Location

2013/04/17 14:50:33 43.673 11.141 8.3 3.2 Italy

Arrival Times (from USGS)

Arrival time list

Felt Map

USGS Felt map for this earthquake

USGS Felt reports page for

Focal Mechanism

 SLU Moment Tensor Solution
 ENS  2013/04/17 14:50:33:0  43.67   11.14   8.3 3.2 Italy 
 
 Stations used:
   IV.ARVD IV.ASQU IV.BDI IV.CESX IV.CING IV.CSNT IV.MAON 
   IV.MTRZ IV.MURB IV.PARC IV.PIEI IV.SACS IV.SNTG IV.SSFR 
   MN.VLC 
 
 Filtering commands used:
   hp c 0.025 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.82e+21 dyne-cm
  Mw = 3.44 
  Z  = 6 km
  Plane   Strike  Dip  Rake
   NP1      298    61   -96
   NP2      130    30   -80
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.82e+21     15      33
    N   0.00e+00      5     301
    P  -1.82e+21     74     194

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.07e+21
       Mxy     7.37e+20
       Mxz     8.62e+20
       Myy     4.86e+20
       Myz     3.66e+20
       Mzz    -1.55e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ###################                 
              ###################### T ###           
             #######################   ####          
           -#################################        
          ------------########################       
         ##-----------------###################      
        ##----------------------################     
        ##-------------------------#############     
       ####--------------------------############    
       ####----------------------------##########    
       #####-----------------------------########    
       #####-------------   ---------------######    
        #####------------ P ----------------####     
        ######-----------   -----------------###     
         #######------------------------------#      
          #######-----------------------------       
           #########-------------------------        
             #########---------------------          
              #############------------###           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.55e+21   8.62e+20  -3.66e+20 
  8.62e+20   1.07e+21  -7.37e+20 
 -3.66e+20  -7.37e+20   4.86e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20130417145033/index.html
        

Preferred Solution

The preferred solution from an analysis of the surface-wave spectral amplitude radiation pattern, waveform inversion and first motion observations is

      STK = 130
      DIP = 30
     RAKE = -80
       MW = 3.44
       HS = 6.0

The waveform inversion is preferred.

Moment Tensor Comparison

The following compares this source inversion to others
SLU
 SLU Moment Tensor Solution
 ENS  2013/04/17 14:50:33:0  43.67   11.14   8.3 3.2 Italy 
 
 Stations used:
   IV.ARVD IV.ASQU IV.BDI IV.CESX IV.CING IV.CSNT IV.MAON 
   IV.MTRZ IV.MURB IV.PARC IV.PIEI IV.SACS IV.SNTG IV.SSFR 
   MN.VLC 
 
 Filtering commands used:
   hp c 0.025 n 3
   lp c 0.10 n 3
   br c 0.12 0.25 n 4 p 2
 
 Best Fitting Double Couple
  Mo = 1.82e+21 dyne-cm
  Mw = 3.44 
  Z  = 6 km
  Plane   Strike  Dip  Rake
   NP1      298    61   -96
   NP2      130    30   -80
  Principal Axes:
   Axis    Value   Plunge  Azimuth
    T   1.82e+21     15      33
    N   0.00e+00      5     301
    P  -1.82e+21     74     194

 Moment Tensor: (dyne-cm)
    Component   Value
       Mxx     1.07e+21
       Mxy     7.37e+20
       Mxz     8.62e+20
       Myy     4.86e+20
       Myz     3.66e+20
       Mzz    -1.55e+21
                                                     
                                                     
                                                     
                                                     
                     ##############                  
                 ###################                 
              ###################### T ###           
             #######################   ####          
           -#################################        
          ------------########################       
         ##-----------------###################      
        ##----------------------################     
        ##-------------------------#############     
       ####--------------------------############    
       ####----------------------------##########    
       #####-----------------------------########    
       #####-------------   ---------------######    
        #####------------ P ----------------####     
        ######-----------   -----------------###     
         #######------------------------------#      
          #######-----------------------------       
           #########-------------------------        
             #########---------------------          
              #############------------###           
                 ######################              
                     ##############                  
                                                     
                                                     
                                                     
 Global CMT Convention Moment Tensor:
      R          T          P
 -1.55e+21   8.62e+20  -3.66e+20 
  8.62e+20   1.07e+21  -7.37e+20 
 -3.66e+20  -7.37e+20   4.86e+20 


Details of the solution is found at

http://www.eas.slu.edu/eqc/eqc_mt/MECH.IT/20130417145033/index.html
	

Waveform Inversion

The focal mechanism was determined using broadband seismic waveforms. The location of the event and the and stations used for the waveform inversion are shown in the next figure.
Location of broadband stations used for waveform inversion

The program wvfgrd96 was used with good traces observed at short distance to determine the focal mechanism, depth and seismic moment. This technique requires a high quality signal and well determined velocity model for the Green functions. To the extent that these are the quality data, this type of mechanism should be preferred over the radiation pattern technique which requires the separate step of defining the pressure and tension quadrants and the correct strike.

