Location

2013/07/08 23:31:53 44.152 10.182 6.7 3.5 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 ENS  2013/07/08 23:31:53:0  44.15   10.18   6.7 3.5 Italy 
 
 Stations used:
   GU.GORR GU.MAIM GU.PCP GU.POPM IV.ARCI IV.ASQU IV.BDI 
   IV.BOB IV.CASP IV.CRMI IV.CSNT IV.FNVD IV.GROG IV.MSSA 
   IV.PARC IV.PLMA IV.ROVR IV.ZCCA 
 
 Filtering commands used:
   cut a -10 a 120
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.70e+21 dyne-cm
  Mw = 3.42 
  Z  = 2 km
  Plane   Strike  Dip  Rake
   NP1      256    52   -102
   NP2       95    40   -75
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.70e+21      6     354
    N   0.00e+00     10     263
    P  -1.70e+21     79     116

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.65e+21
       Mxy    -1.38e+20
       Mxz     3.13e+20
       Myy    -3.68e+19
       Myz    -3.11e+20
       Mzz    -1.62e+21
                                                     
                                                     
                                                     
                                                     
                     ### T ########                  
                 #######   ############              
              ############################           
             ##############################          
           ##################################        
          ####################------##########       
         #############---------------------####      
        ##########----------------------------##     
        #######---------------------------------     
       ######------------------------------------    
       -###------------------   -----------------    
       -##------------------- P -----------------    
       --#-------------------   ----------------#    
        ###------------------------------------#     
        #####--------------------------------###     
         ######----------------------------####      
          #########---------------------######       
           #############----------###########        
             ##############################          
              ############################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.62e+21   3.13e+20   3.11e+20 
  3.13e+20   1.65e+21   1.38e+20 
  3.11e+20   1.38e+20  -3.68e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20130708233153/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 95
      DIP = 40
     RAKE = -75
       MW = 3.42
       HS = 2.0

The NDK file is 20130708233153.ndk The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
INGVTDMT
 SLU Moment Tensor Solution
 ENS  2013/07/08 23:31:53:0  44.15   10.18   6.7 3.5 Italy 
 
 Stations used:
   GU.GORR GU.MAIM GU.PCP GU.POPM IV.ARCI IV.ASQU IV.BDI 
   IV.BOB IV.CASP IV.CRMI IV.CSNT IV.FNVD IV.GROG IV.MSSA 
   IV.PARC IV.PLMA IV.ROVR IV.ZCCA 
 
 Filtering commands used:
   cut a -10 a 120
   rtr
   taper w 0.1
   hp c 0.02 n 3 
   lp c 0.06 n 3 
 
 Best Fitting Double Couple
  Mo = 1.70e+21 dyne-cm
  Mw = 3.42 
  Z  = 2 km
  Plane   Strike  Dip  Rake
   NP1      256    52   -102
   NP2       95    40   -75
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.70e+21      6     354
    N   0.00e+00     10     263
    P  -1.70e+21     79     116

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.65e+21
       Mxy    -1.38e+20
       Mxz     3.13e+20
       Myy    -3.68e+19
       Myz    -3.11e+20
       Mzz    -1.62e+21
                                                     
                                                     
                                                     
                                                     
                     ### T ########                  
                 #######   ############              
              ############################           
             ##############################          
           ##################################        
          ####################------##########       
         #############---------------------####      
        ##########----------------------------##     
        #######---------------------------------     
       ######------------------------------------    
       -###------------------   -----------------    
       -##------------------- P -----------------    
       --#-------------------   ----------------#    
        ###------------------------------------#     
        #####--------------------------------###     
         ######----------------------------####      
          #########---------------------######       
           #############----------###########        
             ##############################          
              ############################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.62e+21   3.13e+20   3.11e+20 
  3.13e+20   1.65e+21   1.38e+20 
  3.11e+20   1.38e+20  -3.68e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20130708233153/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -10 a 120
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   100    40   -70   3.38 0.5680
WVFGRD96    2.0    95    40   -75   3.42 0.5855
WVFGRD96    3.0    95    40   -80   3.46 0.5406
WVFGRD96    4.0    95    35   -80   3.47 0.4718
WVFGRD96    5.0   275    30   -80   3.53 0.4896
WVFGRD96    6.0   270    30   -85   3.52 0.4615
WVFGRD96    7.0   110    30   -60   3.49 0.4361
WVFGRD96    8.0   140    60    25   3.38 0.4203
WVFGRD96    9.0   140    60    25   3.39 0.4318
WVFGRD96   10.0   140    60    25   3.40 0.4420
WVFGRD96   11.0   140    60    20   3.41 0.4492
WVFGRD96   12.0   140    60    25   3.42 0.4577
WVFGRD96   13.0   140    60    25   3.43 0.4642
WVFGRD96   14.0   140    60    25   3.44 0.4703
WVFGRD96   15.0   140    60    25   3.45 0.4629
WVFGRD96   16.0   140    60    20   3.46 0.4643
WVFGRD96   17.0   140    60    20   3.47 0.4650
WVFGRD96   18.0   140    60    20   3.48 0.4642
WVFGRD96   19.0   140    60    20   3.48 0.4629
WVFGRD96   20.0   140    60    20   3.49 0.4608
WVFGRD96   21.0   140    60    20   3.50 0.4583
WVFGRD96   22.0   140    60    20   3.50 0.4557
WVFGRD96   23.0   140    60    20   3.51 0.4519
WVFGRD96   24.0   140    60    20   3.52 0.4486
WVFGRD96   25.0   140    60    20   3.53 0.4446
WVFGRD96   26.0   140    60    20   3.53 0.4402
WVFGRD96   27.0   140    60    20   3.54 0.4362
WVFGRD96   28.0   140    60    25   3.55 0.4329
WVFGRD96   29.0   140    60    25   3.56 0.4310

The best solution is

WVFGRD96    2.0    95    40   -75   3.42 0.5855

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -10 a 120
rtr
taper w 0.1
hp c 0.02 n 3 
lp c 0.06 n 3 
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Mon Jul 8 21:24:30 CDT 2013

Last Changed 2013/07/08