Location

2013/06/21 12:19:58 44.168 10.120 4.4 3.8 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 ENS  2013/06/21 12:19:58:0  44.17   10.12   4.4 3.8 Italy 
 
 Stations used:
   GU.BHB GU.ENR GU.FINB GU.GORR GU.MAIM GU.PCP IV.ARVD 
   IV.ASQU IV.BDI IV.BOB IV.CAFI IV.CASP IV.CRMI IV.CSNT 
   IV.DOI IV.FNVD IV.FSSB IV.IMI IV.MGAB IV.MSSA IV.MURB 
   IV.PARC IV.PIEI IV.QLNO IV.SACS IV.SSFR MN.VLC 
 
 Filtering commands used:
   cut a -30 a 90
   rtr
   taper w 0.1
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 4.17e+21 dyne-cm
  Mw = 3.68 
  Z  = 7 km
  Plane   Strike  Dip  Rake
   NP1      295    50   -75
   NP2       92    42   -107
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.17e+21      4      14
    N   0.00e+00     11     105
    P  -4.17e+21     78     266

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.89e+21
       Mxy     9.88e+20
       Mxz     3.41e+20
       Myy     7.51e+19
       Myz     9.24e+20
       Mzz    -3.97e+21
                                                     
                                                     
                                                     
                                                     
                     ########## T #                  
                 ##############   #####              
              ############################           
             ##############################          
           ##################################        
          ##------------------################       
         -------------------------#############      
        -----------------------------###########     
        -------------------------------#########     
       ----------------------------------########    
       ----------------   -----------------######    
       #--------------- P ------------------#####    
       ##--------------   -------------------###-    
        ###-------------------------------------     
        #####-------------------------------##--     
         ######---------------------------#####      
          #########-------------------########       
           ##################################        
             ##############################          
              ############################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.97e+21   3.41e+20  -9.24e+20 
  3.41e+20   3.89e+21  -9.88e+20 
 -9.24e+20  -9.88e+20   7.51e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20130621121958/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 295
      DIP = 50
     RAKE = -75
       MW = 3.68
       HS = 7.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
INGVTDMT
 SLU Moment Tensor Solution
 ENS  2013/06/21 12:19:58:0  44.17   10.12   4.4 3.8 Italy 
 
 Stations used:
   GU.BHB GU.ENR GU.FINB GU.GORR GU.MAIM GU.PCP IV.ARVD 
   IV.ASQU IV.BDI IV.BOB IV.CAFI IV.CASP IV.CRMI IV.CSNT 
   IV.DOI IV.FNVD IV.FSSB IV.IMI IV.MGAB IV.MSSA IV.MURB 
   IV.PARC IV.PIEI IV.QLNO IV.SACS IV.SSFR MN.VLC 
 
 Filtering commands used:
   cut a -30 a 90
   rtr
   taper w 0.1
   hp c 0.02 n 3
   lp c 0.10 n 3
 
 Best Fitting Double Couple
  Mo = 4.17e+21 dyne-cm
  Mw = 3.68 
  Z  = 7 km
  Plane   Strike  Dip  Rake
   NP1      295    50   -75
   NP2       92    42   -107
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   4.17e+21      4      14
    N   0.00e+00     11     105
    P  -4.17e+21     78     266

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     3.89e+21
       Mxy     9.88e+20
       Mxz     3.41e+20
       Myy     7.51e+19
       Myz     9.24e+20
       Mzz    -3.97e+21
                                                     
                                                     
                                                     
                                                     
                     ########## T #                  
                 ##############   #####              
              ############################           
             ##############################          
           ##################################        
          ##------------------################       
         -------------------------#############      
        -----------------------------###########     
        -------------------------------#########     
       ----------------------------------########    
       ----------------   -----------------######    
       #--------------- P ------------------#####    
       ##--------------   -------------------###-    
        ###-------------------------------------     
        #####-------------------------------##--     
         ######---------------------------#####      
          #########-------------------########       
           ##################################        
             ##############################          
              ############################           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -3.97e+21   3.41e+20  -9.24e+20 
  3.41e+20   3.89e+21  -9.88e+20 
 -9.24e+20  -9.88e+20   7.51e+19 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20130621121958/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

cut a -30 a 90
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.10 n 3
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   160    70    35   3.30 0.3426
WVFGRD96    2.0   335    85   -65   3.51 0.3960
WVFGRD96    3.0   325    70   -55   3.51 0.4799
WVFGRD96    4.0   315    60   -60   3.54 0.5356
WVFGRD96    5.0   310    45   -45   3.60 0.5497
WVFGRD96    6.0   300    45   -65   3.66 0.5829
WVFGRD96    7.0   295    50   -75   3.68 0.5882
WVFGRD96    8.0   295    50   -70   3.62 0.5696
WVFGRD96    9.0   295    50   -70   3.62 0.5439
WVFGRD96   10.0   295    55   -70   3.62 0.5167
WVFGRD96   11.0   295    60   -65   3.61 0.4925
WVFGRD96   12.0   295    65   -65   3.62 0.4702
WVFGRD96   13.0   320    55   -10   3.54 0.4469
WVFGRD96   14.0   325    55    10   3.55 0.4356
WVFGRD96   15.0   325    55    10   3.58 0.4241
WVFGRD96   16.0   325    55    10   3.59 0.4121
WVFGRD96   17.0   325    55    10   3.60 0.3993
WVFGRD96   18.0   320    55     5   3.60 0.3865
WVFGRD96   19.0   320    55     5   3.61 0.3739
WVFGRD96   20.0   320    55     5   3.61 0.3611
WVFGRD96   21.0   320    55     5   3.62 0.3481
WVFGRD96   22.0   320    55     5   3.63 0.3360
WVFGRD96   23.0   320    55     5   3.64 0.3252
WVFGRD96   24.0   320    55    10   3.64 0.3159
WVFGRD96   25.0   320    60     5   3.66 0.3076
WVFGRD96   26.0   320    60     5   3.67 0.3012
WVFGRD96   27.0   320    60    10   3.68 0.2965
WVFGRD96   28.0   320    60    10   3.69 0.2918
WVFGRD96   29.0   165    75    25   3.76 0.2933

The best solution is

WVFGRD96    7.0   295    50   -75   3.68 0.5882

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

cut a -30 a 90
rtr
taper w 0.1
hp c 0.02 n 3
lp c 0.10 n 3
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Fri Jun 21 14:23:02 CDT 2013

Last Changed 2013/06/21