The observed and predicted traces are filtered using the following gsac commands:

hp c 0.025 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
The results of this grid search from 0.5 to 19 km depth are as follow:

           DEPTH  STK   DIP  RAKE   MW    FIT
WVFGRD96    1.0   325    50   -65   3.16 0.2989
WVFGRD96    2.0   160    40   -35   3.23 0.3428
WVFGRD96    3.0   145    30   -60   3.31 0.3927
WVFGRD96    4.0   135    30   -75   3.36 0.4411
WVFGRD96    5.0   130    30   -80   3.44 0.4914
WVFGRD96    6.0   130    30   -80   3.44 0.4984
WVFGRD96    7.0   130    35   -80   3.43 0.4804
WVFGRD96    8.0   135    40   -70   3.37 0.4335
WVFGRD96    9.0   160    60   -25   3.30 0.4199
WVFGRD96   10.0   165    80   -10   3.30 0.4182
WVFGRD96   11.0   165    85   -10   3.31 0.4188
WVFGRD96   12.0   165    85   -10   3.32 0.4177
WVFGRD96   13.0   165    85   -10   3.33 0.4145
WVFGRD96   14.0   345    90    10   3.35 0.4094
WVFGRD96   15.0   345    90    10   3.36 0.4045
WVFGRD96   16.0   345    90    10   3.37 0.3996
WVFGRD96   17.0   165    85   -10   3.38 0.3943
WVFGRD96   18.0   170    90   -10   3.38 0.3875
WVFGRD96   19.0   350    80    15   3.39 0.3846
WVFGRD96   20.0   350    80    15   3.40 0.3796
WVFGRD96   21.0   350    80    15   3.41 0.3738
WVFGRD96   22.0   350    80    15   3.42 0.3680
WVFGRD96   23.0   350    85    15   3.43 0.3616
WVFGRD96   24.0   350    80    15   3.44 0.3558
WVFGRD96   25.0   350    80    15   3.45 0.3482
WVFGRD96   26.0   350    75    10   3.46 0.3428
WVFGRD96   27.0   350    80    15   3.47 0.3378
WVFGRD96   28.0   350    75    10   3.48 0.3324
WVFGRD96   29.0   350    80     5   3.50 0.3313

The best solution is

WVFGRD96    6.0   130    30   -80   3.44 0.4984

The mechanism correspond to the best fit is
Figure 1. Waveform inversion focal mechanism

The best fit as a function of depth is given in the following figure:

Figure 2. Depth sensitivity for waveform mechanism

The comparison of the observed and predicted waveforms is given in the next figure. The red traces are the observed and the blue are the predicted. Each observed-predicted component is plotted to the same scale and peak amplitudes are indicated by the numbers to the left of each trace. A pair of numbers is given in black at the right of each predicted traces. The upper number it the time shift required for maximum correlation between the observed and predicted traces. This time shift is required because the synthetics are not computed at exactly the same distance as the observed and because the velocity model used in the predictions may not be perfect. A positive time shift indicates that the prediction is too fast and should be delayed to match the observed trace (shift to the right in this figure). A negative value indicates that the prediction is too slow. The lower number gives the percentage of variance reduction to characterize the individual goodness of fit (100% indicates a perfect fit).

The bandpass filter used in the processing and for the display was

hp c 0.025 n 3
lp c 0.10 n 3
br c 0.12 0.25 n 4 p 2
Figure 3. Waveform comparison for selected depth
Focal mechanism sensitivity at the preferred depth. The red color indicates a very good fit to thewavefroms. Each solution is plotted as a vector at a given value of strike and dip with the angle of the vector representing the rake angle, measured, with respect to the upward vertical (N) in the figure.

A check on the assumed source location is possible by looking at the time shifts between the observed and predicted traces. The time shifts for waveform matching arise for several reasons:

Assuming only a mislocation, the time shifts are fit to a functional form:

 Time_shift = A + B cos Azimuth + C Sin Azimuth

The time shifts for this inversion lead to the next figure:

The derived shift in origin time and epicentral coordinates are given at the bottom of the figure.

Discussion

Velocity Model

The nnCIA used for the waveform synthetic seismograms and for the surface wave eigenfunctions and dispersion is as follows:

MODEL.01
C.It. A. Di Luzio et al Earth Plan Lettrs 280 (2009) 1-12 Fig 5. 7-8 MODEL/SURF3
ISOTROPIC
KGS
FLAT EARTH
1-D
CONSTANT VELOCITY
LINE08
LINE09
LINE10
LINE11
      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)         QP         QS       ETAP       ETAS      FREFP      FREFS
     1.5000     3.7497     2.1436     2.2753  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     4.9399     2.8210     2.4858  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     3.0000     6.0129     3.4336     2.7058  0.500E-02  0.100E-01   0.00       0.00       1.00       1.00    
     7.0000     5.5516     3.1475     2.6093  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
    15.0000     5.8805     3.3583     2.6770  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     6.0000     7.1059     4.0081     3.0002  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     8.0000     7.1000     3.9864     3.0120  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    
     0.0000     7.9000     4.4036     3.2760  0.167E-02  0.333E-02   0.00       0.00       1.00       1.00    

Quality Control

Here we tabulate the reasons for not using certain digital data sets

The following stations did not have a valid response files:

DATE=Fri Apr 19 10:24:39 CDT 2013

Last Changed 2013/04/17