD96 10.0 190 80 25 3.22 0.4949
WVFGRD96 11.0 190 75 25 3.23 0.4843
WVFGRD96 12.0 190 75 25 3.25 0.4725
WVFGRD96 13.0 190 80 20 3.26 0.4615
WVFGRD96 14.0 190 80 15 3.27 0.4493
WVFGRD96 15.0 185 75 -5 3.24 0.4420
The best solution is
WVFGRD96 3.0 175 55 -35 3.07 0.5968
The mechanism correspond to the best fit is
|
|
|
The best fit as a function of depth is given in the following figure:
|
|
|
The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).
The bandpass filter used in the processing and for the display was
cut o DIST/3.3 -20 o DIST/3.3 +40 rtr taper w 0.1 hp c 0.04 n 3 lp c 0.12 n 3
|
|
|
|
| Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure. |
A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:
Time_shift = A + B cos Azimuth + C Sin Azimuth
The time shifts for this inversion lead to the next figure:
The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.
The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:
MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
H(KM) VP(KM/S) VS(KM/S) RHO(GM/CC) QP QS ETAP ETAS FREFP FREFS
1.5000 3.7497 2.1436 2.2753 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00
3.0000 4.9399 2.8210 2.4858 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00
3.0000 6.0129 3.4336 2.7058 0.500E-02 0.100E-01 0.00 0.00 1.00 1.00
7.0000 5.5516 3.1475 2.6093 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
15.0000 5.8805 3.3583 2.6770 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
6.0000 7.1059 4.0081 3.0002 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
8.0000 7.1000 3.9864 3.0120 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
0.0000 7.9000 4.4036 3.2760 0.167E-02 0.333E-02 0.00 0.00 1.00 1.00
Here we tabulate the reasons for not using certain digital data sets
The following stations did not have a valid response files:
DATE=Sat Oct 29 19:46:15 CDT 2016